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A class of states on the algebra of the infinite classical system is characterized by the vanishing of
the higher order (n > 2) truncated correlation functions. The states are called Gaussian. It is
shown how liquids and crystals can be described by Gaussian states.
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I. INTRODUCTION

An infinite system of classical particles can be described
in terms of correlation functions, or in terms of states on a
C *-algebra.' Especially interesting is the C *-algebra of Ref.
2. It allows to construct states in an elegant and concise way.
Quasifree states on this algebra are determined by a positive
linear functional on a testspace D. It is shown in the present
paper that Gaussian states are determined by a linear func-
tional on D describing the density of particles and a sesqui-
linear form on D describing the correlations. A form of
Wick’s theorem is proved.

In Sec. 4 liquids are considered. For any density p, and
radial distribution function g(r) a Gaussian state exists pro-
vided that the static structure factor is strictly positive
everywhere.

In Sec. 5 a description of crystals is given in terms of a
periodic density function p (’(g) and of the correlation func-
tion p ¥(g,,9,). The static structure factor alone contains not
enough information to calculate this pair correlation and
one is forced to introduce a family of “structure factors™
K, (k) which are functions over the Brillouin zone and are
labelled by vectors b,6 * of the reciprocal lattice. The exis-
tence of a Gaussian state then is assured under conditions
similar to the ones in the case of liquids.

The harmonic crystal model is treated as example. A
simple description of this model in terms of densities and
density correlations is only possible in the one-phonon
approximation.

Finally let us indicate the similarities of the present
work with that of van Hemmen® who describes the harmonic
crystal in terms of Gaussian processes. Essential in that ap-
proach is a generalized version of the finite dimensional
Bochner theorem. It allows to introduce a Gaussian measure
on a phase space of the system with infinitely many degrees
of freedom. In the present approach such a measure on a
phase space is absent. Its counterpart is obtained by the inte-
gral decomposition of the Gaussian state into pure states.

A direct link exists between the theory of stochastic
processes* and the formalism of Ref. 2. It is shortly discussed
at the end of Sec. 3.

2. ALGEBRA OF OBSERVABLES

An infinitely extended system with nonvanishing densi-
ty of particles can be described in the algebraic approach.
The C *-algebra of observables which we will use is the classi-
cal analog of the Weyl algebra in quantum mechanics. See
Ref. 2.
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Let K be the set of subsets X of R® which satisfy the
condition that for each bounded part ¥ of R* the intersection
VX contains an at most finite number of points. Then X is
the configuration space of the infinite system. Remark that
unlike in Ref. 2 the particles are described by their coordi-
nates only.

The testspace D is the set of real C =-functions with
bounded support in R, For each fin D a function S§fon K is
defined by:

(S)X) = S flx)

Because the support of fis bounded at most a finite number
of terms in the summation do not vanish.
For each fin D a Weyl function W ( f) is defined by:

W(f) = expiSf.

Infact Wisamap of Dinto the von Neumann algebra B (K,C)
of bounded functions on configuration space. One has:

W(f*=w(-f), wW)=1,
and
W(\Wgl =W(f+g)

The C *-algebra ./ of the infinite classical system now is
generated by the function W ( f), feD. For more details see
Ref. 2.

3. GAUSSIAN STATES

A class of states on ./ is introduced and a characteriza-
tion is given in terms of truncated correlation functions. De-
note D the complex algebra generated by D:

D={f+ig|fgeD}.
Following Ref. 2 we say that a state w on & is C ~ if for all f
and g in D the map AeR—w(W ( f+ Ag)) is infinitely
differentiable.

Theorem 1: Let wy:D—R be a linear map. Let sbe anon-

negative definite sesquilinear form on D. Then a state » on.
is uniquely defined by the relation

o(W (f)) = explioo(f) — s £, /}} (1)
for all feD. Moreover the state @ is C .

Proof: By linearity and continuity » extends to a linear
map on /. Normalization follows from
(1) = o(W(0)) = 1. It rests to show that @ is positive. Let
&y &, in Cand £+, £, in D. One has:
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3§86 oW () W(L))
=Y && oW (§—1)

=3 mmexps(fi, f), @

with

7; = §.exp( — iwg(f;) — %s(f;’f;))
From Schur’s theorem follows that (2) is positive. Hence w is
a state on .«/. One immediately verifies that it has the C *-
property.

Definition 2: A state  on o7 is called Gaussian if there
exists a linear map w,:D—R and a nonnegative definite ses-
quilinear form s on D such that relation (1) is satisfied for all f
in D.

Let (/1,442 ) be the G.N.S.-representation of a Gaus-
sian state w. Because w is C = all field operators® B ( f), feD
exist and satisfy: I7 (W ( f)) = expiB (f)and B ( f,)---B( f, )12 be-
longs to the domain of B ( f).

Truncated correlation functions @ { f,+, f,,) are de-
fined by the recurrence relation:

(2.B( fi)B( [}2) = Zor( fiy,lrorls £,
where the summation is over all possible partitions

(i yoee)e(orsd, ) Of { 1,--,n} with the original order preserved
within each cluster. In particular

(2,B( f12)=wr( [}
and
{2,B{ fi)B( f2) = o florl fo) +or fo fo)

Lemma 3: For n>3 one has |
(12, ﬁ B( f12)=w4 f.) (2, nI:I[ B( £)2)
n—1 A , n—1 B kﬂ ’
+'S s s (e T BAA)

j=1 J

The proof of the lemma is straightforward. The following
characterization of Gaussian states is obtained. It is a version
of Wick’s theorem.

Theorem 4: Let w be a C -state on .«7. The following
two statements are equivalent: (a)  is Gaussian; (b)
o7 fiy ) = 0for n>3. Let w, and s be the linear map
respectively the sesquilinear form which appears in the de-
fining relation (1). Then one has for all £}, f,&D: (c)
(Ul( ) —_—a_)o( fl) and w, ( flx/lz) =5( f)' fz)

Proof: (a)==(b) and (a)={(c) follows from the lemma.
(b)=(a).

Let o, be given by

o) = ( ) =(2B( fN2).
Clearly w, is a linear function on D. This follows from the
linearity of the field operator.

Let 5 be given by

sC fi+ifo, 8+ ig) = 0r( f1.8) + @1( /2,82)

+ i{or( for 8) —0r( f1, 8D}

Then s is a sesquilinear form on D.
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Now one has 'a)r( fuf) = f, f)) because the field op-
erators commute. Hence:

sSCH+ i i+ ) =or(fio f)+or( fy f)

But from Schwarz inequality one has:
wr( fi, £)={(Q.B( £)2)
—(2,B( f)12)*>0.

Therefore s is nonnegative definite.
Because w is C = one has

oW(N= S /2B 1))

From condition (b) and with the former definition of @, and s
one obtains

oW () = explio f)— (£, N}
Therefore w is Gaussian.
Finally we indicate a relation with the the theory of stochas-
tic processes, Let f},-, f, be test functions in D.
The function

x = (e, oW (S %, £))

is the characteristic function of a Gaussian process with ran-
dom variables f,,---, f, . It can be written as

exp(imx — IxLx),
with the mean m given by m; = w( f;) and the covariance
matrix L given by L, = s( f;, f})-

The underlying probability space is the one-particle
configuration space R* equipped with the measure induced
by the linear functional w,,.

4. LIQUIDS

The physical way of describing a liquid or a crystal will
be by use of a density functional p "’ (¢) and a density corre-
lation function p ® (g,,4,). The following relations give the
formal connection with the linear functional w,, and the ses-
quilinear form s which by definition determine a Gaussian
state of the system:

wl )= §dqflgp Q)

and

S o S =wo i £ — f da, f das fia)) fg)

x [pMg1p"Mgs) — pg1,42))-

An apparent advantage of working with test functions f; in D
is that one can allow the functionsp "’ and p @ to be general-
ized functions. Hence the definition of w, and s by foregoing
relations in most applications will not be too difficult to
prove. The main requirement is the positivity of the sesqui-
linear form s.

In the case of a dense gas or of a liquid one has transla-
tional invariance of the system. The density correlation func-
tions p " and p ? are of the form

0 (g =p,
and
pg1,9,) = piglg, — q>).
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Pois the density of the system. g(g) is called the radial distri-
bution function, and usually it is assumed to be positive.

It is conventional to denote 4 () = g(g) — 1. For conve-
nience we will work with Fourier transformed quantities:

h(Q) = fdg e“%h (g).
The static structure factor® is given by:

S(@)=1+poh(Q).
Remark that if fis a test function in D then its Fourier trans-
form f'is a bounded function which falls off at infinity faster
than any polynomial. 3

Proposition 5: Let p, be a constant. Let 4 (Q ) be a real
function on R? which is locally integrable. Assume there
exists a positive integer n such that |Q | ~ "k (Q ) is integrable
outside the unit ball of R>. Assume also that .S (Q) > 0 almost
everywhere. Then a linear functional w, on D and a positive
definite sesquilinear form s on D are given by the relations

@ol f)=pof (0)

and

S(fl,f2)=wo(f|f2) _
+ (2m) P2 5dQ F(Q) Al — Q)R (Q).

In particular it corresponds a Gaussian state on .«

Proof: Let us show that the integration in the defining
relation s is meaningful. Denote A the unit ball of R?. Let M
beaboundedregioninR’. Then f,,dQ f(Q) fi — Q) h (Q)is
well defined because /4 is locally integrable and £, and £, are
Fourier transforms of infinitely differentiable functions with
compact support and hence are continuous and bounded.
Suppose now MnA = ¢. Then one has:

| fM dQF(Q) /(- Q)i (Q)

<M il f 4o (|~ "1h (@),

withx(M) = sup{ [Q |"| f,(Q)|:QeM }. The convergence of
the integral in the definition of s follows because the function
£1(Q) falls off at infinity faster than any polynomial. The
proof of the proposition now is straightforward. In particu-
lar the positivity of s follows from the relation

(/i fi) = 2m) =, [ a0V~ Q)5 (@)

Example: A gas is described by the two-body interac-
tion potential V" (r). An obvious choice of the radial distribu-
tion function g is

8lg) =exp(— V{|q| )/kT)

(k is the Boltzmann factor, and T'is the temperature). It is the
low density limit of the solution of the Kirkwood equation.

Under reasonable assumptions on the potential ¥ the
function 4" = g — 1 is integrable. At high temperature and
low density one has

PoSdq |hig)l =p, §dqlexp(—V(|q|)/kT)— 1] <.

The Fourier transformed function /4 (Q ) is bounded. It satis-
fies the conditions of the foregoing proposition. Hence a
Gaussian state on .« describes the gas.

The energy density U is given by
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U(g) =4 5dg, pP(q:9)V (191 — 2] ).
One finds

U=1p; Sdgexp(—V(lq| VkT) V(iq]).

5. CRYSTALS

We consider Gaussian states on & which are periodic
under translations of R>. For example they can describe a
crystal within the harmonic approximation.

The description of a crystal in terms of a density func-
tion p ! (g), which is a superposition of Gaussians centered
on lattice sites, and a density correlation function p ?' (¢,,4,)
is unusual. The quantities which are accessible by experi-
ment (x ray and neutron scattering) are p "’ (g) and the aver-
age of p® (g,,9,) over one unit cell A,

ds p®g, + 5,q, + ).
V(Ao)f., PG+ 592+ 5)

Expressions for the latter quantity can be found in the
literature.®

We consider a Bravais lattice generated by the vectors
a,, a,, and a;. They form a non-degenerate matrix 4. The
lattice sites are given by: An, neZ>. Denote B the (first) Bril-
louin zone. 1t is (isomorphic to) the dual of the lattice group.
A pair of Fourier transforms is defined by

E(k) — zeikAncn!

c, = f dk e =~ ¢k ).
V(B)

Denote I" the reciprocal lattice. Denote A, the unit cell of the

lattice. The density p  (g) is a continuous periodic function

and hence it can be written as

D=3 &y,
with

dq e~ ibqpil)(q).

2= Vg a

The density correlation p ® (¢,,4,) has the periodicity
property

PP(q, + An,g, + An) =p®(g,,4,).
One therefore can write:

p241,92) — p"(g.)p(g2)
=Qm 3 e tuetite
bb'I"
x [ ket o, (o)
B
with
Ky (k)= [I/V(AO)]j dq e ig'(k — b") dg e —b"
A

X[ pg.q + ) — p(@Pp™(g + ).
In particular one has

[1/V (40)] f ds [ p® (g, + 5.4, +5)
Aq
—p(”(‘h + S)p(”(92 + 9]
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=@mn Y f dk %~ X ~ @K, (k).
b JB

Proposition 6: Let (g, ), be a bounded sequence of reals.
Let {K,,,(k ):b,b 'cI" } be a matrix of integrable functions on
B. Assume a uniform bound M exists:

[ 1o e ke <cna

independent of b,b 'el". Assume for almost all keB that the
matrix g, _, + K, (k) is positive definite. Then a linear
functional w, on D and a positive definite sesquilinear form s
on D are given by the relations:

odf1= 3 pufb) ()
and
oS = ool i)+ 0m) " f dk K, (k
b ‘el”
Xfilk —b)fo —k +b"). (4)

In particular it corresponds a Gaussian state on & follows.

Proof: For a test function f the Fourier coefficients f(b )
are summable. By assumption the p, are bonded. Hence a
linear functional w, is defined by relation (3).

In order to prove that expression (4) is well defined we
need to show that for a test function of D the quantity || £,
= 2,/ SUPsep | flk — b)] is bounded. It follows because
the Fourier transform of a function which is infinitely differ-
entiable with compact support tends to zero at infinity faster
than any polynomial. One then has:

lf dk Ky (k) Jok — bYA=k + b))
<M || fille 1164

So one has absolute convergence of the summations in (2).
From the relation

s(fi ) =Qm)~°
bb ‘el
Xfilk =) (= k+b)
the positivity of s follows.

Remark: Denote p, = V (Ao) . Let 4 (Q) be a locally
integrable function. Assume that a bound M exists such that

bbel"

fdk[pb Ko ()]

J- |h(k +b) | dk<M,
B

independently of bel". Assume thatpoh~ Q@)> —1 glmost ev-
erywhere. Let p, = 8,00, and K,,,. (k) = 8,,-05 h (k — b).
Under these assumptions Prop. 6 becomes a particular case
of Prop. 5.

Example: A harmonic crystal is described by the dyna-
mical matrix N (k). The wavevector k belongs to the Bril-
louin zone B. The inverse matrix is denoted X (k). It is posi-
tive definite almost everywhere. The matrix elements
X, (k) are integrable.

Denote

Waa’(p) = kT V(B)- ' J dk eikAana‘ (k )
B
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Let

oy = Vidg) ! exp( - Waa,(O)baba,)
and
Kbb’(k) = V(Ao)‘ !

xexp( — Y ACICEYIN
X(b+k)a(b +k)( +k)a)]
X 3 e exp S Wo Pk + b1k +67),

p#0
It is shown in the Appendix that p,,, _s + K,y (kK }is positive-
definite. In the approximation that multi-phonon processes
of order n larger than a given number n, are neglected one
can show that the conditions of Prop. 6 are satisfied.
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APPENDIX

Let W,.( p), p,, and K,,. (k) be as in the example of
Sec. 5. We show that the matrix K,;.(k ) + p,. _, is positive
definite and that a uniform bound M exists such that
Sp dk K, (k)|<M.

The expression

Hup (k)= V(B)"" 3 &=

[ exp Z W0k +b)tk+b")y —

is expanded in a Taylor series. One obtains
H, k)=V(B)"' Ze ikAp 2 (1/nY)

noe=1

X(S Wl pllk +0)ylk + b))

aa’

Using the defining relation
Welp) =T VB) [ dk X (k)
B

one obtains

o0

Hulk)= 3 |

xf dkl---J dk,
B B

. : ik Ar
X( 2 e lkAe;k‘Ap."e' o )

X Yo (kYo (k)

(1/n/NKTYV(B)~" ="

with
Ybb 2 Xaa

Hence

Nk +b) k+b").

Hytk)= S (I/n)kT)V(B)™"

n=1

xf dkz---J dk,
B B
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X Yy (ko) Yy (K )Y - (k - i ki)'

i=2
The terms in the foregoing expression can be interpreted as
coming from n-phonon processes. It follows by use of
Schur’s theorem that each of the contributions is a positive
definite matrix. From the relation

Ko (k) +pyr = (27)V(Ag) ~?
Xexp(—4 3 Wew (O)b +k)alb + K)o )

Xexp(—1 3 Wou (06" + K)o (b'+ K)o )

X(Hyy (k) + V(B)™)

now follows the required positivity condition.
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Let us now make the approximation that the series in
the expression for H,,. (k ) is terminated after a finite number
of terms. From Fubini’s theorem then follows that H,, . (k ) is
an integrable function on B. It is then straightforward to
show that the conditions of Prop. 6 are fulfilled.
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An associative algebra of differential forms with division has been constructed. The algebra of
forms in each different space provides a practical realization of the universal Clifford algebra of
that space. A classification of all such algebras is given in terms of two distinct types of algebras
N, and S,.. The former include the dihedral, quaternion, and Majorana algebras; the latter
include the complex, spinor, and Dirac algebras. The associative product expresses Hodge duality
as multiplication by a basis element. This makes possible the realization of higher order algebras
in a calculationally useful algebraic setting. The fact that the associative algebras, as well as the
enveloped Lie algebras, are precisely those arising in physics suggests that this formalism may be a
convenient setting for the formulation of basic physical laws.

PACS numbers: 02.10.Tq

1. INTRODUCTION

The search for an appropriate algebraic setting for the
description of physical laws has been a central problem of
mathematical physics. Clifford, following Hamilton’s suc-
cess with the quaternions H, generalized them to any dimen-
sion in the universal Clifford algebras.' As an example of
their applicability, he gave a specific realization of one of
these algebras, the biquaternions H & H, and proceeded to
apply them to specific problems.? His untimely death pre-
vented him from fully realizing this end, and the biquater-
nions were not used again to any extent.

Physicists developed the Spinor,* Majorana,* and
Dirac® algebras as defined by specific matrix representations
but only later Hestenes® gave a realization of the Spinor alge-
bra that was consistent with Clifford’s original conception.
More recently, there have been some attempts to apply larg-
er Clifford algebras to physics.”""

A classification of universal Clifford algebras was given
by Atiyah, Bott, and Shapiro,'" without however providing a
specific representation in each case which could be used for
algebraic manipulations.

This paper gives precisely such a practical algebraic set-
ting by using as a basis the differential forms of each space. In
doing this, the larger algebras in the classification'" are real-
ized exactly, and turn out to include those associative alge-
bras that traditionally appear in physics. In addition, the
unfamiliar algebras may be useful in constructing physical
models that exhibit symmetry in an intrinsic manner.'?

The universal Clifford algebra is defined by the multi-
plication of vectors @ and b whose components are expanded
on a basis o’ as @ = = a'o’ and b = I b'c’. The product is
defined with the quadratic scalar form (a,b) = 2 g'/a’b /, as
ab + ba = 2(a,b), and a® = (a,a). Here, g is the metric g'/

= (o,0”).

In contrast to this, our approach is to provide an explic-
it realization of the associative product (directly), which is
here defined as the “vee” product avb.'*'* This is given in
terms of the exterior product a A b and the scalar product
(a,b), and satisfies avb + bva = 2(a,b ) as a condition (and
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not as a definition). Furthermore, we extend the vee product
to all higher rank forms suchas 4 =1 24 %o’ Ao’ etc.

We next show that the Hodge duality'® is expressible as
the vee product with the volume element. This result consid-
erably simplifies the manipulation of higher rank forms, and
allows a classification of finite groups generated by the vee
product among the differential forms in each space (Tables
I-1V). These groups are in turn used to provide a representa-
tion and classifications of universal Clifford algebras (Table
VI).

The Lie and Jordan algebras contained in each univer-
sal Clifford algebra (and therefore representable by this con-
struction) are given in Sec. 6 (Ref. 16 and Table V). An ex-
plicit realization is described for the Lorentz—Minkowski—
Clifford algebra N,'*'*in spacetime M '%, by giving the com-
mutation and anticommutation relations (16), (18), (20),
and (21).

Of the several unfamiliar (to physicists) universal Clif-
ford algebras, the smallest of these, the “dihedral Clifford
algebra” in two dimensional spacetime N, is examined. Itis
shown that N, provides an example of a distinct associative
algebra of the same dimension as the quarternions, which is
not a division algebra. The formalism can be used to demon-
strate that Clifford algebras are not in general division
algebras.

The utility in actual manipulations follows from a sec-
tional divisibility, namely the existence in each algebra of a
unique inverse to each homogeneous form. One can indeed
divide in the case of each antisymmetric tensor field.

In the Conclusion, the results obtained from an associ-
ative derivative are mentioned, as well as further extensions
of the material presented in this paper.

2. ASSOCIATIVE MULTIPLICATION OF DIFFERENTIAL
FORMS

Consider the n differential one forms ¢° = dx*,
a = 1,...,n of an n-dimensional carrier space M ". We can
construct a set of 2" basis p forms via the Cartan exterior
product A.'* These are
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(Lo“o*NaP,..0"}, a,B=1...,n. €))
Here the volume element in #» dimensions is labeled
w"=0d N.No". (03]

The number of basis forms of each rank is given by a
binomial coefficient.'® In the carrier space M ", define a met-
ric as the scalar form g#'*:

Definition:

P=(0"0"). 3

The carrier space can be characterized by this metric
(which we assume for the purposes of this paper to be diag-
onal and nondegenerate) as M #? when

e =(+1,+1..,—1,—1~)=glpg), 4

p plus signs, ¢ minus signs, and p + g = n.
We define a multiplication v between a basis 7 form and
a basis (s—7) form as the sum of permutations of basis forms in

Eq. (1):
Definition:
w*AmAaﬂww””AmAMﬂ

= r,(s_ 2‘,}‘ .}klo(—l) (e Vi e Vi
Xght. g et AL Ao (5)
Here ( — 1)7" is the sign of the permutation
1 2.r ) 6)
1 Axd,

Itis easy to show that Eq. (5} defines an associative prod-
uct (this can be shown in general, and verified directly for
simple cases; see Ref. 13).

The vee product in Eq. (5) can be used to define an asso-
ciative product between antisymmetric tensor fields. These
are real-component fields expanded on the differential form
basis (1). For example, the vector fields a and b are described
as

a= Y da"o" and b= i bt

A= A=t

The vee product between them is

avh = i a’b gtvot
Aire 1
- i at b Mgttt + ot Aoty
A =1
~(ab)+aNb. (7

This simple case of vee multiplication of vectors serves
to illustrate the fact that we can multiply any rank antisym-
metric tensor fields in the associative vee multiplication. The
actual manipulations of vectors in three dimensions are pre-
sented in Ref. 13, and are a generalization and extension of
the usual vector algebra. The product of higher rank tensor
fields contains as special cases the tensor, matrix, and exteri-
or products. Manipulations of fields in Minkowski space-
time are described in Refs. 12 and 14.

In this paper, we omit the machinery for the algebraic
manipulations of tensor fields, and concentrate instead on
the intrinsic algebraic structure. (See however examples of
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inverses of tensor fields in Sec. 7.) It will be shown that this
“agsociative algebra of forms” provides a realization of the
universal Clifford algebra in each carrier space M 7. For

discussions on Clifford algebras, see Refs. 6 to 19, inclusive.

3. DUALITY AND THE GROUP STRUCTURE

One of the most useful properties of the vee product is
that the duality of Hodge? can be expressed algebraically.
This leads to an ease of manipulations which makes this for-
malism useful for calculations.

Theorem: The dual of any form is the vee product of
that form with the volume elements

%P = o v (8)

%*
Here, /7 is a p form and r the duality in » dimensions (r<n).

The sign depends on p,7, the dimension 7, and the signature ¢
of the metric. The expression (8) can be used to express the
embedding of duality in different dimensions as follows:

xf = 1o g

r—1
In practice, we can label the higher rank forms by their
duals. Then, the identities (8) and (9) allow their manipula-
tion in a simple algebraic manner. For example, in three
dimensions we can label the twoforms as the duals of one
forms:

,gga‘=az/\a3, *0° =0’ Ao, ,geojza‘/\az. (10)
3

The vee product is defined in Eqgs. (4) and (6) with arbi-
trary indices, because the product between two elements of
each algebra (which are antisymmetric tensor fields) involves
the summation over these indices [see Eq. (7)]. For specific
indices, however, the product of two basis forms of any rank
will be a single basis form of some other rank. Hence, the vee
multiplication associates a unique form in Eq. (2) to each pair
of forms in Eq. (1). This property defines a finite group under
the vee multiplication. In the following section, these groups
are identified, and make possible a classification of each uni-
versal Clifford algebra in terms of its underlying group
structure.

Using the identification (10), we can give the multipli-
cation (Table I) of all basis forms in three dimensions. These
define a group of forms G ** under the vee multiplication.

We display only the positive forms in the table. The
finite group includes the negatives of these forms as well,

TABLE I. The vee product between all basis forms in three dimensions.

t 2 3 l > 3 k!

v o o’ o *0 *0° *0 w
o' -1 *%0  — x0° w? ot~ —xo'
N
o - *o': -1 x)0' —o * o' — g0’
5
4 x0 — %o -1 o -0 o' — g0
1 3 3 ~
*0' @' o - o*: -1 ‘ x0 — 00 —o'
*0’; ~o w o‘ —_ *‘Tq —1 #0' — o’
*0 o -0 @ *o — o' —1 —d
N
@ ~ %0 —%5 —x0 —d -0 -0 1
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TABLE II. Classification of ali spaces M 77 by their dimension n = p+aq,
and their metric signature ( p,g).

n=0 0,0)

n=1 (1,0 ©.1)

n=2 2,0 Ly 0,2)

n=3 3,0 2,1 (1,2) 0,3

n=4 (4,0) G,D 1,3) 0,9)

2.2)

which is but a trivial extension of Table I. This specific exam-
ple has the Euclidean metric g* = (-1, —1, —1). Note

that even though the overall minus sign is usually a trivial
convention, the related Clifford algebra is distinct.!' Specifi-
cally, the Clifford algebra for g" = (—1, —1, ~1)is Ha H,
Clifford’s biquaternions, while the corresponding Clifford
algebra for g” = (+1, +1, +1) is S, the Pauli spinor alge-
bra (see Table VI).

Toanalyze the group structure, we evaluate the order of
each element in the group in the context of the vee product.

An element ¢ of the group is of order two, if
ovo = (0)? = 1, and an element is of order four, if
ovo = (0)’ = —1,i.e., (0)* = 1. The unit 1 is of order one.
The order of the group is given by the order of the elements;
when there are k elements of order 2 and m elements of order
4, this is denoted as (1, k, m). The order of the group is just
1 4+ k 4+ m. From Table 1, it is easy to see that the group of
forms G ®3 is of order (1, 3, 12), and is therefore isomorphic
to the group of Biquaternions of Clifford B = Q,® Z,. We
have used the fact that small finite nonabelian groups are
isomorphic if the group order is the same. (This is however
not the case for arbitrarily large groups.?' In general, one has
to identify the subgroup structure in detail.)

Following this example, it is easy to see that every set of
basis forms (1) defines a finite group under the vee multipli-
cation. These groups are labeled by the signature of the met-
ric of the carrier space; in general, a set of one forms satisfy-
ing the metric (4) will in this manner give rise to a group of
forms G 79,

The collection of all such groups is now examined, and
in each case the isomorphism to a known finite group is given
whenever possible.

4. CLASSIFICATION OF A CLASS OF FINITE GROUPS

Toeach space M »! of dimension n = p + g and metric
signature ( p,q) [see Eq. (4)] there corresponds a finite group

TABLE III. Classification of finite groups corresponding to the spaces M ™.

of dimension 2" *! labeled G #4. We can classify all such
groups by displaying them in a triangular array, where the
position ( p,q) corresponds to the space M 77 with metric (4)
(Table 1I).

Our procedure following this is to explicitly calculate
the order (1, k, m) of each of these groups, and use this as the
basis for studying their structure.

It is straightforward to evaluate the order of each ele-
ment of a given group, using the vee multiplication. One uses
the fact that the total number of basis forms of a particular
rank is given by a binomial coefficient.!* (Details of these
calculations are omitted from this paper.)

Since the square of any basis form in the vee multiplica-
tion is either +1 or —1, then no element of the group has
order higher than 4. The order of the group can therefore
always be denoted by (1, k, m).

This procedure reveals isomorphisms of these groups
among themselves, which include the known identities G 74
=G G GO =G e G aswell as the pe-
riodicity of Bott G 74 ™®* 8 G° = G ™ & G *3.'! Other rela-
tions between the groups appear new.

All these identities can be succinctly and usefully dis-
played by identifying the nonisomorphic finite groups as the
members of two series of groups N, and S}, k = 0,1,2,... The
groups G ¥ can then be listed in terms of the N, and S,
notation in a manner that explicitly shows the above isomor-
phisms. In Table 111, we have listed the finite groups up to
order 512. The correspondence of the two notations em-
ployed for the groups is given by comparing an entry of Ta-
ble II to the corresponding entry of Table III. For example,
the group G *° from the entry (3,0) of Table II is the group
lebeled S, in Table III. The usefulness of this labeling will be
apparent when we specify the isomorphisms of these groups
with the commonly known finite groups.

The matter of identifying the groups N, and S, with
known finite groups is a straightforward one, and employs
simple group-theoretical techniques.?' An example was giv-
en previously in the case of G'* = N, @ N, = Q, ® Z,. Here
we merely list the results in Table [V, along with some useful
identities. The notation employed is the following:

Z, are the cyclic groups of order n. D, are the dihedral
groups. Z, is also the complex group. Z, ® Z, is the Gauss—
Klein veergruppe, which is isomorphic to D,. @, is the qua-
ternion group of Hamilton. S = Z, ® Z, ® Z, is the spinor
group, which was first discovered by Hamilton as the “com-
plex quaternions.” The group M is the group of all possible

n=0 No

1 No® N, So

2 N, i N,

3 S, N, ®N, S, N, o N,

4 N, N, N, N, N,

5 N,® N, S, N.e N, S, N,® N, S,

6 N, N, N, N N, N N,

7 S N;® N, S N,& N, S Ns® N, Sy N.® N,

8 N, N, Ny N, N, N, Ny N, N,
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TABLE IV. Isomorphisms with known finite groups.

n Order Elements

0 Ny=2, 2 (1,1,0)

1 Ny@N,=2,82Z,=D, 4 (1,3,0)
So=2, 4 (1,1,2)

2 N, =D, 8 (1,52
N =0, 8 (1,1,6)

3 S, =2Z,8(Z,)° 16 (1,7,8)

N eN,=D,82, 16 (1,11,4)
N,eN,=0,8Z,=8B 16 (1,3,12)

4 Ny=M 32 (1,19,12)
N, 32 (1,11,20)

5 $,=Z,0Z) =2 64 (1,31,32)
N,eNy=N,®N, 64 (1,23,40)
N,gNy=N, N, =N,eN, 64 (1,39,24)

6 Ny 128 (1,55,72)
N 128 (1,71,56)

7 S, =2Z,0(Z)=De2Z, 256 (1,127,128)
Ns@N,=N,oN,=N,®N, 256 (1,111,144)
NoaN,=N,eN, =N,®N, 256 (1,143,112)

8 N, 512 (1,271,240)
Ny 512 (1,239,272)

combinations of the 4 X 4 real Majorana matrices,* which
define a group of order 32. The 16 familiar combinations of
the real gamma matrices along with their negatives are a
representation of M.?? In distinction, the Dirac group &
defined by the 4 X 4 complex Dirac matrices is of order 64,
since one has to include the complex elements separately.
We note that Dirac’s original matrices do not define &,
since he added the metric of the quadratic form (1,3) by
hand.?

The relationship between the Majorana and Dirac
groups can be understood as a “complexification” in the
context of the vee multiplication. i.e., & = M @ iM. This is
the reason why M is one half as large as & . The complex unit
i corresponds in this case to the five-dimensional volume
element »°, which commutes with all elements of & (and M)
and has square o’ v @* = —1. This follows as a special case
of some general theorems, which are given in the following
section (see also Ref. 14).

The groups NV, are seen to be the building blocks of the
classification. They are the groups arising from defining the
vee structure on the differential forms of an even dimensional
space. The first four are well known as follows: N, = Z,;
Ny =D;N,=Q,and N, =M.

The groups S, appear only when the dimension of the
underlying space is odd, and may be called “generalized
spinor groups.” They have the intrinsically complex struc-
ture S, = Z, ® (Z,)**. The first three are well known as
So=Z;85 =S,and S, = Y.

The series N, and S, contain many of the finite groups
that have traditionally appeared in physics. This is an indica-
tion of the intrinsic physical interest of this classification.
The group structure in turn determines the algebraic struc-
ture, which will be in Sec. 7. In the following section we give
a few useful theorems on the group structure.

Remark: The labeling of the groups S, as generalized
spinor groups reflects the historical development of general-
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1zing the complex numbers to the spinor algebra,” then sub-
sequently generalizing the spinor algebra to the Dirac
algebra.’

5.THE GROUPS AS CENTRAL EXTENSIONS OF CYCLIC
GROUPS

It is instructive to give two theorems first derived by
Clifford! on properties of the volume element " in each
universal Clifford algebra. These can then be applied to
evaluate the center of each group of forms.

Theorem: The volume element »" commutes with all
elements o of G " for n = odd, and anticommutes for
n = even:

w"vo=(-1)""ove". an

(This theorem is particularly useful in practical
manipulations.'>'?)

Theorem: The square of the volume element in the vee
multiplication is

(wn)z — anwn — ( _1) n(n —1)/2 detg — i 1 ) (12)

The proofs are direct;"'®'° g is the metric tensor (4).

These two theorems can now be used to give the center
of G".

Theorem: The center of the group of forms G " is iso-
morphic to the finite group Z,, when n = even; Z,, when
n = odd and (w")> = —1;0r Z,® Z, = D,, when n = odd
and (@")* = +1. (13)

The proof is as follows: We see that the center of each
group of forms is generated by the elements {1, —1] for
n=evenand {1, —1,0", — »"} for n = odd (see also Ref.
16). These sets define finite groups which are isomorphic to
Z,, Z,,or Z,® Z,, by using Eq. (12). This theorem in turn
leads to a key result in the group structure.

Theorem: The factor group G modulo, the center of G,
is the Abelian group (Z,)" = Z, ® ... ® Z, (n times). The dif-
ferent cases are

n=even: G"/Z,=(Z,)", (14a)
n=odd: @Y=—1, GY/Z,=(@Z) ", (14b)
n=odd: @Y =1, G/Z,Z,=(Z)y . (4

This theorem, presented here without proof (although
it is very easy to check for the first few cases), can be rewrit-
ten as a corollary.”

Corollary: The groups of forms G are the central exten-
sions of Z,, Z,, and Z, ® Z, by the Abelian group (Z,)". (15)

It seems, therefore, that those groups appearing in this
classification scheme, which includes many of the groups
used in physics, fall into a rather special class of finite groups
having the above property.

6. REPRESENTATION OF A CLASS OF LIE AND
JORDAN ALGEBRAS

The groups of forms G " can be used to represent certain
Lie and Jordan algebras, by using a bracket operation de-
fined with the vee product. We define commutators and anti-
commutators as follows:
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Definitions:
[0°,07] = 0°va? — aPvo”, (16a)
{o*0?} = 0*vaP + oPvo™. (16b)

The set of forms (1) with either of these bracket pro-
ducts is closed, and is isomorphic to some Lie or Jordan
algebra, respectively. It is a straightforward matter to evalu-
ate the specific Lie and Jordan algebras, so the details are
omitted. The first few cases are known, and the larger exam-
ples can at least be verified by evaluating the dimension.

The Lie algebras obtained in this manner are given in
the compact case of each manifold M " by the following
theorem:

Theorem: The Lie algebra corresponding to the com-
mutator vee structure on the space M " is

SLQ2"%R), for n =even,
SLQR"—2.¢), for n=odd. (17

What is of interest is the ability to use the explicit repre-
sentation provided by the vee product between all the differ-
ential forms in order to evaluate the Killing-Cartan metric
form contained in each Lie algebra. This is obtained by iden-
tifying the orthogonal group SO{r,s) which is covered by each
Lie group in Eq. (17). This is also rather straightforward
once the representation is known. For example, the Lo-
rentz-Minkowski—Clifford group N, in spacetime M !* con-
tains the orthogonal conformal group SO(1,5).

In Table V, we classify the orthogonal Lie groups
SO(r,s) contained in each group of forms by giving the Kill-
ing—Cartan form (r,s). We note that the table contains the
rotation, Lorentz, and conformal Lie groups.

It is to be emphasized that the commutator of the group
of forms gives a specific representation of the particular Lie
group. This representation is precisely the fundamental re-
presentation, which can be verified by computing the Car-
tan—Casimir invariant.

For example, the realization of the SO(3) subgroup by
the three generators J '%, J *, J '* given below satisfies

JG+D) = — (' — () - (J ¥)* = 3/4, and is there-
fore a spin one half representation. Similarly, the Lorentz
group SO(1,3) is realized by six generatorsina (j, /) = (4 §)
representation. This feature is indicative of the very specific
nature of this algebraic scheme. The consequences of this
particular characteristic to physics will be examined
separately.

As a specific example, we describe the Lie algebra gen-
erated from the Lorentz—Minkowski spacetime M ' (see
Ref. 12). The relevant group of forms is G '* = N, of order

TABLE V. Killing-Cartan form of Lie groups SO(r.s) realized by each
group of forms G ™.

n = 0 (Abelian) SO(1)
1 (Abelian) 2,0 ©,2)
2 @n 1,2) ©,3)

3 G0 2.2) (1,3) 0.4)
4 (s.D 3.3 (3.3 (1,5) (1.5)
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32. We can label the 15 nonscalar basis forms in a 6 X 6 anti-
symmetric array, utilizing the duality in both three and four
dimensions in the labeling [see Eq. (10)], as well as the vol-
ume elements (2):

*
(0 367

* *
—30% o'Ad* 40 o'
%k
0 30!

F?No? 202

02
JoP = 0 PAet 4t o |'UP

0 w’ o’

| )
0

The indices a, 8 run from 1,...,6. The Killing—Cartan

form in this case is easily verified from the techniques of Sec.
2tobe

Gou =(—1, =1, =1, +1, —1, =1). (19)
The commutation relations are given in canonical form

N—

as

[JaB’Jﬁ] :g-B‘VJaﬁ _g—/iéJay -EIZYJ Bé —+—§an By
(20)

Even though it is known that the Clifford bivectors of
thespace M '* (which are here represented by the basis forms
labeled J *# with a, 8 = 1,2,3,4) provide a representation of
the Lorentz group SO(1,3);** the construction here present-
ed gives a representation of the much larger conformal group
S0(1,5).

Furthermore, the identification of each orthogonal Lie
algebra of Table V as the one maximally contained in the
universal Clifford algebra of the corresponding space M pro-
vides a set of examples to the Poincare-Birkhoff-Witt theo-
rem.?’ This important theorem endows each Lie algebra
with a unique universal associative enveloping algebra. Re-
presentations of these algebras are not known in general, but
we can provide the universal associative enveloping algebra
for each of the entries of Table V. The fact that these ortho-
gonal groups include those that are of physical importance
makes this restricted result of some interest to physical
applications.

In a similar vein to the preceeding analysis of the Lie
algebraic structure induced by defining the commutator
product (16a}), we can analyze the Jordan structure®® induced
by the anticommutator product {16b). As in the preceeding
case, we give as an example the anticommunication relations
of the 15 nonscalar bases (18) corresponding to the space
M '3. The Killing—Cartan form §*# [Eq. (19)] is the same as
in the commutation relations (20):

(JoBI 1) = @R — R — e (2])

Here €*77%<¢ is the entirely antisymmetric symbol of
Levi-Civita in six indices, and €'2*%¢ = 1.

The anticommutation relations for the basis forms la-
beled J %, @ = 1,2,3,4 are trivially known, since they define
the Jordan algebra as

{o,0"} = 2g" . 2)
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TABLE VI. Classification of universal Clifford algebras.

n=20

1 ReR
2 N,

3 S N, &N,
4 N, M

5 NsoN, D MoM
6 Ny Ns N

7 S: Nso N; S, Nyo N
3 N, Ny Ny N,

C
H
S HoH
N, Ny
D N, N, D
Ns NS N6
S, Nyo Ng S, Ne ® Ny
N, Ny N, N,

[Here g is the Lorentz—Poincare metric

(-1, —1, —1, +1) and not Eq. (19).] The inclusion of the
other 11 basis forms in the expression (21), however, en-
larges the anticommutation structure, and displays an inter-
esting ‘“‘skew” character.

Since Eq. (22) is also the defining relation of the Clifford
algebra by the extension theorem,''*'? the Atiyah-Bott—
Shapiro construction'' gives the universal associative envel-
oping algebra of each Jordan algebra. This is precisely the
universal Clifford algebra, and provides the analog to the
Poincare-Birkhoff-Witt theorem for the case of Jordan
algebras.

7. CLASSIFICATION OF ASSOCIATIVE ALGEBRAS

The present formalism allows an identification and
classification of universal Clifford algebras in terms of their
underlying group structure. This analysis places the associ-
ative algebras used in physics in this scheme, as well as pro-
viding a practical realization for use in actual applica-
tions.'?'* The first three algebras are the real numbers R, the
complex numbers C, and the quaternions H. In addition, it is
possible to include the Spinor algebra S, the Majorana alge-
bra M, and the Dirac algebra D.

Each group of forms shown in Table III defines a real-
ization of a universal Clifford algebra which is displayed in
Table VI. We have used the group terminology of Sec. 4 to
label the algebras N, and S, &k = 0,1,2,..., thereby singling
out the nonisomorphic algebras by the notation. The isomor-
phisms to familiar associative algebras are the following:

No=R, N,=H, N,=DM;
§=C, S =8, §,=D.

The remaining algebras are not well known in physics.
(References 8-10 and 27 are among the few to examine these
larger Clifford algebras with regard to physical
applications.)

A comparison of Table VI with the classification of uni-
versal Clifford algebras given in Atiyah, Bott, and Shapiro'’
will illustrate the differences resulting from this approach.
The major advantage of this formalism, however, is in the
relative ease with which practical manipulations can be real-
ized. This is succinctly expressed by the following theorem,
which is a key point of the construction.

Theorem: Homogeneous forms are invertible in each
algebra. 23)
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Thus, any antisymmetric tensor field (which is a linear
combination of basis forms of equal rank) will have a unique
inverse in any given algebra of Table V1. The inverse is of
course defined in terms of the vee multiplication. Again, ex-
amples from the Lorentz—Minkowski—Clifford algebra
N, 2% in spacetime M ' are presented. For a vector field

a= Y a'o*, p=1234. (24a)
Then
a"'=a/}a,a". (24b)

For a rank two tensor field, the duality in three dimen-
sions can be used for elegance (see Ref. 13)

*
F= {3 Fo*No"=EAo* — 3B, pp=1234,

(25a)
with
E'=F" and B'= 1Y €*F/ i,j=123.
Then
*
(k.E + k;B)Ao* — 3(k,B — k,E)
F'= . (25b)

ki + k3

where k, = (E,E) — (B,B), and k, = 2(E,B), with
(EEEY=3E'E",

(The constants k,, k,,and k 7 + k 3 are recognized to be
the invariants of the Lorentz and duality transformations of
the electromagnetic field. This is analyzed in detail else-
where,'” and serves to make the connection with physics.)
The identity FvF = k, — k,w can be used to verify the in-
verse of the field £ [Eq. (25b)].

Clearly, one must have the full framework of the con-
struction in each particular case in order to use the algebra
for practical manipulations. Details for the algebras N, 12!
and S '* have been given elsewhere. Note that a related but
distinct description for S was given by Hestenes.®

The other algebras of Table VI may be of value in cer-
tain physical problems, and will be presented in detail in the
appropriate physical context in forthcoming publications.
We comment here on the appearance of the associative alge-
bra N, which we call the “dihedral Clifford algebra in a two-
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dimensional space—time” (from the corresponding dihedral
group in Table IV).

The algebra, although associative, and of the same size
as the quaternions H, does not appear to have been used in
the past. A reason for this may be that N, is neither normed,
nor a division algebra. (This is easily verified directly.) We
note that, in general, the associative algebras of Table VI are
not division algebras, as this would violate the celebrated
Hurwitz theorem.?® Thus, the inverse of a linear combina-
tion of a/l the basis forms (i.e., different rank tensor fields)
may not exist. The only division algebras in the classification
VI are the usual ones: R, G, and H.

The algebra N; is therefore an example of a relatively
small associative algebra which is not a division algebra, yet
has possible physical significance because it arises from two-
dimensional spacetime. Physical applications of this inter-
esting and curious algebra will be presented separately.

8. CONCLUSIONS AND EXTENSIONS

This paper has illustrated how universal Clifford alge-
bras can be generated by an associative multiplication of dif-
ferential forms in a computationally useful setting. The in-
troduction of Hodge duality, in particular, is a key tool in the
algebraic manipulations. The simplicity of the reduction
from the universal Clifford algebra to the Jordan and Lie
algebras in each case illustrated how the topological envel-
oping is related to the algebraic structure via the commuta-
tor and anticommutator vee products.

It is hoped that this formalism may provide a novel and
useful framework to describe both internal and external
symmetries in physics. The appearance of many physically
significant groups and algebras in this classification is indic-
ative of the inherent applicability of the scheme.

For most of the results on group structure, the algebraic
basis can be considered in an abstract manner. However, the
identification of the differential one forms as the basis is in-
deed crucial, as will be demonstrated in a subsequent com-
munication. There, an associative derivative in each space
will give an expression of generalized holomorphy as well as
aset of field equations. The equations in the case of Lorentz-
Minkowski spacetime are precisely the Maxwell equations
(with electric sources).
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The elements of the Racah algebra for a general compact group with time reversal symmetry are
developed. As time reversal is antilinear it is not possible to treat these groups by representation
theory but we may instead use Wigner’s theory of corepresentations. The results we obtain often
parallel those for linear groups but there are some important divergences. We illustrate these with

the grey double point groups.
PACS numbers: 02.20. + b, 03.65.Fd

1. INTRODUCTION

Over the years an extensive range of mathematical tools
generally subsumed under the heading of ‘“‘Racah algebra”
has been developed to handle the problem of many electrons
moving in a spherically symmetric potential.'* These meth-
ods may be interpreted group theoretically as follows: (a)
The set of vectors {| jm) : — j<m< j} form a basis for an
irreducible representation (IR) of SU(2). (b) If we couple
two electrons, each with a sharp angular momentum, we are
group theoretically forming the direct product of two IR’s.
This may be transformed by a unitary matrix into a direct
sum of IR’s. The elements { j, j, jm| j, j,m m,) are termed
coupling coefficients and give

| Jimi) | joma) = ; (Jraim| jrjomymy) | jm).

This may be invei'ted as

(1) jm) = mZn (rdamamo| jy o jmd | jym, | jam,),
where .

vizmmol jyjaim)y = (G jagm) jy jamamy)*.

(c) A high symmetry coefficient—the ¥ coefficient of Fano
and Racah®~—may be constructed from this

7 jl j2 j3 ; i .

V( )= _12/,+/;+m1 —1/2

m, m, m, { ) (/]
Xy jamima) jyjajs — ms),

where [ j;] = 2j; + 1, which at most suffers from a sign

change under permutations and time reversal. It is related to

the equally symmetric 3j symbol of Wigner® by

‘17(.1! jz j3):(—‘1)j, +j2+j,(j! j2 13)
my m, ms my m, my
An equivalent approach in representation theory relates this

to the reduction of the triple direct product to the identity
representation:

=(Jli J2 /s L
V( ): —1)% 00).
m, my, m, ( Y J1 J2 Jammym, | 00)

(d) If we couple three angular momenta together, the cou-

“Present address: Department of Physics, Universiti Pertanian Malaysia,

Serdang, Selangor, Malaysia.

233 J. Math, Phys. 22 (2), February 1981

0022-2488/81/020233-12%$1.00

pling may be carried out in different ways. The recoupling
coefficient gives the transformation between these, and
again there is a high symmetry coefficient related to this—
which is independent of the azimuthal quantum numbers

{1'1 S 1'3]
Jo Js Js

_ E (_1)17(]'1 J2 js)-l;( Ji s Js )
allm my m,; M, —my ms —mg
XV( Ja J2 1'6),-;(1'4 Js J3 )
—m, —m, my
with

[
I= 2 (U —m,).
i=1
This is called either a ¥ or 6 coeffieicnt™® and is the first
nontrivial invariant under any change of basis. This may be
extended to the invariant recoupling coefficients of four or
more particles.””"! (e) If an operator satisfies the same com-
mutation relations as a spherical harmonic Y, , it forms the
mth component of a spherical tensor of rank /. We may sepa-
rate out the radial and spherical parts, and by the Wigner—
Eckart theorem'**®
(Jams| T (kyqy)| joma) = (— 1>~ m"V( 2 J2 kl)
—m; m, g,

X sl T ko))
where the reduced matrix element ( j;||7 (k,)|| j,) repre-
sents the radial contribution. By considering various pro-
ducts of tensor operators in coupled schemes, relations be-
tween the different reduced elements which arise may be
obtained.”

The development of the Racah algebra for SU(2) has
been largely based on the fact that this is a Lie group and so
we may use the Lie algebra su(2) or the special function
properties of the IR’s to simplify the calculation of the ¥ and
related coefficients. Although this approach may be utilized
for other Lie groups, our interest lies in another direction,
namely, in the finite and compact groups. Although work is
currently being done on developing a Lie algebra-type ap-
proach to finite groups,'*'* at present we are restricted to
group or group algebra methods.

Two approaches may be made to the problem. The first
is to deal with the group in its own right and to develop the
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algebra using only the properties of the group. Koster'¢ has
proven the Wigner—Eckart theorem using this method, and a
large number of authors have determined the properties and
values of ¥V, 3j (or3 jm) and higher symbols for the point
groups and arbitrary compact groups.'’~2' The other
aproach is to treat the group as a subgroup of another group
for which a Racah algebra has already been developed and
use descent in symmetry.?*~? Various authors have used a
mixture of the two techniques.’**° Racah’s lemma* shows
that any of these methods give equivalent results. The papers
by Derome and Sharp'” and Derome’® have given the condi-
tions for the 3jm symbols to be multiplied by a simple phase
factor only under permutations and complex conjugation,
and symbols with this property may be found for all the
double point groups.

Many of these authors have used the operation of com-
plex conjugation K or of time reversal g to relate the pairs of
coefficients

(I“l r, F3) (F,* Iy* I“;")
and ,
a, a, a; a* a* az*

where the set of |I'a) form a basis for the representation D ©
and the set of |I" *a*) for the representation D ”*. These two
operations are not completely equivalent for, whereas
K?*=1,6°= 4 Iaccording to whether we have an even or
odd number of fermions. These operators are antilinear:

0(alfy+B1g)=a*0|f) +B*60g).

For nonmagnetic materials, or for paramagnetic or dia-
magnetic ions, time reversal is a symmetry operator of the
system. Kramers®' first demonstrated the importance of this
operator with the Kramers degeneracy, but as it is antilinear
it cannot be treated by the theory of representations but can
only be dealt with by the theory of corepresentations devel-
oped by Wigner.** A large number of papers have been pub-
lished concerning the corepresentations of linear/antilinear
groups**** but development of a Racah algebra has been
slow compared to the linear groups. Methods for finding,
and tables of, coupling coefficients have been published***
and the Wigner—Eckart theorem has been proven,48 but to
our knowledge that is all.

In this paper we develop the Racah algebra for compact
groups with time reversal symmetry. We take time reversal 8
as a commuting operator of the group*” and 6 2 = I for bo-
sons or an even number of fermions, and 6 > = — Iforanodd
number of fermions. These two properties allow us to sim-
plify the development from that which would be needed for a
general linear/antilinear group. In practice, we usually start
from a compact group of linear operators H and extend it to
G by adding in the antilinear operators a = 6u, where u is
linear. Since linear times antilinear is antilinear, and antilin-
ear times antilinear is linear, the coset group G /H is isomor-
phic to C,. As H is compact, from the homeomorphism
fo () = f(8u), G — H is compact and hence G is compact.
We shall see later that all irreducible corepresentations of G
are obtained from irreducible representations of H, and so
the compactness of H guarantees a complete set of corepre-
sentations of G. Finally, we shall often need to integrate over
the group. G and H both possess invariant integrals, so we
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may write

Lf(x)dx:Lf(u)du—}— . Hf(a)da.

By simple substitution we have in particular

\Hj:leu:L\H1da=%J‘Gldx=%1G|.

For finite groups these integrals reduce to sums.

2. A COVARIANT NOTATION

Throughout the fields of representation and corepre-
sentation theory there exists a wide variety of notations for
the labeling of representation or corepresentation matrices
and for the nj symbols, coupling coefficients, etc. Use of a
naive notation often hides difficulties, but a more sophisti-
cated notation calls for more care in construction and ma-
nipulation. The papers by Derome and Sharp'’ and Der-
ome'® discuss the properties of the 3jm symbols of a compact
linear group in a very general manner, and for this they used
a covariant notation. In this paper we discuss the 3jm sym-
bols>® for a grey compact group, and to ensure that we do not
““gloss over” difficulties we adopt a covariant notation here.
The one we use here differs slightly from that of Derome and
Sharp and is from spinor and rotor calculus.*"?

Let S be a complex vector space with basis {e ,,

:m = 1,2,-} and S * be the conjugate space with basis {€ ,,
:m = 1,2,-}. If for a particular space S’ the conjugate space
S '* contains elements not in S’, we extend S’ by these ele-
ments so that we may always take § = S *. We may trans-
form to new bases | e ,,,:m' = 1,2,--] and {e,,;:m" = 1,2}
by

€my = €m P (2.1a)
and

€ =&y P (2.1b)
The inverse transformations are

Cim =) P (2.1¢)
and

&l = &y P s (2.1d)
with the convention ( P”,.)~' = P™,,. Throughout primes

will always indicate a transformed basis. We let the trans-
pose of P, . be P, ™ and the complex conjugate be P Tt
follows that

7 =T __ =T
P P."e €y =€ meu. (2.2)

Now ¢,,,,, is the metric in the old basis, and on the right-
hand side we have the metric in the new basis. In group
theory we usually consider only unitary transformations,
i.e., those which preserve orthonormal bases. Thus unitary
transforms are those P which satisfy

Pmm'Pﬁ' "5'} m = 5&’ m'y

where

{2.3a)
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They also satisfy

Pmm'Pyi' riam' [ 5m I'l‘ (2'3b)

We now define the matrix of a linear operator  : S—S
by

ue (m) =e (n} j(u)nm . (2'4)
Note that we do not have primes here as we are not changing
the basis. Under a change of basis,

J) e = P" fltt) P e (2.5)

The matrix of an antilinear operator a : $—S5 * is given
by

aem =€y @)\, (2.6)
where we now have one dotted and one undotted variable.
We may sum over covariant and contravariant indices; we
make the further convention that we may only sum over a

pair of dotted indices or a pair of undotted indices. With this
the transformation of an antilinear operator is

j@)y . =P" jay,,P", (2-7)
and the multiplication rules are

Juun)" =j))"  JUu)™ (2.82)

fuay™, = j@)",, j@m,, (2.8b)

Hau)", = j@",, j@y™,, (2.80)

Haa)", =ja)",, fa)",. (2.8d)

We see how this notation automatically keeps track of
complex conjugates. For example, in ordinary matrix nota-
tion Eq. (2.8¢) reduces to

Jau) = j(@)j(u)*,

which is the multiplication rule for such operators.*?

3. IRREDUCIBLE COREPRESENTATIONS

Given a group G with a subgroup H of index 2, a core-
presentation of G is a set of matrices satisfying equations
(2.8) with ueH and asG — H. Usually, we have a complex
vector space which carries a representation of H, in which
case we may calculate these matrices by Eqs. (2.4) and (2.6)
but this is not necessary for the formal theory.

A corepresentation may be reduced if we can find a
unitary matrix which block diagonalizes the corepresenta-
tion. As Maschke’s theorem still holds,*®we can reduce each
corepresentation to a direct sum of irreducible corepresenta-
tions (ICR’s). However, only a weak form of Schur’s lemma
holds which gives the following rather unpleasant orthogon-
ality relations®’:

f jl(u)mln"jl(u)m‘ﬁ: du =0, (3.1a)
H
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f Jlay™,, @)™, da=0, (3.1b)
G—H
if j, %4/, and
[ . jur,, du + f fiaf™, jial™, da
H G—H
= IG ' m."‘lz& oy s (3'1(:)

(/]
with [ /] equal to the dimension of j. Note how n, and #, are
interchanged in the last integral. One small point is neces-
sary: in Eq. (3.1c) we have 5™, where both m, and 1, are
inner indices. Since we are not multiplying matrices in the
normal manner, this does not contradict the matrix conven-
tion of summing over an inner and outer index. Setting
m, = n,, m, = i, gives

L lx; ()] du + L_HX,(aZ) da = |G|, (3.2)

where y;(u) [x;(a)] is the character of j{u) [ j(@*)].

By restricting the operations of G to the linear subgroup
H, each ICR j of G subduces to a representation k of H. We
may classify each ICR of G by the representation of H in the
following manner**: _

Type (a): k is irreducible and equivalent to &, where k (1)
= k (@~ 'ua)* for arbitrary fixed a. The character test is

[ wrdu= [ yada=icy2
H G-—H

Type (b): k reduces to k,  k, with k,=k,. The charac-
ter test is

(3.3)

J lx;(w)|* du =2|G . (3.4)

H

Type (c) k reduces to k, & k, with k,5£k,. Here

[ wwrau=i6l. 3.5
H

For type (a) we may use the orthogonality relations for linear
groups to simplify Eq. (3.1¢) to

f Ja™, )™, du
H

[ e, jar,, da

= 1G] Mg
2[ /] o

We shall use this frequently for j = 0, the identity ICR.

For the grey groups time reversal & commutes with all
elements of G ** so that k = k * and equivalence (nonequiva-
lence) is the equivalence (nonequivalence) of complex conju-
gate representions. Thus, we may make a further classifica-
tion according to the following: X equivalent to k * and to a
real representation (the first kind); k£ equivalent to k£ * but not
to a real representation (the second kind); and & not equiv-
alent to & * (the third kind). Further, 8 * is either the identity
or the negative identity, and we have this classification for
the grey groups*®:

6*=1r

(3.6)
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(A) k is irreducible and of the first kind:

| wwrau=| xerau=1612,
H H

(B) k reduces to k, @ k, with k, of the second kind:

L lv;(@)|* du = 2|G | and L/yj(u2) du= — |G|,

(3.8)
(C) k reduces to k, & k* with k, of the third kind:

3.7

| wrdu =161 and [ yotau=0 9
H H
6= —I
(D) k is irreducible and of the second kind:
j lx;(#)|’du = |G |/2 and ij(uz)du= — |G |/2,
H H

(3.10)

(E) k reduces to k, @ k, with k, of the first kind:
f lx,(4)]’du = 2|G | and J. x;Wdu =G|, (3.11)
H H

{F) k reduces to k, & k ¥ with k, of the third kind:

Conversely, if we start from the IR’s of H, the ICR’s of
G are constructed exactly according to the above scheme.
Thus, time reversal only fails to increase the degeneracy for
types (A)and (D). We observe that these ICR’s are equivalent
to their complex conjugates from the character tests of Ru-
dra.*’ Each ICR matrix may be chosen to be unitary in the
normal matrix sense** which becomes in our notation

J)™ o jl)s, "8, i, = B, (3.13a)

(3.12)

and

A@)™ o @), B, m, = B - (3.13b)

TABLE I. Clebsch-Gordan coefficients d }, for ICR’s in terms of the
Clebsch-Gordan coefficients ¢}, of the linear subgroup.

i J2 Ja di,
(@ (a) (2) s
(a) (a) (b) let,
(a) (a) () o,
(a) (b) (a) 2¢},
(a) (b) (b) h
(a) (v () 2},

(2) ©) @) T
(a) (©) (b) 161, + i
(@ © © el + ¢l

(b (b) (@) 4ct

(b) ®) (b) 27,

(®) (b © 4c;,

(®) © (2) 21, + 2¢}se
(b) © ®) s + e
(b ©) © 27, 427

3 3 3 3
€z + Cipe + Chap + Clune
3 3 3 3
ey, + 46y + 61 + Scienn
3 3 3
€y + Clpe €l + Clone

(©) ©) (2)
© © (b)
(©) ©) ©)
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TABLE I1. The minimum nonzero multiplicity of the identity ICR in dou-
ble and triple products. Multiplicity free couplings of IR ’s give the following
multiplicities for the ICR’s. If the IR coupling is not multiplicity free, Table
1 should be used.

Ji ) Ja Muttiplicity
(a) (a) 1
{b) (b) 4
{c) {c} 2
(a) (a) {a) 1
(a) (a) {b) 2
(@) (a) (©) 2
(a) (b) (b} 4
(a) (b} () 4
(a) (c) () 2
(b) (b) {b) 8
(b) (b) () 8
(b) (c) () 4
(c) () () 2

Rudra’s proof that basis vectors for an ICR of type (b) are
nonorthogonal®’ contains an error, for although his projec-
tion operator maps a basis vector | ¢,,) onto a basis vector
| #.), it does not annihilate all other basis vectors. We shall
later construct suitable orthogonal bases which preserve
unitarity.

Character tests may be used to reduce direct products
of ICR’s, but Eqgs. (3.1) show that this will not be particular-
ly easy. If

J1®= 2 df:':j, Ja
I

Bradley and Davies*’ have related this to the corresponding
reduction of representations in H:

kik,=S Cky ks,
k,

In Table I we reproduce the results as given in their Table V.
Here we have a very important departure from representa-
tion theory. Whereas
v f2 _ 0
Clhu=Clita = C

ik Judadsk? etc.,

this is not in general true for ICR’s. For instance, as we shall
see later, in the grey tetrahedral group, d 7. = 1, d 7 = 2,
andd 9, = 2. If the multiplicity in the double product is not
the same as the multiplicity in the triple product, then we
clearly have a fundamental difference in the two reductions,
which will influence our development of the 3jm symbols.
The reduction of the triple product is independent of the

order
d® . =d°

Jrjafs Jaivds
and we shall base our 3jm symbols on this reduction. The
multiplicity of 0 in double and triple products is given in

Table II.

. 1]
=d;,.» etc,

4.ICR’s OF THE DOUBLE GREY GROUPS

In this section we give the ICR’s of each of the double
grey groups and give a notation similar to Mulliken’s>?
which will be used throughout. For the single group the grey
group is the direct product of the point group and C, {Dim-
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TABLE III. Reduction of the direct products of grey T'*.

A E T E’ U’
A A
E E 24+ E
T T 2T A+ E+2T
E’' E' U’ E' +U A+T
v’ U’ 2E'+ U’ 2E'+2U' E+2T 2A+E+4T

mock and Wheeler*) but this is not true for the double
group, and we shall abuse notation by referring to a grey
group by the usual double point group notation of Griffith.>*

{a) SU(2), 0%, and K *: Each IR of these groups induces
an ICR of types (A) or (D) and hence the Mulliken notation
may be used to label the ICR’s. The basis vectors of the IR’s
for 0* and K * given by Griffith,>® Golding,?>** and McLel-
lan®® are also basis vectors of the ICR’s.

(b) The tetrahedral double grey group T *: The pair of
representations ", and I'; ** are of the third kind and hence
induce the ICR E oftype (C) and similarly E " and E ” induce
the ICR U’ of type (F). The reduction of the direct products
is given in Table III and the multiplicity of 4 in the triple
product in Table IV. It may be seen that the multiplicity
problem for these groups is much worse than in groups with-
out time reversal.

(c) The dihedral double group D *,, with n odd
(n = 2m + 1): The single group D, has two one-dimensional
IR’s 4, and 4, and m two-dimensional IR's E|... E, all of
the first kind. Thus, they all induce ICR’s of type (A) and the
generating matrices are

4(C,)=4,(C)=4,9)=1,

AZ(Cn) = _Az(cz) =A2(0) =1,

exp(ij ¢) 0 ]
0 exp(—ij @)l

s =50 =] 1|,

E(C)=|

where ¢ = 2n/n.

The double group D *, has in addition m two-dimen-
sional IR’s E {,,...E |, _,,, which induce ICR’s of type (D)
and a pair of IR’s 4, and B, which induce an ICR E ' of type
(F). Typical generators are

E(C,)
Z[exp(cl)”) exp(gij(p)]’Ef'(e):[—ol (1)]
S ) P )
and
co-[°, 1)

The multiplicity of 4, in each triple product is given in Table
V.

(d) D *, with n even (n = 2m)

The single group D, has four one-dimensional IR’s 4,
A,, B,, and B, and (m —1) two-dimensional IR’s
E,..E, _,, . The double group has the additional m two-
dimensional representations E | ,...E";,, _ 1,2 ;- Each of
these induces an ICR. The generators for B, and B, are

—B(C,)=B.\(C)=B,0)=1,
—By(C,) = — By(C)) =B, (6) = 1.

The generators for the other ICR’s follow D *,,, , |,. There
is no point giving a table of triple products as the multiplicity
of 4, is always one or zero.

(e) The cyclic double grey group C *,,: The cyclic group
C *, isisomorphic to C,, * and hence has 2 one-dimension-
al representations I, ,, with — n <m<n, where

I, ,(C,) = exp(im¢ /2),
with
¢ =2m/n.

A = I'yinduces an ICR of type (A). For 1<m<n — 1
the character is complex and hence I, and I" _,,, induce
a two-dimensional ICRE, , orE’, ,.Ifniseven, I, ,
induces an ICR 4,, but if » is odd, I, , is a spin representa-
tionof thefirstkindand I",,, & I",,, inducesthe ICR E’. The
generators are

exp(imé /2) 0
Enn (€)= 0 exp( — img /2)]”
TABLE IV. Multiplicity of 4 in triple products in 7 *. p
Product Multiplicity
AAA 1 TABLE V. Multiplicity of 4, in triple products in D *, (n =2m + 1).
EFA 2
EEE 1 ipici iplici
P
T4 " roduct Multiplicity Product Multiplicity
ITE 2 o
e 2 A A A, 1 E}.’Ej’A, 1
E'E'A 1 Ao, 1 E'EA, 1
FET . EEA, 1 EEE, ]
UEE ) EEA, 1 EJE,E, ., 1
U'E'T 2 EEE, _, 1 E'EE,,_, 2
U 2 EEE,, 1 E'EE,,., 2
U'U'E 1 E'E'A, 2
uu'r 4 E'E'A4, 2
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£.0=] ]

1 0
, exp(ime /2 0
E m/2 (Cn) = [ p( ¢ ) . s
0 exp( — imde /2)
0 1
E’ =
m/2(6) [ _1 0] s
and for n even
A,(CH= —1, A4,0)=1,

whereas for # odd

rer-[3 O ro-]?, )

The triple direct product is given in Table VI.

5. THE 3jm SYMBOL

In representation theory it matters little whether we
reducej, ®j, toj¥ orj, ® j, ®j, to the identity 0. However, we
have already noted that for ICR’s the two multiplicities are
not necessarily the same so that there is a fundamental differ-
ence between the two reductions. We also noted that the
multiplicity of /¥ in j, ® j, need not be the same as of j% in
J1®J3, etc., meaning that any attempt to base the 3jmsymbols
on the double product will impose very restrictive properties
on permutations of the ICR’s However, the multiplicity of 0
inj, ®j, ®j, is independent of the order of coupling and we
base the 3jm symbol on this reduction. We shall return to the

problem of the direct product of two ICR’s later.

We consider the unitary transformation which reduces
the triple product j, ® j, ® j; and define the 3jm symbol to be
the part of this matrix which reduces the product to the
identity 0:

Ji)™  Jolu) ™, Jalu)™,,

= (j1j2j3)m'm’m’r, 6rlr2(jlj2j3)rznlnznj @ e (5.1)
and
Ju@m™ r';|j2(a)mln,i3(a)'mfz‘

= (j jaj)m e, 6 r,(jlj’lj:%)r.zri.n,ri“ &® -y (5.2)

where 8, and 8", are the linear and antilinear matrices,
respectively, of the identity ICR and which are numerically
equal to the identity matrix of dimension equal to the multi-
plicity M of 0 in the triple product. We have no primes in

TABLE VI. Multiplicity of 4, in triple products in C*.

Product Multiplicity Product Multiplicity

A4 A, 1 E,EE, ,, 2

AAA, ! E{EE, , 2

EEE, 2 E(E;4, 2

EAEIEA 1 2 E;\E!,|/l AAE 2

E E, A, 2

EAEH/E AAZ 2 E'E;\En/lol\ 2
E'EE, ., 2
E'E'A, 4
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these definitions as we have all matrices in “standard” forms
given by Egs. (2.4) and (2.6).

By integrating over the linear and antilinear operators,
respectively, we find from the orthogonality relation (3.6):

(j] ijB)m‘ "hm\r‘ (.Il j’zjf%)rI AN

2 ; nt ; nt ; Feql
— 2 | w0 s, du 5.3)
|G| Ju
and
(j1j2j3)m’mxm“r, (jljzjs)r'fz.:a,n,.
2 g tesd s be23 ; bicd
— @, da 4
G| Jo—n
where
(j1j2j3)r,i,n,n_. = 6ri(jlj2j3)ir'z.ﬁ,n,' (5-5)

The unitary equation (2.3a) gives

(jljzjz)m'm.’m’r, (jljzjs)r',ﬁ'kzﬁ"s(ﬁ,n,ﬁs) (mymamy) = 8, (5.6)
We cannot use Eq. (2.3b) as we have here only the first M
columns of the reducing matrix, not all of them.

We now show that any reduction yields a complete set
of 3jm symbols in the sense that any two reductions are relat-
ed by a unitary transformation in the multiplicity label inde-
pendent of m, m,, and m,. Suppose we have two such reduc-
tions. Then, from Eq. (5.3),

{J1J2J3 r,(j|f2j3)r'n,n,n,
= [ Ji2s1™ ™, L2 ds) e, - (5.7)

Square brackets are used for the 3jm symbols of the second
reduction. Multiplying throughout (and summing) by

(J1J23)s, j'j"é’(su,szs',) (m gy BIVES
(Ji j2j3)rln.n,n]5h‘ o= L™
>< 5(5',5‘;&‘“ (mymym,) [ jlj2j3] rzn,n,nr‘ .

)m,m,m,

7y, $1828y

rz(jljlj})r’,

Setting
U™, =8y jadal ™™™ adn ™
eI — (5.8
gives
Urd2 s g, = U L J203) nn, (5.9)

independent of n,, n, ,and n, as required. We may show it
satisfies Eq. (2.3a) by using the unitarity of the 3jm symbols,
and hence U ", is unitary. If we turn to the antilinear equa-
tions, we find

vn, =867, U0",
and since 8 is numerically the identity matrix, U is numeri-
cally real.

(5.10)

6. THE WIGNER TENSOR

The Wigner tensor®, otherwise known as the 1/ sym-
bol'” or the 1jm symbol,”” plays a very important role not
only in relating a matrix to its conjugate in ambivalent
groups, but also in relating a 3jm symbol to a coupling coeffi-
cient. We shall find such a tensor similarly useful in corepre-
sentation theory. It is straightforward to show that time re-
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versal may serve for this tensor using the commutativity of §:
™., =joudHm,, '

=jO)Y™ . JW)"; J(O )", (6.1

Now

8", = 10O, = JOY™ O,
so

O, =8™,,00) ", (6.2)
and

Je)™ e, =JOV™ )" JO) T, (6.3)
Similarly,

@y ., =J0Y™ . j@" , j6) ", (6.4)

Jj(0) is an operator from S to .S * and j(8 ") is also, so that in
matrix terms j(6 )", —j(6) and j(§ )", —(6 ~'). However,
j(ey! is an operator from S * to.S and hence in matrix terms
j(8)~ ', —j(6)". Equations (6.3) and (6.4) are therefore
J() = j(0 yw)*i(6)"
and
Jj(@) = j(6)i(a)*i(e ) '*,
respectively, in the usual matrix formation. For later use we
shall use the abbreviations

oy, =" Jwasrr, <[t |, @9
giving for Egs. (6.3) and (6.4) '

. m, ooa [H2
= " 6.6
s, =" i "] (66
and
faym,,, = (m‘ , ) jay,, [”2 . ] 6.7)
n, m,
respectively. From the property (8°) = ( —1)"for n
integral,
(™ )" )=c-vwm, 63)
n, : i
and
n m, o {yngin
[ "11” ﬁz] =(—1)"8s",. (6.9)

The transformation from an operator to its conjugate is not
necessarily unique (for example, in a commutative group
any antilinear operator will serve) but because of the central
role played by time reversal, we feel justified in reserving the
notation for this operator only.

Weshall now investigate to what extent (@ ) may be cast
into a simple form. Ideally, this would be diagonal but we
shall see that this is not always possible. It is not necessary to
use the covariant notation for this, as we are not considering
components in any detail and we simplify notation by con-
sidering an antilinear operator 7 satisfying 77 * = + [and
Tt = T-'. Theinvariant eigenvector equation for an antilin-
ear operator is

Tv = Av,
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with T*p = A *p.

We first deal with the case TT* = I. Choose any v in S
and let

w = Tv.
Then Tw = v. If v = Aw, we have an eigenvector. If vz w, set
u = v + w. Trivially,

Tu =g,
giving an eigenvector. If V' is the subspace generated by the
eigenvector, we turn to the orthogonal subspace 2 and re-
peat the process. Thus, we can find an orthogonal eigenvec-

tor basis and diagonalize T. The eigenvalues are + 1 from
TT* =1

When 77 * = — ] we have a different situation, for we
can no longer produce eigenvectors as above. However, as
before, we let

Tv=w,
for which
Tw= —7b.

Again, if w = Av, we have an eigenvector. If not, we search
for vectors which preserve the above form and are also or-
thogonal. By setting

vy=v+aw and v, =w — av,

we have Tv; = v, and Tv, = — D,. We may normalize v so
that it has modulus one, and from the unitarity of T, w also
has modulus one. If v, and v, are to be orthogonal,

0= (v|v,) = a(wlw) — alv|v) + (v|w) — aal{w|v)
or
a—a= (wlw) —aa(w|v)*
If we let aa = 1, this is
' Im(a) = Im({v|w))

since v, w are unit vectors. This equation can certainly be

solved for a since a@ = 1, and we have orthogonal vectors.
We continue as before by considering the orthogonal sub-
spaces. Thus, we may transform 7T to

(A h
A,
0 1
-1 0 ’
0 1
-1 0
\ "J
(6.10)
where from 7*Tv = — v each eigenvalue A is + 7.

The forms given here are not always the same as those
used in practice. For example, in SU(2) with j half-odd inte-
gral, the Fano-Racah standardization® gives j(0 ) as
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0

which may be obtained from the above by a real orthogonal
transformation. It is convenient to have j(6 ) as a matrix with
only one entry in each row and column, and we allow for
such variations by taking

JO)"s = (m n)

to be nonzero for only one # for each m, and similarly for
N — 1 h
j@y ', = [ ] -
m

7. THE COUPLING COEFFICIENT

We have already discussed some of the problems associ-
ated with the reduction of the direct product and we shall
give an example which apparently creates more difficulties
but which in fact shows the way out. First, we give the defini-
tion. The coupling coefficient { j, j,| j3)™™,.,., is given by

jl(u)m‘ n,jZ(u)mzn,

= z <jlj21.]’3)’“""1:'”1J .].S(u)mlnJ <j1j2lj3>mjn.n, (71)
I
and
Aa)™,, jla)™,, = 2 gl J3) ™™ e,
I
Xa’i‘j}(a)m’ix,<j1j2lj3)ﬂi3r},iz,’ (7.2)

where as before we have no primes.

Consider the couplingingrey C ¥, E' © A, = E'. Under
the generators C; and 6 we need to find a unitary matrix P
such that

-1 0 _1_(—1 0)
P(o —1)P N0 —1
and

0 1) _ (o 1)
P pir = .
(—1 0 ~1 0

It is elementary to verify that any of the four matrices

GG 2)C o=l )

will serve. The multiplicity is only one and we see that we
have, in contradistinction to the 3jm symbols, reductions
which are not related by a unitary transformation in the mul-
tiplicity label (which here would be multiplication by an sca-
lar). The saving point is that we have here four independent
reductions which is exactly the multiplicity of 4, in

E'® E’' ® A,,and s also the number of independent matrices
which commute with £ . Thus, the problems of the coupling
coefficient (j, j,| j;) divide into three: (a) the number of ma-
trices which commute with j;, which gives the number of
independent sets of coupling coefficients; (b) the determina-
tion of the relation between each set and the 3jm symbols;
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and (c) the relation between all sets of coupling coefficients
and the 3jm symbols.

The first of these is a form of Schur’s lemma for grey
groups:

Lemma: If the multiplicity of 0 inj ® j is M, there are M
linearly independent nonsingular matrices P commuting
with j:

Pj(u) = j(u) P and Pj(a) = j(a) P*.

This is proved by considering each type of ICR in turn and
applying Schur’s lemma for linear groups. For type (a) the
ICR j of G subduces to an IR k of the linear subgroup H, and
hence P = cl, giving one independent matrix 1. For type (b}
the ICR j is of the form*

Jlu) = (k(u) 0 ) and

0 ku
L 0 +k(@ )P
J(a)_(—k(ae"‘)P 0 )

The four matrices
(I 0) (iI 0 )
o I1/°\0 —i1)’
0 i 0
(iI ;) » and (— I g)

commute with these, and there are no more linearly indepen-
dent ones. For type (c),

J) = (k f)u) k B(u)) and () = (k *(29-') k(aoe -‘))’

with two commuting matrices

(1 0) d(i[ 0)
o 1/ \o —i)

Comparison with the multiplicities in Table 11 gives the
result.

Now these matrices P may be written in coupling coeffi-
cient notation as

Pm‘m, = <j0|j>m.0m,’
giving that, if {j, jo| /3)™ ™,.., is a coupling coefficient, so is

(jljZ\j:i)m‘m)rmJ <j30lj3)m.‘om, .

Thus, if the multiplicity of 0 in j; ® j, is M, we have M sets
of coupling coefficients. Each set obeys the usual orthogona-
lity relations, but as the example shows, different sets need
not be orthogonal when summing over m2, and m,.

The second problem, that of the relation between a set
of coupling coefficients and the 3jm symbols, may be solved
by use of the orthogonality relation (3.1c). From Egs. (7.1)
and (7.2),

CId2l T ™ ey J3 W)™ J3()™ 5,

= Jy (@)™ J2 @)™, F3 @)™, (T2l J3) ", (7.3)
and
ol in™ " J@)™,, Js@™,,

=ji @)™y, 2A@™,, ;5@ il i s, (08
Replacing the conjugated matrices on the right-hand sides of
these equations by
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PR L s (s
g =" s ()
and

s, <[ (),

respectively, we may integrate over G and G-H to give
<]'1]‘2U3)m'mzr,m, fj3(u)m’n, j3(u)’"',i‘a’u
H

G| [m g
l_—J‘[ ¢ ](.11]2}) T,
2 ms

n
x( s
and

id2l 7)™, J Ja@)™,, j3(a)'h‘n‘da
_ 161 [m
2

, )<j1j2|j3>n,"2r,n_,(jlj2j3)’2n,n1n5 (7.5)
Ny

)m mzm,

](J;sz

A .o -\ ’ PP
(™ Yl i s 16
3

Adding and using orthogonality gives
<j1j2[j3)m'm’r,m,
_ 1Y/ 2y, my Y N
=410 [ ms 8 e (T J2 J3) ™

with U,

(7.7)

as the real rectangular tensor

s 11/2
Url,-l =6ri‘nj [J3]

X[ ( > n ) (.]1]2']3) ! 2rln,(.]lJZJB) nynng
4

i e
+17 g2l 7)™ G Jods) i | -
na
(7.8)

For each r,, we may perform an orthogonal transform in the
3jm multiplicity space to give

(JrjalJd™™,,
. m o
- n_»us]”zam,fn.[ s ](mm) s (1.9)
ms

where the normalization of the coupling coefficients and the
3jm symbols has been used to give |U | = 1. These 3jm sym-
bols possess the orthogonality property

(J1d2dsV™™ o (1 T2 3 mmgm, = 67, 8™ L1371, (7.10)
where, however, r, and r, are not free to vary over the 3jm
multiplicity space, but only over the coupling coefficient
multiplicity subspace.

If the multiplicity of /; inj, ® /, is M,, and the multiplic-
ity of 0iny, ® J, ® j; is M, the coupling coefficients only span
on M,-dimensional subspace of the 3jm multiplicity space.
However, if the multiplicity of 0 in /, ® f, is M, then as
M, = M M,, all the sets of coeflicients span this space. Thus,
all the 3jm coefficients may be found from one set of cou-
pling coefficients and the commuting matrices
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P, =L OINH™,
given earlier.
The third problem may be tackled by considering

<j1jzlj3>m'mzr,m,iB(")m’n,is(u)m‘n,
= JAu)™, o)™, Jalt) ™ {Grda| 53D ™", (7.11)
We further expand the left-hand side by
Ja(w)™,, Jalu)™
= E (j3j3jj4>m’m'r,m, Jalu)™,, <j3j3jj4>r'nsn,n‘
j4
and use, this time, the orthogonality equation (3.6) to give
A j3>m'mzr,m, (J3 /310 0 (J343]0) ”on,n.
= (J1J2J)™ ", J2 ) e, (T2 )
Setting V'™, as the square invertible tensor

Vrjr. o (jIijE)rjn.n,n. <./l j2,j3>n,nxr. n, <j3j3f0>"’m,,0

(7.12)
gives
g J ™ m, K Jad318Y ™ o = V7 U J2 )™ ™™,
(7. 13)

The corresponding antilinear equations show that V is real.

In representation theory the coupling coefficient
(J3J3]0)"™™, ¢ is of multiplicity one and is simply related to
the Wigner tensor. Thus, this equation has an analog in re-
presentation theory, where it would be equivalent to Eq.
(7.7), but here the multiplicity may be as high as four, and
the two equations are distinct.

We have not completely answered the third problem, in
that the left-hand side of Eq. (7.13) is not a coupling coeffi-
cient, but the coupling coefficients

(/200j3)™" and {j; j5/0)™ ",
are given in terms of 3jm symbols by Eq. (7.9) which are
related by the transformation properties discussed in the
next section, and it is a straightforward matter to write the
equation in terms of the full set of coupling coefficients.

We conclude this section with some brief comments on
the Wigner tensor. Settingf, = j; andj, = 0in Eq. (7.9) gives

(jlo‘j|>m'01m,

. "'z m 0,
= £ U 0| Ji0m
Trivially, a set of coupling coefficients is

<j10|j|>m'01m;, = 6"'.”’
so that

[ ' ] = + []1]1/26'"'%(/101:)1%0"?5
ms

by Eq. (7.10). It must be stressed though that this equation
should not be used to give the Winger tensor as happens in
representation theory. There is an arbitrariness in the 3jm
symbol which would make it hard to decide which to use,
and besides, an standard form for the Wigner tensor has been
given in the last section. Rather, this equation should be
regarded as giving one of the 3/m symbols.
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8. PROPERTIES OF THE 3/m SYMBOLS

With minor preparation, we may almost quote these
from Derome and Sharp'” and Derome'®. Firstly,

G d2d)™ ™, (23 wnam,

[ Gl Jl(u)'"n/z(u)""n,ls(u)’"s du.

Using

. m . . 7]
Jl(u)m‘nl = [ ! . ]jl(u)”"“ [ 4 ], etc.,
my . n,

this gives

(j1j2j3) r.(j1j2j3)rlnln,n_,
("))

X[m nl] [ﬂ5 nz] [ﬁé n3](j1id.3)iz'i‘ﬁ’ﬁ°' ®.1)

Taking (j, j,j3)".x,», t0 the other side and setting

A(123), :[r‘u ,,IHﬁS ,,2] [ﬁﬁ n3]

nymym,

: )w?ja)’""'"s""zz
Me

X(jljzjs)i’;.,,i.,n,,(jljzjs)"'"z""r, (8.2)
gives
(JiJ2ds)™m™, = A (123)2,
m
(" )
m, ms my
Xy jads ™™, (8.3)

The antilinear expression gives similarly

A(lzs)*z,,=6"',.6"z[n“ H “n ]
", ns, 1,

><(jlj2j3}r2n,,n5n6(jlj2j3)ﬁlrili,"f, (8.4)
so that A4 is numerically real.
Let us now consider two different reductions of the tri-
ple product, one with j; and j, permuted. From Eq. {5.3)

mym,my

(1273 J2d3) anom,
= (jzjljs)mzm'm"rz(jzjlja)'znzn.n,

so that

(id2 )™ ™™, =MA2,3), (ajij)™ ™™, (8.5)
with

M(12,3)’1 - (.] jl]?) nar R, (.]l.]".l%)n am . (86)
From Egq. (5.4),

]‘/[(12’3)r2 - 5 (.I’.IIJW) ot iy (.II.I"]’V)” s

so that M (12,3) is numerically real. This reality in fact forms
the only difference between the analyses of Derome and
Sharp'’ and Derome'® and the corresponding analysis need-
ed here. Since their results are not in any manner dependent
on M being nonreal, we may use them without modification.
We are most interested in the possibility of diagonalizing M
over the multiplicity space, and from Derome'® we find the
following:

(a) If none of /|, j», j; is equivalent, M may be diagona-
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lized to the identity matrix,
(b) If exactly two are equivalent, then every transposi-
tion may be diagonalized to

6 5)
0o -1,

and every cyclic permutation leaves the 3jm symbol
invariant,
(c) Ifj,=/j,=j,, M may be diagonalized if f

| oy du= | vwau

This equation refers to the character of the ICR—not of the
IR. If the ICR is of types (b) or (¢), there is the possibility
that the 3jm symbols of the grey group may be diagonalized
even if the 3jm symbols of the linear subgroup may not be
(and vice versa).

Finally, in this section, we give some simple conditions
that ensure the reality of the 3jm symbols. So far we have
only used the operator  to generate the antilinear coset
G — H from H. However, any antilinear operator will serve
for this.*’ Suppose, then, that we have an antilinear operator
6 which is numerically the identity matrix in all three ICR’s

J1» j2, and j;. From Eq. (5.4)

(.jl.]‘Z.jZ;)rri.nlr'Ll == (jlj"jl) nymym;

\GI

X f J@Y™ s )™ js(@)™,, da.
G- H

We may replacej (@)™, ijl(ue_)'mm =j ()™, 6™,  ete.
to give

s N 2n, e Mo (7 i iV
(.]I]Zj}) Hy A, :___5 ri.a ‘!‘116 :1,(.]1.]2.]3) m,om,m,

G|
% f J@Y™ )™ aaa)™, du

=", 5"‘ O™, (jlijS)rnmSn,,’ (8.7)
giving reality. In a similar manner, we may show the follow-
ing possibilities:

(a) If @ = I for all three, the 3jm symbols are all real.

(b) If § = — I for two of the ICR’s and -+ I for the
third, the symbols are again real.

(c) If @ = — Ifor all three, or — I for one and + I for
the other two, the symbols are all imaginary.

There is no guarantee that an operator 8 exists satisfying any
of these conditions, but if it does this is a very quick test for
reality or nonreality. An important special case is grey SU(2)
where in Fano—Racah standardization

g=C209"'

to give case (a).

9. THE WIGNER-ECKART THEOREM

Aviran and Zak*® give a form of the Wigner-Eckart
theorem for general linear/antilinear groups, but this is un-
satisfactory in some respects. For anirreducible tensor T (kq)
their Egs. (3) and (4) for the matrix elements become in our
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notation
<j|mliT(k91)U2mz)

- TéT le(u)"‘-,,-,, k@),

X o)™, <j|n1|T(k42)V2”2> du ©O.n
and
<j1m1|T(k41)U2mz>
__ 2 (Ve .
= 1G] HJ.(G) m, K@),
ij(a)ﬁlmz(jl”1|T(k42)U2”z>* du. (9:2)

They consider the reduction of the product k£ ® j, toj¥, but as
we have already seen, this causes difficulties. It would alsobe
equally valid to reduce /¥ ® k to} orj} @, to k * and exami-
nation of their results shows that this would give forms ap-
parently dependent on the reduction used. These problems
may all be avoided by reducing the triple product to the

identity ICR. Use of the Wigner tensor for the grey groups
will also yield a more familiar form. In Eq. (9.1) we have

(jlmllT(k%”jz"h)
2 1, A L
Z]—G[— H( n3)11(u) "”{ ml}
Xk (u), jH{u)™,,, (1| T (kgy)|jon,) du

n s e f 5 Lr
= ( ! )(llklz) 2 (1K) g um,
n3

m .
<™ GmiT ke .
m,
Setting the reduced matrix element
GllT G J2)

= (ﬁl n )(jlk.iZ)"Jq’"lr(jlnl’T(kq2),j2n2> (9-3)
gives .
(Jim|T (kq,))| jom,)

= GITEND ™ |Gk mm O

which is the desired result. The corresponding antilinear
equation gives the reduced matrix element as numerically
real.

10. RACAH’S LEMMA

Racah’s lemma* has proved to be a fundamental result
for any application of the descent in symmetry technique.
Briefly, for IRs it relates the 3jm symbols of a group G to the
3jm symbols of a subgroup K by a factor or unitary transfor-
mation independent of the m values. To use the descent in
symmetry technique in grey groups we shall find the lemma
of equal importance. However, as the proofs we have sighted
for linear groups directly use Schur’s lemma,**® and Schur’s
lemma only holds in a restricted sense for grey groups, we
offer a proof based on the orthogonality relations. We may
distinguish between two different types of subgroup of a grey
group and the lemma will assume a different form for each.
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These are the following: a grey subgroup, consisting of both
linear and antilinear operators, and a subgroup consisting of
linear operators only.

We consider first a grey subgroup K of grey G. We label
the ICR’s of G by as usual, and of K by k. Upon restriction
to K, each ICR of G may be reduced to a direct sum of ICR’s
of K by some unitary transformation. Applying the inverse
transformation to the ICR’s of G, we obtain “‘symmetry
adapted” ICR’s of G—i.e., on restriction to K the matrices
are already in block diagonal form:

k(u) 0
k(u)

Jlu) =

0

and similarly for the antilinear operators. We reduce the
triple product in G in the usual way, i.e., if the multiplicity of
0inj, 8, ®/, is M,, the first M, colums of the reduction
matrix U are the 3jm symbols, with the other columns of U
being formed from the other ICR’s in this triple product.
Upon restriction to K some of these may reduce to the identi-
ty ICR of K and we would have the form

I(u)
k)
ks(u)
I{u)

If we sum over the unitary elements / ' of X, we shall certain-
ly get the 3jm symbols as in Eq. (5.3) but we shall also get the
unitary elements from these other occurrences of the
identity
Jramams

(J/1J275 r,(jljzjs)"n,n,n,

+ (jlj2j3)m'mzm3r,j(jlj2j3)rzjn,nxn,

S ™, (10.1)

K|
However, as U is unitary, we may pick out a particular 3jm
symbol by orthogonality:

)mlmz”‘J )”l"z"w

= 2 J2Js
" }K} (/172

(1o
X[y sy, fur™,, du

(10.2)
We let the reduction matrix of (k, ® ) @ (k@ ) ® (k; ® -+)
be ¥V, and if the multiplicity of 0in &, ® k, ® k, is M,, the first
M, columns of ¥ be the 3jm symbols (k,k,k;)™ ™", . Then
for m,, n,<[k,], m,, ny<[k,), ms, n;<[k;] we have

(k 1k ok )m'm'm" (ko koky)™

Ny,

~%T J ()™ )™, K™,
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=7 J o e 0y

For m,<[k,]butn, > [k,), etc., we may take the 3jm symbols

for K as zero and substitute into Eq. (10.2) to give

(i 2da)™ ™™,
= (k|k2k3)m‘ mzm.‘r, (klk2k3)rln, nan, (.ll j2j3)'f| nm“r. .
Defining the isoscalar by

jl j2 jS)rJ — kkk 7, ;o 1.\t 10.4
(k1 k, ki i (kikoks) s s (1 J2J3) "o ( )
gives us
c e s N g, j .] j\ & mym,m,
(JiJ2J)™ r, z(kll k22 kl)r. (kykoks) . (10.5)
(10.6)

As we might expect, the antilinear equations show the iso-
scalar is numerically real.

For a linear subgroup the analysis proceeds as above,
but of course, as we have no antilinear operators, we have no
reality condition. This is to be expected as we have a free
choice of phase for 3jm symbols of a linear group which we
do not have for a grey group.

The properties of the isoscalar under permutations fol-
low from the properties of the two sets of 3jm symbols in Eq.
(10.4). If M (12,3) is the transposition matrix in G, and
N (12,3) the transposition matrix in X, from Eq. (8.5)

(jl J2 j3)rl

kl k2 k3 r
B . -1 r j2 jl j3)r¢
=M(12,3)", N ~'{12,3) (k ky ki,
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Representations of Osp(2, 1) and the metaplectic representation
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Shift operator techniques are used to treat the irreducible representations of the superalgebra
Osp(2, 1). Apart from obtaining the well known gradestar dispin representations which arise when
the even part is the compact SU(2) algebra, the case when the star conditions on the even part are
those satisfied by the noncompact SU(1, 1) algebra is also treated. In this case no gradestar
representations arise, and the star representations are found to consist of the direct sum of two
discrete series representations of SU(1, 1). One of these representations can be realized in terms of

functions of a single complex variable, and turns out to be a simple example of a metaplectic

representation.

PACS numbers: 02.20.Qs

1. INTRODUCTION

The superalgebra Osp(2,1), which is the subject of this
paper, has been considered by several authors.'™ A basis for
the even part of this algebra consists of the SU(2) [or S1(2)]
generators /o, [, , and the odd part has basis elementsq , ,,,
which form a two-dimensional tensor representation of the
SU(2) algebra. The commutation and anticommutation rela-
tions satisfied by these elements are:

Uy 1= 11, [l d_]1=2l,
[IO’qil/Z]z :t%qil/z, [I:t’q:l:I/Z]:qi]/z; (11)

{qi 172:9 + w2l =% l:t v @912} =~

In this paper we classify the representations of Osp(2,1)
using SU(2) shift operators developed by Hughes and Yade-
gar,’ restricting our considerations, however, to those repre-
sentations which are star or gradestar.” The case where the
star (or Hermiticity) conditions on the even part are those
appropriate for the SU(2) Lie algebra, namely /§ =/, /7,
= — I, isdealt with first, and we merely rederive the well
known dispin representations obtained by other authors.
These turn out to be all gradestar, as was shown by Nahm,
Rittenberg, and Scheunert.’

We then consider the case where the even part satisfies
the star conditions /§ =/, /T, = — /.., in other words we
look at representations of Osp(2,1) which subduce to the
infinite dimensional Hermitian representations of the non-
compact SU(1,1), or SI(2), Lie algebra. Although the shift
operator techniques of Hughes and Yadegar have been used
for the analysis of representations of many different Lie alge-
bras with respect to an SU(2) or O(3) subalgebra (see for
instance Hughes and Backhouse® and references therein),
this is the first time they have been used for algebras contain-
ing the noncompact SU(1,1) subalgebra. Also, the author
believes this to be the first case where the infinite dimension-
al irreducible representations of a simple superalgebra have
been classified. The term “Osp(2,1)” is usually used to de-
note the case where the even part is SU(2), so here we are
extending the use of the term to cover the case where the
even part of the superalgebra is SU(1,1).

In this case we find that no gradestar representations
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can occur, but we get two classes of star representations,
depending on whether we take¢’, ,,, =g+, org’, ,,

= — ¢=,,,- Both star conditions give rise to “dispin” re-
presentations, although again the term “dispin” is used rath-
er loosely to include the case where the SU(1,1) Casimir L
has eigenvalues / (/ 4 1) where / is nonpositive half-integral.
We find that, for ¢', ,,, = g+ ,,,, the irreducible star repre-
sentations of Osp(2,1) consist of the direct sum of two
SU(1,1) discrete series D2~ representations,’” whereas if

g 1n = —4+1,, we get two D representations of
SU(1,1). Since the two cases give rise to mutually contragre-
dient sets of star representations, only the latter case is con-
sidered in detail.

One of these representations, namely that for which /
has the values — and — } turnsout to be a particular exam-
ple of a metaplectic representation, considered in more gen-
erality by Sternberg and Wolf.® These authors show that
every symplectic group Sp(2m) has a special two-valued re-
presentation called the metaplectic representation, which is
areducible representation with two irreducible components.
For the particular case where m = 1, Sp(2)=~81(2)~8U(1,1)
and the metaplectic representation is, at the Lie algebra lev-
el, just the above reducible “dispin” representation of
SU(1,1).

Sternberg and Wolf also show that in the general case
Sp(2m) can be embedded in a larger algebra Sp(2m) + R *"
which admits of a Hermitian structure with respect to which
it becomes the orthosymplectic superalgebra Osp(2m,1).
The metaplectic representation of Sp(2sm) extends to an irre-
ducible representation of Osp(2m, 1), which can be realized
in terms of the space 7 of all holomorphic functions

SC™"—Csuchthat §| £(2)|* exp( — |z]*) dA (2) < o0, where A
is the Lebesgue measure on C™. On restriction of the meta-
plectic representation to Sp(2m), the two irreducible compo-
nents are supported by the subspaces %'+ of #°, where
#* and #° ~ are the closed spans of the set of functions z”
= (2}",...2,"), n,€ Z, with |n| = Zn, even and odd, respec-
tively. The results of this paper show that for the case where
m = 1, the metaplectic representation of Osp(2,1) is generic
in the sense that every irreducible star representation of
Osp(2,1) shares this property of having precisely two irredu-
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cible components on restriction to Sp(2)~SU(1,1).

Also, for the case where m = 1, the central extension of
Sp(2) + R?, which we shall refer to in a following paper as
C(S1(2), T'?), also has an irreducible representation which on
restriction to S1(2) yields the metaplectic representation. We
shall show there that for this Lie algebra, the metaplectic
representation is not generic, but in fact pathological, being
the only “dispin” irreducible representation it possesses, and
moreover the only irreducible representation it has in com-
mon with Osp(2,1).

In Sec. 2, we summarise the algebraic properties of
Osp(2,1), and write down the shift operators which will be
used in the analysis of its representations. In Sec. 3 we reder-
ive the well-known representations of the compact version,
and in Sec. 4 we classify the infinite dimensional representa-
tions of its noncompact version. Finally, in Sec. 5 we consid-
er the metaplectic representation in more detail.

2. THE SUPERALGEBRA Osp(2,1)

The defining relations of Osp(2,1) have already been
given in Egs. (1.1). Osp(2,1) possesses a single invariant

=LZ+§(‘11/2‘171/2 —q_ 1,12 2.1)

where L ? is the SU(2) Casimir operator, L2=1_1, +13
+ I,. Now using Egs. (1.1), one may show that

G129 12 —9_ 11 g =L+ G129 12 — 912912
so one can derive the following relation satisfied by K:

K3=({L>+DQK,—L?.

Given an irreducible representation (I.R.) of Osp(2,1)
for which K, has the eigenvalue @, then acting on a state
| ,m) of the L.R. with both sides of Eq. (2.2), one obtains

a=3@2+1), or /+1)2+1). (2.3)
The fact that « has the same value for all the states of the LR,
therefore shows that the range of permissible / values is se-
verely restricted by Eq. (2.3); in fact only two distinct / val-
ues can arise, as we shall see shortly.

The shift operators we shall need in order to analyse the
L.R. of Osp(2,1) are particular cases of more general opera-
tors derived by Hughes and Yadegar.® These shift the eigen-
values / and m of R and /; by + 1, where R(R +1)= L7,
when acting to the right on eigenstates of these operators,
and are given by

0" =g ,(R+1L+D+qg_,,1,,

(.2)

24

O —1/2, - 172

= —q_1, R+1L)+q,_
The fact that there is only one pair of such operators means
that no /-degenracies can occur within the I.R. of this
algebra.

It will often be more convenient to use the normalized
operators whose action on eigenstates {/,m}) are related to
those of the above operators by

A=+ m+1)
A 1—1/2 — (l+ m)—1/20[’~m1/2.7l/2' (25)

The following L *-commuting operators form the basis of the
following analysis:

— 2,172
l/lolljn L ,
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A2 A7 = 10K, — QI+ DI +1), (2.6
A4 = +1) @K, — 12+ 1)). @7

These two operators contain the whole structure of the
irreducible representations in that minimum and maximum
[ values are determined entirely by the vanishing of their
eigenvalues. In addition to (2.6), (2.7), we also have the
identities

A4 }fl/zA 2 =4 1111//2214 171/2 =0. (2.8)
These show that it is impossible to change the / values of
states within an I.R. of Osp(2,1) by more than i so that only
two distinct / values occur, i.e., that the L.R. are “dispin”.
Hence /' must have a minimum value, [ = j, say, for which
A 1/721/214 -2.q.

7
Using Eq. (2.6), this gives

JQK;, — 2+ D+ 1) =0, (2.9
so that we have two possibilities: A:K, = 1(2/ + 1)(j + 1)
and By = 0.
A. Using K, = 1(2j + 1)(j + 1) in (2.6) and (2.7) gives
A7 N4 1) =G +DE+D D, (2.10)
AASNL T+ D =0 +DQ+D ]+, (211)
and
ASA L LJ+D =0 (2.12)

Thus / has the two valuesj and (j + ).
B.j = 0. In this case we obtain from Egs. (2.4) and (2.5)

4R 0 =2, 0
y l/ZA 17;/2 %) = — :.12(2K2 —3) | %>

and 4 ;24173 | 1) = 3(2K, — 1) | }). However, using Egs.
(2.3), we see that either (0|K,|0) = 0 or L, and either
(L|Ky|1)=4ori Since K, has the same value for both
states, we see that K, = 1, in which case 4 ;" 24 |/3| 1) =0,
as we should expect since the I.R. must be dispin. However,
J =0, K, = 1is just a special case of A, so case B gives noth-
ing new.

The actual permissible values of j depend on the star or
gradestar conditions imposed on Osp(2,1), and this we con-
sider in the following sections.

3. FINITE DIMENSIONAL REPRESENTATIONS OF
Osp(2,1)

We consider in this section those I.LR. of Osp(2,1) satis-
fying star or gradestar conditions which on the even part of
the algebra reduce to the usual Hermiticity conditions for
SU(2), i.e., we require /§ = [yand [, = [, . First consider
star (Hermiticity) condltlons on the odd part of Osp(2,1),
i.e., if B is an odd operator and {x | y) is a positive definite
bilinear form on the representation space, then (B 'x | y)

= (x | By), and (B")' = B. Now it is well known® that
when, as in this case, one has an even dimensional tensor
representation of SU(2), it is not possible to close the tensor
representation with respect to the star operation, i.e., for our
case, no complex, a, b, ¢, d can be found such that

qT/z =aq,, + bq 71/2'qt 2 =Cqr+dq .y,
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is compatible with the SU(2) Hermiticity conditions and the
commutation relations in Eq. (1.1). Hence no star represen-
tations of Osp(2,1) can occur when the even part is taken to
be SU(2).

One can, however, have gradestar representations. Let
again {x | y) be a positive definite bilinear form on the repre-
sentation space and A4 an element of Osp(2,1). Then its gra-
destar adjoint 4 is defined by?

x| p) = (=D (xlapy, 3.1
so that ) .
ABYF =(—=D"B*4*, A" =(=1%4, (3.2)

where a, f3, &, are the degrees of 4, B and ]X), respectively,
ie.,a = 1ifdisodd, a = 0if 4 is even, etc. In this section we
still require /§ = I, /. =/ ; one can show that the odd
part can be closed in selfc0n31stent manner with respect to
the gradestar operation if and only if

gl = bqfl/z v 9, = —bg .,
where b is either 1 or —1.

We now investigate what restrictions are imposed on
the I.R. by these star conditions. First of all, the conditions
on the even operators require that /, and therefore j, be non-
negatlve half-integral, i.e.,j = 0,},1,... . [Actually,j = — 2,
— 2, — 3,... are also permissible but equivalent to the above
duetotheinvarianceof /> =/ (I + 1)under i~ — (/ + 1).] To
proceed further we need the following Hermiticity proper-
ties of the shift operators, which can easily be worked out
using results of Hughes and Yadegar®:

(0 1/2,1/2)¢(2R + 1) — —b(O 71/2'-1/2)(2R )’ (33)
(0 - 172, — l/Z)#:(ZR + I) =) (0 1/2,1/2)(2R + 2). (3.4)

From these equations it is easy to show that

U] = _T_b(ZI(Z-il-Ti)l)
X+ 45 %)* 1), (3.5)
and
(4R a2
= o= B e D], 06

2141
where £ is the degree of the states |/ 4 1).

Now recall that / has only two values within an LR,
namely / = jor (j + 1), where j is a nonnegative half- integer.
Let the / = j state have degree a; thus using Egs. (2.10) and
(3.6) we obtain

|G+ 442D =b(~

This shows that 5( — 1)“ "' = 1, s0if b = 1, the / = state
must be odd in order to preserve the star conditions; if
b = —1, then the / = j state must be even.

Using (3.7), it is now easy to show that, with a suitable
choice of relative phase for the states,

G+m+1)
2

DI+ D2 (B.)

1/2
ava i) = |1+ 1m ey,
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q 1 |Jm) = [lr%j—ll']]/z |j+4m—1),
3.8)
vzl ) = | L2 i,
g lJHLm)y = — [-(-/—+’n_2t£/2_))] | jim — 1.

The results obtained here are in complete agreement
with those obtained by Nahm, Rittenberg, and Scheunert.’

4. INFINITE DIMENSIONAL REPRESENTATIONS OF
Osp(2,1)

We now consider I.R. of Osp(2,1) for which the star (or
gradestar) conditions on the even part of the algebra are
those appropriate to the noncompact SU(1,1) [or SI{2,R )}, or
Sp(2)] algebra, i.e., werequire /{ =/, I, = —1I_.Thesit-
uation here is the reverse of that of the last section, in that
now no gradestar representations can arise; it is a straight-
forward matter to check this and so we omit the details here.
On the other hand, the star conditions g° 12 =bg ¢, are
easily seen to be compatible with the commutation relations

and/"= —/_ provided b = 4 1. We shall give detailed
analysis for the case b = — 1, and just state the results for
b= +1.

For the case whereg®, ,,, = —¢ +1/2» One obtains the
following analogs of Eqs. (3.3) and (3.4):

OV 2R + 1) = (0 ~ />~ V3(2R )s 4.1)
O -"2 2R+ 1)=(0V>)2R +2).  (4.2)

From these one obtains

(4 hm +£1]0 22412 L)
E (2[(%_{1_)—1) (+ Lm+ 4 |(0 = li/zl/z)*,l,m>

and

(l,m |0[++l‘/'2nill/2 0 + 172, + 172 Ilm>

_ (22241-—1‘_31) l< +1m+1]0+'/2+1/2|lm)l
(4.4)

The reason that, unlike in the last section, we give relations
forthe O +'/>* ' rather than the normalized 4 * '/? here is
because since we are now dealing with the SU(1,1) subalge-
bra, whose I.R.’s are somewhat more complicated than
those of SU(2), we need to take more careful account of the
internal structure of these L.R.
From (4.3) and (4.4), we see that O
positive for / < ~— 1 and for /> — |, but negative for
— 1l <l< — 1. On the other hand, O /220 ~ /2~ 172 j¢
positive for1< — Jandfor/> 0, but negative for — 1 <7<0.
Before proceedlng, we give a brief summary of the L.R.
of SU(1,1). These fall into four classes (apart from the trivial
representation) the principal series D ¥ for which
! = — 1+ ip, wherep is an arbitrary real number and where
m takes on an infinity of values differing from one another by
integral amounts; the supplementary series D ° for which

—172, — 1/20 1/2,1/2 iS
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— 1 </ <0and m again has an infinity of values; the positive
discrete series D * for which [ is an arbitrary real number
and m has a minimum but no maximum value, and finally
the negative discrete series D ~ for which again / is an arbi-
trary real number but now m has a maximum but no mini-
mum value. Note that in the case of D *, since the eigenval-
ue / (/ + 1) of L ? is unchanged by the replacement
[— — (/ + 1), there is symmetry about / = — J, i.e., for ev-
ery LR. corresponding to an / value > — J, there is an equiv-
alent LR. for which / < — 1. One could therefore restrict / to
either of these ranges with no loss of generality, but usually
one takes / < — | to distinquish these I.R. from the L.R. of
SU(2) for which one conventionally takes />>0. Here we shall
actually find it more convenient to take / < 0 rather than
! < — } for reasons that will become apparent.

To return to the L.R. of Osp(2,1), recall that / has two
values, jand j + 1. Since ifj = — § + jp thenj+ | = ip,
which is not a permissible value of / for an LR. of SU(1,1),
i.e., which violates the star conditions on/ _ , we see that the
principal series D " of SU(1,1) cannot occur. To see which of
D?®or D * occur, we use the positivity and negativity condi-
tions for the O T !1/2F172Q + /2 %172 gtated above.

Now we saw in Sec. 2 that
(j’m l 0 —1/2, — 1/20 1/2,172 | _],m>

— (]+ %,m +%|01/2,1/20 —1/2,\1/2|j+ %’m + %>

=(+m+1){j+ 1% +1) (4.5)
Using (4.5) together with the positivity and negativity condi-
tions on the operator, we see that the star conditions are
always obeyed if (j + m + 1)>0 and never obeyed if
(j + m + 1) <0. Hence for the / = j state we must have
m3>» — (j + 1), so m has a minimum value and hence the LR.
of SU(1,1) which occur are the positive discrete D *
representations.

Choosing the relative phases of the states appropriately
we obtain from Egs. (4.4) and (4.5):

0[/2.1/2 |]’m>
. i 1) e, .
=(zf+1)[ifi’;’—+—’] rim+D, 6
0 —1/2, —1/2 \j+%,m +%>

=(+DRG+m+1D)1 | jm). 4.7

From these one obtains the following actions of g | , -
together with those of / | :

aa limy = [ LEEED N o ym s, @9)
0 _va lim) = [ =AD" o um =), 49)
aualitbm+ )= | =L g, @0)
aovalitime = — [ LERED Sy,

I my=[—(—m){I+m+1D1V2|lm+1), (412)

I_|Imy= —[—( +m)—m+D]"2|Lm—1),
(4.13)
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where in the last two equations / = j or j + 1.

The question as to what is the minimum m value for the
two D * occuring in the above / = j, j + § LR. of Osp(2,1)
needs to be answered with care, and we need to consider
again the above-mentioned invariance of the set of I.R. of
SU(1,1) under the replacement I— — (! + 1). When />0, in
order to satisfy the SU(1,1) star conditions / _ / ,

=({l—ml+m+1)<O0andl, [_

= (I + m){l — m 4 1)<0, we see from Eq. (4.13) that m has
the minimum value m = (! 4 1). Similarly if /<1, the star
conditions requirem = — J,and forany D * corresponding
toan/> 0, the replacement /— — (! + 1) yields an equivalent
D * corresponding to an /< — 1.

When — 1 </ <0, the situation is more complicated. If
—1<1<0,then westill geta D * with m = (/ + 1), but
now, as can easily be checked, the star conditions are also
satisfied if m = — [. Similarly,if — 1 </< — 1, westillgeta
D * withm = — [, which is equivalent to a D * with
—1<l<0and m = (I + 1), but we can now also havea D *
with m = (/ + 1) which is equivalent to a D * with
—}<l<0and m = — |. Hence we get two, not just one,
inequivalent D * for any / where — 1 </<0.

Thus, for the LR. / =}, j + } of Osp(2,1), we see that if
j< —1, then thereisa D * with / =jand m = — j coupled
bytheg_ ,,toaD * withli=j+landm= —(j+1).
However, if —1<j< — 1, we can either have an L.R. of
Osp(2,1) containing a D * with/ =jand m = — j coupled
toaD * with/=j+landm = — (j+}), or we can have
an LR. of Osp(2,1) containing a D * with / =j and
m=(j+1)coupledtoaD * with/=j+ ] and
m = (j + 1 ); thus for any j< — 1 there is just one I.R. of
Osp(2,1),but forajwith — 1 <j< — 1, there are two inequi-
valent I.R.’s of Osp(2,1).

There is just one exception to this, nemaly the case
whenj= —3,s0/= —3, —LInthiscase/(/+1)= — &
for both [ values since they are symmetrically spaced either
side of — }, so the representation of Osp(2,1) where / = — 3,
m=3}and /= — 4, m = }isin fact equivalent to the repre-
sentation where /= — 3, m=land/= —Lm=3 This is
the metaplectic representation which we shall consider in
more detail in the following section.

Finally in the section we summarise the I.R. obtained
for the star condition g%, ,,, = ¢+ ,,,. In this case the star
condition obtained for O ¥ /> 120 =/ +1/2 require that
any | j,m) state of the I.R. must have m< — (j + 1), so here
m has a maximum value and the negative discrete represen-
tations D ~ of SU(1,1) occur. The action of ¢ , ,,, on | j,m)
and | j + 4,m + 1) for this case are

(i n Y2
91,2 |]!m>=[“‘_('j_+2—"ni'_)] |]+%’m+%)’
(4.14)
P 1 12,
q_ 1 (J9m)=[(]__’ni‘+—)] [1—{—%,771——%),
4.15)

G litim+i) = [(—]—Tzi"l ]m |jsm + 1), (4.16)
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and the actions of / _ are as given in Eqgs. (4.12) and (4.13).
Ifj< — 1, then there is a unique LR. of Osp(2.1) with a

D ~ with!=jandm = jcoupledbytheq , ,,, toaD ~ with

I=j+landm =j+ 1 If —1<j< —}, thereisin addition

an LR. of Osp(2,1) containing a D ~ with / =j and

m= —(j+1coupledtoaD ~ with/=j+ }and

m = —(j+ 3),exceptfor the case wherej = — 3 when the

two LR.’s of Osp(2,1) so obtained are in fact equivalent, this

being the counterpart forg’, |, =¢ 71,2 of the metaplectic

representation discussed above and in the following section.

Cp |JAbm L) =

5. THE METAPLECTIC REPRESENTATION

In this section we shall consider in more detail the
J = — 3LR.of Osp(2,1), which we refer to as the metaplectic
representation since on restriction to SU(l, 1) it yields the
metaplectic representation of that algebra.? The states of the
representation are |,m) = | — 3,3 + n), | — 1,1 + n) where
n =0,1,2,..., and the actions of the elements of Osp(2,1) on
these states are given by

(5.1)

G | —3i4m = ] L1+t

9 il =13+ = [ L 4w, 62
4, |—}‘,}‘+n [ ] §+n), (5.3)
i l= b4 = [%] = 33+ @— D),
(5.4)
o 1=%3+nm
[eADBED P i), 69
I_|=33+n)
S[HEED ] i e, 69
S
[ DBED 1 ey, 6)
L= Li+m
- - [2ED o ra-n). 69

The metaplectic representation of SU(1,1), has been
considered, explicitly or implicitly, by many authors, '®*2 the
most extensive work being due to Sternberg and Wolf.% Let z
be a complex variable; then the above operators can be real-
ized as

h=Yd/d2)+ 4, 1, =(@i/2)7,

_ = (/2@ ¥/dD), (5.9)
G =332, q_,, =le”"4d /dz). (5.10)
A simple calculation veriﬁes thatL?= — 3, K?>= — Llin-

249 J. Math. Phys., Vol. 22, No. 2, February 1981

cidentally this is the minimum possible value of K, for any
star representation of Osp(2,1)}, so only the metaplectic re-
presentation can be realized in this way.
The states of the representation can be realized in terms
of powers of z as follows:
n.2n+1

'z
— 33 = —_— 5.11
| 4’4_+_n> [217,(2’1_’_1)!]1/2 ( )
fin+3/2) 72n
= Li+n)= (5.12)

[27(2n)] "2’
where the constants of proportionality have been chosen to
exactly correspond to the actions of the operators as given by
Eq. (5.1)(5.8).

In this realization, the star conditions /§ =/, /7,

= —1,,4"\,, = — gz, reduce to the Fock condition
(d /dz)" = z. The inner product on the ring of polynomials in
z for which the Fock condition is satisfied, and with respect
to which the states | — 3,3+ 1), | — 4, 1 +n),n=0,1,2,..
are orthonormal, is given by

( i a,z, i b,z’) =2 i stab,.
=0 s=0

s =

(5.13)

This inner product can be expressed as an integral in
more ways than one. Sternberg and Wolf ® realize the meta-
plectic representation in terms of the space # of all holo-
morphic f;:C—C such that § | f(z)|? exp( — |z]?) dA (2) < w0,
where A is Lebesque measure on C. Then the inner product
which corresponds to (5.13) can be expressed as

(fg)=2 J F@8@ exp(— |2|?) dA @).

An alternative method of expressing the inner product
is as follows. Let I" be the unit circle with origin as center in
C, and for any f:I'—TI", denote by L, the Laplace transform of

/- Denote by #” the space of all f'such that ¢ - L,(2)f(z) dz
< . Then the inner product on 5 which corresponds to
(5.13) is

(5.14)

(f8)= —i$ LD g@)dz.

Clearly in this definition of 7#” and the inner product, I"
could be replaced by any smooth contour in C which encir-
cles the origin and does not intersect itself.

We see that the two component I.R.’s of SU(1,1) con-
tained in the metaplectic representation of Osp(2,1) are sup-
ported by the subspaces of # consisting of, respectively,
even and odd functions of z. This is just a particular example
of the more general result of Sternberg and Wolf & for the
metaplectic representation of Sp(#) quoted in the introduc-
tion to this paper.

In a following paper the star representations of the cen-
tral extension of the semi-direct product Lie algebra
SU(1,1),, T2 will be classified. There we shall find one LR.
which can also be realized in terms of the metaplectic
representation.

(5.15)
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Separable systems of coordinates for the Helmholtz equation 4, ¥ = E¥ in pseudo-Riemannian
spaces of dimension d have previously been characterized algebraically in terms of sets of
commuting second order symmetry operators for the operator 4 ;. They have also been
characterized geometrically by the form that the metric ds* = g, (x)dx'dx* can take. We
complement these characterizations by a group theoretical one in which the second order
operators are related to continuous and discrete subgroups of G, the symmetry group of 4,,. For
d = 3 we study all separable coordinates that can be characterized in terms of the Lie algebra L of
G and show that they are of eight types, seven of which are related to the subgroup structure of G.
Our method clearly generalizes to the case d > 3. Although each separable system corresponds to
a pair of commuting symmetry operators, there do exist pairs of commuting symmetries 5,5, that
are not associated with separable coordinates. For subgroup related operators we show in detail

just which symmetries S,,5, fail to define separation and why this failure occurs.

PACS numbers: 02.20.Qs

1. INTRODUCTION

The purpose of this article is to investigate the relation-
ship between separation of variables in the Helmholtz equa-
tion for a pseudo-Riemannian space and the subgroup struc-
ture of the invariance Lie group of the equation. The article
thus brings together the results of three different research
programs that have been actively pursued during the past
few years. These are (i) a systematic algebraic approach to
the separation of variables in p.d.e.'"'®; (ji) the classification
of Lie subgroups of Lie groups'+'*-2*; (iii) applications of dis-
crete subgroups of Lie groups.”**}

Historically, the approach to separation of variables has
been in terms of Riemannian and differential geometry.>-*
In the algebraic approach'"'® for a d-dimensional manifold
the Helmholtz equation

4,¥ =E¥(x) (1.1

is considered, where x = (x,,x,,...,x,;) is a local coordinate
system and 4, is the Laplace-Beltrami operator on the
manifold. It is assumed that Eq. (1.1) has the Lie symmetry
group G. Its Lie algebra L consists of first order linear opera-
tors X satisfying [4,,X ] =0, and we choose a basis
{X\,...X, ] for L. Separable coordinates for Eq. (1.1) are as-
sociated with (d —1)-tuplets of commuting second-order
symmetry operators {S, | for 4,. A classification of the sets
of operators { S, | into orbits under the action of G provides a
classification of separable systems of coordinates. The sep-
arable functions

v = [[£&) (12)

i=1

“Supported in part by the National Research Council of Canada, the Min-
istere de ’Education du Gouvernement du Québec and the National Sci-
ence Foundation.
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are the common eigenfunctions of the operators A, and S,
(I<a<d —1).

There are some puzzling aspects to the algebraic ap-
proach. First of all, while there is a mechanical procedure for
computing the symmetries {.S, } from a separable system of
coordinates, the precise relationship between the (S, ] and
the subgroup structure of G has remained unclear. Further-
more, there exist commuting symmetries {S,, ] that do not
correspond to any separable coordinates at all! The discov-
ery of practical criteria to determine precisely which com-
muting symmetries lead to variable separation remains one
of the most important problems in this theory. Here we show
for d = 3 the relation between the subgroup structure of G
and the coordinate systems yielding separation of variables
for the Helmholtz equation on the manifold. (This analysis
clearly generalizes to the case d > 3.) Furthermore, for sub-
group related operators {S,, } we show in detail which sym-
metries fail to define variable separation and why this failure
occurs.

Section 2 is devoted to the general theory. We show that
separable coordinates fall into different classes, depending
on how many of the operators in the set |S, ] are squares of
the linear operators X (these correspond to Abelian sub-
groups of G ), how many are invariant operators of nonAbe-
lian Lie subgroups, and how many are invariants of discrete
subgroups. In Sec. 3 we treat three-dimensional manifolds of
constant curvature in some detail.

2. GENERAL THEORY

Let 4, be the Laplace-Beltrami operator on a d-dimen-
sional pseudo-Riemannian manifold with metric
ds* =3¢ g,dx'dx, i.e.,

i i)

A,¥= Y g 3.9y, 2.1
i
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where g = det(g;;), d, = 3/9x', and 2,g"g;, = 6).. The Helm-
holtz equation for this manifold is

AW =EV, 2.2)

where E is a nonzero constant. In Refs. 17 and 18 the possi-
ble coordinate systems that permit separation of variables
for the Helmholtz equation have been classified in the cases
d = 2,3,4. The classification of separable types is closely re-
lated to the symmetry algebra of Eq. (2.2). A first order sym-
metry operator X for Eq. (2.2) is an operator

d
X= 2 i (xj)ai ,
i=1

such that [X,4, ] = 0, where [+,] is the usual commutator of
differential operators. (This is equivalent to the assertion
that {£,} is a Killing vector.) The set of all first order symme-
tries of Eq. (2.2) forms a Lie algebra L with
dimL<d (d + 1)/2.If {x',...,x* } is a separable system for Eq.
(2.2), we say the variable x' is ignorable provided X = d,eL,
i.e., provided the tensor g;; in these coordinates is indepen-
dent of x'.

In this paper we restrict ourselves to the case d = 3. For
d = 3 each separable system {x',x?,x*} is characterized by a
pair of second order differential operators {.5,,5,} such that

[$,8:1 =0, [S,,4,]=0, j=1.2. 2.4
Here the corresponding separable solutions
¥ = A (x")B (x*)C (x*) of Eq. (2.3) have the characterization

Sv=44, j=12, 2.5)
where the eigenvalues A; are separation constants.

As shown in Ref. 17 the separable systems are of eight
distinct types: (I) Three ignorable variables:

ds® = (dx') + (dx*)* + e(dx*)e = + 1,

$=8.,5=4a. 2.6)
Here, L contains a three-dimensional Abelian subalgebra
generated by L, = aj, j=1,2,3, and the manifold is flat.
Note that the operator S; = 3 is automatically diagonalized
in this case. (II) Two ignorable variables:

(2.3)

3
ds’= ¥ g,()dx'dx, S§,=31.5,=6}.

=1

Q.7

Here, L contains a two-dimensional Abelian subalgebra 4
generated by L; = d,, j = 1,2. The coordinates may be non-
orthogonal. The subalgebra 4 must be maximal Abelian
since otherwise the system would be type 1. (IIT) One ignora-
ble variable: This case splits into four subtypes, for each of
which L contains the operator L, = d,, and we have S| = d;:
(III,) Centralizer coordinates (orthogonal):

ds® = (dx")’ + (02(x?) + o3 [(@x°) + e(dx?)]

(2.8)
S, = _ [0:35 —€0,03] .
0+ 03
(IIL,) Centralizer coordinates (nonorthogonal):
ds* = o,[03(dx?)? + 2dx'dx* + (dx*)],
2.9

S, =085 —o,0% .
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(I11,) Subgroup coordinates:

ds® = 0,(dx") + 0,0,[(dx'y + e(dx’)],
(2.10)

Si= ~ (@ +ed).

)
(I11,) Generic type III coordinates:
ds* = (0, + 0,)[dx*? + €,(dx*)*] + €,0,0,(dx")?

1
S, = 62(—~—-— —I—)cﬁ + I (0395 — €,0,3%) (2.11)
(o2 T- O, + 0,
1 0,05 €,0,0;
/2 (3232_ 12383), 6= +1.
(o2 + 03) o, 03

(IV) No ignorable variables: Here there are two subtypes:
(IV,) We have

ds’ = 01 (dx'y + 0,(0, + 03) [(dx°) + e(dx?)],
(2.12)

L @+ ed)Si= — (08 — o).

0+ 0, o, + 0,

S, =

(IV,) Generic coordinates:

ds’ = (o) —0y)lo, — 03)(dx1)2 + (o, — aylo, — 0'3)(‘1"2)2

+ (o3 — o))l — a)dx’), (2.13)
S, = O, + 05 2 o3+ o, 2
(o) — Uz)(@% - U)l) (0 — 030, —02)
(o, + 0, 2
F ooy
S, = ok 2 030, &
(01— 0y)(03 — ) (0, — 03}, —0y)

€(0,03) 32
(03 — o) oy —03) !

In all of the above expressions 0; = o,(x’). We refer to
systems III, and IV, as “generic” since all other systems of
types IIT and IV are degenerate cases of these two. It is only
for Minkowski space E, | that all eight separable types actu-
ally occur. As shown in Ref. 17, types I, III,, and III, do not
appear for space of nonzero constant curvature.

In this paper we are concerned with a purely group
theoretic characterization of the various separation types.
To successfully characterize a separable system {x/} for Eq.
(2.2) in terms of the symmetry algebra L it is necessary that
the defining operators S,S, for the system belong to the en-
veloping algebra of L. If this is so, we say that the coordinates
{x/} are of class I; otherwise they are of class I1. Reference 17
contains a derivation of all class I coordinates for all types
except IV,.

We now describe a general group theoretic procedure
for characterizing all class I coordinates associated with the
Helmbholtz equation on a three-dimensional Riemannian
manifold with symmetry algebra L. The validity of this pro-
cedure will be demonstrated using the results of Ref. 17 but
will also be illustrated by examples in 3. The procedure is as
follows:

First we determine if L contains a maximal Abelian
subalgebra of dimension 3. This will be the case if and only if
the manifold is flat and corresponds to type I (Cartesian)
coordinates. Then we find the (conjugacy classes of) maxi-

+
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mal Abelian subalgebras of dimension 2. Each such subalge-
bra determines a type II system.

Next we determine the conjugacy classes of one dimen-
sional subalgebras of L. Let X be arepresentative from such a
class and let cent(X) be the centralizer of X in L. There are
four possibilities:

Type I11;: cent(X) = {X } & (cent(X )/{X }), cent (X') non-
Abelian: (2.14)
LetL, = (cent(X )/{X })anddecomposethespaceof second
order elements in the enveloping algebra of L into orbits
under the action of the normalizer Nor(X ) of X in G. Every
type II1, system with §, = X ? has the property that S, is a
representative from one of these orbits. Two representatives
from the same orbit correspond to equivalent coordinates.

Type I11,: cent(X )# { X } @ (cent(X )/{X }), cent(X ) non-
Abelian: (2.15)
Decompose the space of second order elements in the envel-
oping algebra of cent(X ) into orbits under the action of
Nor(X ). Every type I11, system with.S, = X ? has the proper-
ty that .S, is a representative from one of these orbits. Class I
coordinates of this type arise only for flat space.

Type I1I,: Subgroup type coordinates: 2.16)
Given the one-dimensional subalgebra X, find all subalge-
bras A of L such that (1) A DX (properly), (2) 4 is non-
Abelian, and (3) 4 has a second order Casimir operator S,,
not equal to 4, or to a linear combination of 4, and the
square of an element of L. Every type III, system is of the
form S, = X2, §,.

Type 111,: Generic type III coordinates: 2.17)
Let X be as above and determine the space S of all second
order elements Y in the enveloping algebra of L such that
[X,Y] = 0. Decompose S into orbits under the adjoint action
of Nor(X ) and let S, be a representative from such an orbit.
Every type 111, system is of the form S, = X 2,8, such that
this commuting pair has not already been included under
types I-II1, listed above.

The remaining two types characterize all pairs S,,S, for
which neither operator is a perfect square:

Type IV,: Semisubgroup coordinates: (2.18)
Consider the three-dimensional subalgebras A4 of L with
properties (2) and (3) discussed above in II1;. Take S, to be
the Casimir operator of such an 4 and S, to be a second order
element in the envoloping algebra of 4. (Operators .S, and S }
are considered equivalent if they lie on the same orbit under
the adjoint action of the maximal group of symmetries
whose Lie algebra is 4.) Every type IV, system is of the form
S8,

Type IV,: Generic coordinates: (2.19)
This is the generic case. Here S,.5, are simply a pair of com-
muting second order symmetries in the enveloping algebra
of L, classified into orbits under the action of the symmetry
group G, and such that this pair has not already been includ-
ed under types I-IV, above.

For types I, II, and III; both operators S, and S, are
invariants of Lie subgroups of G. For I11,, ITL,, II1,, and IV,
only S, has this property; for IV, neither of the operators is
directly related to a Lie subgroup. The group G also contains
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discrete subgroups and is itself not necessarily connected.
We shall see below that those operators S, that are not invar-
iants of Lie groups can be characterized by the fact that they
occur as invariants of discrete subgroups of G.

Now we demonstrate the validity of our group theoretic
classification of defining operators for class I separable co-
ordinates on a three-dimensional Riemannian manifold.
First we note that every orbit of two-dimensional vector
spaces, each space composed of mutually commuting second
order elements in the enveloping algebra of L, belongs to
exactly one of the eight classes listed above. Thus, it will be
sufficient for us to show that the defining operators 5,5,
corresponding to a class I separable system of a given type
(2.6)—(2.18) themselves have the group theoretic character-
ization for the corresponding type listed above. For this we
draw on the results of Ref. 17.

The group theoretic characterization of types I and I1 is
obvious.

(I11,) Centralizer coordinates (orthogonal): It follows
from the results of Sec. 5 in Ref. 17 that the separable system
(2.8) is class I precisely when

ds? = (dx')? + dw*(x*,x%),
where dw? is the metric for a two dimensional Riemannian
space of constant curvature [with Lie algebra L ' isomorphic
to one of e(3), e(2,1), 0(4), o(3,1), 0(2,2)] and S, a second
order element in the enveloping algebra of L ' which is not a
square. Here LD {X } @ L', where X = d,, so the pair.$,,S, is
of the form (2.14).

(I11,) Centralizer coordinates (nonorthogonal): Ac-
cording to Ref. 17, coordinates (2.9) are class I only for flat
space and the possibilities are listed in Sec. 4 of that paper.
One can directly verify that in each case the operators 5,5,
are of the form (2.15).

(II1,) Subgroup coordinates: In Ref. 17 it is shown that
coordinates (2.10) are class I precisely when

ds’ = o;(dx*)* + 03do*(x' x?),

where dw? is the metric for a two dimensional space of con-
stant curvature, X = d, is a Lie symmetry of dw?, and S, is
the Laplace-Beltrami operator for this two-dimensional
space. With X = 4,,8, = X ? it follows that S,,S, is of the
form (2.16).

(I1L,) Generic type III coordinates: According to Ref.
17 coordinates (2.11) are class I if and only if the manifold is
a space of constant curvature. These coordinates cannot be
type I11; because, as is straightforward to verify for spaces of
constant curvature, the subalgebras A4 in the definition of
type III; must have Casimir operators that are Laplace-Bel-
trami operators on two-dimensional manifolds. The opera-
tor S [Eq. (2.11)] is clearly not a Laplace~Beltrami opera-
tor. The coordinates cannot be type III, because among the
symmetry algebras for spaces of constant curvature only
€(2,1) contains an element X such that cent(X )# {X ] @ L,
and cent(X') is non-Abelian. For this case all corresponding
orbits of operators S, in the enveloping algebra of cent(X)
were computed in Ref. 17 and the coordinates were shown to
be of the form (2.9). If the coordinates (2.11) were type III,,
then the manifold would be flat, because among the symme-
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try algebras for constant curvature spaces, only e(3) and
¢(2,1) contain elements X such that cent(X) = {X @ L,
with cent(X ) non-Abelian. These cases are classified in the
following section and shown to correspond to coordinates
(2.8). Thus, class I coordinates (2.11) correspond to opera-
tors of the form (2.17).

(IV,) Semisubgroup coordinates: It is shown in Ref. 17
that coordinates (2.12) are class I provided

ds’ = 01 (dx'y + 0\de’ (X’ x%)

where do” is the metric for a two-dimensional subspace of
constant curvature. It is clear from Eq. (2.12) that S, is the
Laplace—Beltrami operator on this subspace; hence, the Ca-
simir operator for the symmetry algebra L ' of the subspace,
where L. 'C L. Since S, is defined on the subspace and com-
mutes with S, it must be expressable in terms of second
order elements in the enveloping algebra of L *. Thus, opera-
tors S,,S; are of the form (2.18).

{IV,) Generic coordinates: Class I coordinates (2.13)
cannot be of operator types I-III since we can see by inspec-
tion that one cannot construct from a linear combination of
S, and S, an operator which is a perfect square of a Lie
symmetry. The operators cannot be of type IV, because the
only possible choices for the algebra A4 are e{2), ¢{1,1), o{3),
0(2,1) acting as transitive symmetry algebras on a two-di-
mensional submanifold. It follows in these cases that the
Casimir operator of A4 is the Laplace-Beltrami operator on
the submanifold, and hence that S,,5, can be written in the
form (2.12) for appropriate coordinates. Since a set of or-
thogonal separable coordinates is uniquely determined by its
defining operators S,,S, (see Ref. 34), these coordinates must
be of the form (2.12), a contradiction. Hence, class I coordi-
nates (2.13) correspond to operators (2.19).

The above results hold for all Riemannian manifolds
admitting class [ separable coordinates, and there are an infi-
nite number of such manifolds. However, of special interest
are the manifolds of constant curvature, since they have the
property that all separable coordinates are class L. In the
following section we shall study the symmetry algebra L of
each of the three-dimensional constant curvature spaces to
see in detail how the subalgebra structure of L corresponds
to the separable coordinates I-IV,. We provide a complete
orbit analysis for all pairs of commuting operators that cor-
respond to proper subalgebras of L, i.e., for all operator types
except IV,. In a number of cases we will uncover orbits of
type III, operators that do not correspond to variable
separation.

3. THREE-DIMENSIONAL SPACES OF CONSTANT
CURVATURE

In this section we illustrate the general theory by con-
sidering all spaces of constant curvature.

A. Group E(3)

The algebra e(3) of the group E(3) is generated by the
infinitesimal rotations L, and translations P;, satisfying the
commutation relations

[LgyLk ] =€l [L P | =€ P [PnPk] =0. 3.1
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It has two Casimir operators, namely,

A=P =P} +P;+P3} and

A4'=L-P=LP + L,P,+ L;P,. (3.2
For the representations considered here we have A’ =0 (a
space of scalar functions in Euclidean space).

The subalgebras of e(3) have been classified into orbits
under the action of E(3), e.g., in Ref. 19, where the results are
presented in a diagram. Let us use this classification to inves-
tigate different types of separable coordinates for the equa-
tion AY = EV, following Sec. 2.

\. Three ignorable variables

The algebra e(3) has precisely one class of maximal Abe-
lian subalgebras (MASA) of dimension 3 represented by
{ P,,P,,P,}. This provides Cartesian coordinates for which

S, =P i=123% 4=5+5+S,. (3.3)

Il. Two ignorable variables

The algebra e(3) has precisely one class of MASA of
dimension 2, represented by { L,,P,;}. This provides cylindri-
cal coordinates, for which

S, =L, S,=P. (3.4)

. One ignorable variable

To find coordinates of type 111, and II1, we must con-
sider separately a representative X of each class of one-di-
mensional {Abelian nonmaximal) subalgebras and find its
centralizer centX in e(3). We are only interested in non-Abe-
lian centralizers. The only type of element of e(3) having a
non-Abelian centralizer can be represented by P;, where

cent(:Py) = [ P} @ [Ly,PyP} , (3.5)

i.e., centP, splits into a direct sum of P, and

{cent( P3)}/{ P;}. Hence, no III, type coordinates exist in
this case. Type III, coordinates (orthogonal centralizer type
coordinates) are obtained by putting

S, =P, (3.6)
S, =aLl} +b(Ly P, + P\L3) + (L3 P, + P,L,)
+d{P} —P3)+2(PP)+f(PT+P}), (37

i.e., S, is the most general symmetric second order operator
in the enveloping algebra of e(2) = {L,,P,,P,}. We must now
classify the operators (3.7) into orbits under Nor( Ps), i.e., the
normalizer of P, in E(3). This is a well-known problem.""*
These orbits can be represented by

P3,LY, LY +a(P? —P2%),(a>0), and L,P, + P,L,.(3.8)

The first two operators should be omitted, since they are
squares of generators and lead back to the case I or I1. The
last two operators provide type III, coordinates, namely,
elliptic cylindrical and parabolic cylindrical coordinates,
respectively.

Type 111, coordinates (subgroup type) are obtained by
taking a representative X of each orbit of generators of ¢(3)
and finding all proper subalgebras of e(3) that properly con-
tain X, are non-Abelian, and have a second order Casimir
operator, not equal to A = P? or to a linear combination of 4
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and the square of a generator. The only such chain of subal-
gebras is

e(3)D0(3)Do(2),
and we have
S]:LIZH SZ:Lzy (3.9)

i.e., .S, is the Casimir operator of o(3), providing spherical
coordinates.

Type I11, coordinates are obtained by running through
all representative generators X, and for each X finding the
most general second order operator S, in the enveloping al-
gebra of e(3) satisfying {X,S,] = 0. We find a representative
of each orbit and eliminate representatives already encoun-
tered, i.e., corresponding to squares of generators, members
of the enveloping algebra of cent(X ), or Casimir operators of
subalgebras. Let us examine each case separately.

() X =L, nor Ly = {L,,P;},and

S, =aL? 4+ b(L,P, + P,L, — L,P, — P,L,)
+c(PT + P3)+dL,P, (3.10

[we have dropped the Casimir operator of e(3) from Eq.
(3.10)]. Separable coordinates (u,0,9 ) of this type satisfy

a a3 a
L= —x2 2%
o dy dx
_9x 9d I, dd (.11)
v Ix do dy o Iz
Hence, we have
ox % . 9z _, G.12)
ad P ap
The relations (3.12) imply
x =f(uv) cos®, y = f(u,v) sin®, z = h(u,v). (3.13)

The operators
S, =L} and S,

in Eq. (2.11) areinvariant under the reflection ®— — @ (i.e.,
y— —»). Since L, P, does not have this invariance, property,
we must put d = 0 in Eq. (3.10), i.e., operator (3.10) with
d #0 does not correspond to variable separation. We can
now use the translation expa s, belonging to the normalizer
of L, in E(3), to simplify .S,. For a0 we can reduce Eq.
(3.10) to

S,=L*+ (P2 4 P2), (3.14)

For ¢ > 0 and ¢ <0 this corresponds to oblate and prolate
spheriodal coordinates, respectively. If @ = 0, b #£0, we can
reduce S, to

S,=LP,+P,L,—L,P,—PL,, (3.15)
corresponding to parabolic coordinates.
If a = b = 0 we return to type II coordinates.
(ii} X = Py; nor Py = {L,,P,P, P;}: We have
S;=aL3+b(Ls P, + PyL3) + (L3 Py + P,L;)
+dL, P, + ¢, PP, . (3.16)
The coordinates (u,v,x;) satisfy
_9 _ x93 o &
: Ix; Ix, Ix  Ox,dy  Ox, 0z
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Hence,

y =ylu,),
and L,P, changes sign under the reflection z— — z. Hence,
d = 0in Eq. (3.16} in order to yield variable separation. Simi-
larly, ¢;; = ¢, =0.

If a0, we use the normalizer of P; to reduce S, to
S, =L?% +¢c(P? — P3), corresponding to Il or III, type co-
ordinates. Ifa = 0,6 > + ¢*#0, weobtainS, = L,P; + P,L,,
corresponding to the type III,. If @ = b = ¢ = 0, we obtain
type I coordinates.

(i) X = L, + aPy; nor (Ly + aPy) = {L;,Py}: A
straightforward computation shows that in this case S, satis-
fying [X,S,] = O can be reduced to

S, = Py(bL, +cP,). (3.17)

Since L, and P, commute, a diagonalization of Py and L,
separately is equivalent to a diagonalization of any polyno-
mials in L, and P;. We thus reobtain case I

(IV) Noignorable variables: Neither of the operators S,
or S; is the square of a generator of (3).

Type (IV,): We return to the non-Abelian subalgebras
of e(3) discussed above in I11;. We take S| to be the Casimir
operator of such a subalgebra and S, some second order ele-
ment of the enveloping algebra of the corresponding subalge-
bra. These operators S, must be classified into orbits under
the group 4 whose Lie algebra is 4. Only one such case oc-
curs for e(3), namely

S, =12 S, =L? rL?, (3.18)

corresponding to spheroconical coordinates (S, is not al-
lowed to be the square of a generator).

Type (IV,): Here S, and S, are simply commuting sec-
ond order operators in the enveloping algebra of e(3). Nei-
ther of them is the square of a generator nor a Casimir opera-
tor of any Lie algebra. This is the generic case with the lowest
symmetry. The remaining coordinates ellipsoidal and para-
boloidal are of this type.

This completes the list of all 11 types of separable co-
ordinates in Euclidean 3-space.

Finally, let us discuss the question of discrete symme-
tries that further characterize some of the coordinate sys-
tems. Indeed, for coordinates of the type I11,, III,, and IV,
only one of the diagonal operators is characterized by the
fact that it is an invariant operator of a one or higher dimen-
sional Lie algebra. For coordinates of the type IV, neither S,
nor §, has this property. These operators will, in general, be
invariants of certain discrete subgroups of E(3). No operator
of the type

S=a,L.L, +b,PP,+cy(L,P, +P.L) (3.19)

is left invariant by discrete translations (unlessa,, =c, =0
and we have continuous translational invariance). We can
hence restrict ourselves to point groups and indeed to groups
of reflections in planes through the origin. Let us use X,Y,
and Z to denote a reflection of the coordinate x,p, and z,
respectively, and I,n (4,,...,4,,) to denote the Abelian group
of order 2" generated by 4,,...,4,,. By inspection we see that
the operators S; not related to Lie subgroups have the fol-
lowing invariance groups:

x = x(u,v), Z=2X3,

O<r«i,
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Li+a(P}—P)
L.P, + P,L,
LP,+PL —L,P —PL,

L+ a(P} + P3)

L} +aL? +bP?

L’ +bP} + aP? +(a+b)P§]

L3 —c*P; 4 c(LyP, + PL,+ L\P, + P,L,)
L,P + P\L, — L \P,—P,L, +c(P3 —P?) }

Thus, the operators S,,S, for each of the 11 separable
coordinate systems can be viewed as corresponding to a cer-
tain subgroup reduction of E(3) and both Lie subgroups and
discrete subgroups figure in the reductions. The subgroups
will determine the symmetry properties of the separated so-
lutions of the Helmholtz equations. In particular, the dis-
crete subgroups are often important in physical applications,
especially in the context of “symmetry adapted basis func-
tions” in molecular physics and general many body
theories.*-2%-33

The results of this section are summarized in Table 1.
We do not spell out the explicit form of the coordinates. The
ones used are listed, for example, in Ref. 38.

B. The group O(4)

Separable systems of coordinates in s, the unit sphere,
were first obtained by Eisenhart and studied from the alge-
braic point of view in Ref. 13. Let us now classify them from
the subgroup point of view. The continuous subgroups of
O(4) are listed, for example, in Ref. 20 (they were first ob-
tained by Goursat®®).

Using the isomorphism 0(4) ~0(3) ® o(3) we write the
algebra o(4) as {A4,,B,,i = 1,2,3,], satisfying
(4,4, ] = €A, [B.B:]=€wB,, [4,B,]=0.

321
The algebra o(4) has precisely one MASA [up to conjugacy
under O(4)], namely, {4;,B,}. Hence, no class I systems ex-
ist and just one class II system. The one-dimensional subal-

TABLE [. Separable coordinate systems for E(3).

I(XY),
I(Y),
IXY),

(3.20)

1(Z,X V),

:IB(X!Y)Z) )

:14(X:Y) .

r

gebrasare 4,4, + xB5(0 <x < 1),and 4; + B,. NotypeIII,
or 111, coordinates exist on s;; I1I, is excluded because
cent(4,) is a direct sum and III, is not realized because the
operators (4 5,B} + k “B2) would correspond to separation
on s, ® s, rather than s; (the III, and III, type coordinates
only exist on flat three-dimensional manifolds). The only
non-Abelian subalgebra of 0(4) with a second order Casimir
operator that is not a Casimir operator of o(4) is {4, + B,,
A, + B,,A; + B;}. This provides 111, coordinates for

Sl = (Al + 31)2 + (Az + B2)2 + (A3 + Bs)z’

Sy =(4;+ By)*, (3.22)
and type IV, coordinates for
S\ =, + Bl)z + (4, + 32)2 + (45 + Ba)z ’
S;=UA, +B)Y +k¥d,+B,)? (0<kZ<1). (3.23)

Type 111, coordinates are obtained from 4, + B, only. The
operator S, commuting with 4; + B; can be reduced to
S, =A4,B,+ 4,B, + a4;B,, a>0,a#1
and we distinguish between0<a<land l<a .

Type IV, coordinates were discussed above and type
1V, also occurs."?

Notice that only pairs of operators S,,S, that are invar-
tant under parity II, i.e.,

TL:(x x5, X3, X )= — Xy — Xo, — X3,X4) 3.24)
lead to separable coordinates on s,, as was shown in Ref. 13.
Here,

x4 xI4xi4+xi=1.

Type Coordinates Diagonal operators Subgroup chain
I Cartesian PP, P, T(3)
11 Cylindrical L,,P, O2ye T(1)

III, Elliptic cylindrical P,L> +a(P; —P2) a>0 E(2)® T(1) D1,(X,Y)® T(1)
Parabolic cylindrical P,L.P, + P,L, EQ)e T(1)DI,( Y)e T(1)
ITY, Spherical L,L?+Li+L: 0(3)D0(2)
I, Parabolic LyL,Py+ PL,— L,P, — P,L, 0Q) e L(X,Y)
Oblate spheroidal L,L?+ L3+ L%+a(P?+P) a>0 0oQ)e 1(Z,XY)
Prolate spheroidal L,L?+L5+L2>—a(P}+P3) a>0 0QR)e 1(Z,XY)
1V,  Spheroconical L?+ L3+ L3LY+rL] O<r<i 0(3)DL(X.Y,.Z)
1V, Ellipsoidal LI 4alL} +bP3, a>b>0
LY+ L2+ L3+ bP}+aP? +(b+a)P? I,(X,Y,Z)
Paraboloidal L} — #PY 4 o(L,P,+ P,L, + L,P, + P,L,),
L,P,+PL,—LP,—PL, + P} —P%) ¢>0 L(X,Y)
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TABLE II. Separable coordinate systems on s;.

Type Coordinates Operators Subgroup reduction
11 Cylindrical L31J; O(2)x0Q2)
II, Spherical LY+ L4 LL? 0(3)20(2)
III, Elliptic cylindrical I and II LP+L ¢ L 4ol —T3)L? (a#0) 0(Q2) X (X, X0, X, X,)
IV,  Spheroelliptic L2+ L34+ L3LY+rLY (O<r<l) 0(3)DD,

1 — b 2 3 1 —b
1V, Ellipsoidal LP—grqg 228X 0 e gy 1Ha29 g2 g2y p,

a+b— a4 b1

b—a— a—b

Li+Ji4+ ————(LI-JH+ L} +J3
VS ey Y b(a~1)( SRRl
ab_a-b-D) ;23 (<bea

bla—Da+b-1)

The results of this paragraph are summarized in Table
II, together with the discrete subgroup properties of each
system. Again I,, (4,,...,4,,) will be a group of reflections in
hyperplanes through the origin with, for example, X reflect-
ing the Cartesian coordinate x only. We write the invariant
operators S, and S, in terms of L, = 4, + B, and
J; = A, — B,, rather than 4, and B, directly (the J, do not
constitute a subalgebra).

C. The group 0(3,1)

The subalgebras of o(3,1) have been classified! under
the action of O(3,1) and the results are reproduced in, for
example, Ref. 20.

The algebra o(3,1) is generated by the rotations L, and
boosts K, satisfying
[Li’Lj] = EijkLk’[Li’Kj] = fiijk»[Ki’Kj] = - eijkLk .

(3.25)
The Casimir operators are A = L — K”and 4 ' = LK (we
have 4’ = 0). All separable coordinates for O(3,1) hyperbo-
loids were obtained by Olevskii®®; the pairs of commuting
operators S| and §, corresponding to these 34 coordinate
systems are also known. '

The algebra o(3,1) has two MASA. Both are two-di-
mensional, namely,

(LK.} and {L, + K,,L, — K} .

We hence have no type I coordinates and two type II coordi-
nate systems.

The one-dimensional subalgebras are {L,}, {K,},
(L, + K}, and {L, + aKya>0}. None of these have non-
Abelian centralizers, so we obtain no 111, or IT1, type coordi-
nate systems. Subgroup type coordinates III, are obtained
from the subgroups O(3), O(2,1), and E(2). The correspond-
ing pairs of operators are

W LDKT+K; —LLL)K? + K3 —LYKY),
(3.26)
(Ki+K3—L3,(K, +L,)*) and
(Ky+ Ly’ + (L, —K)%LY).
Now let us consider 11, type coordinates:
()8, = L3, nor(L,) = {L;,K;}: The most general sec-
ond order operator S, commuting with L, can, after linear

combinations with 4,4 ’, and L 7 have been accounted for, be
written as

257 J. Math. Phys,, Vol. 22, No. 2, February 1981

S, =a(K} +K;+ L +L3)+b&K,L, + LK,
—K\L,—L,K)+cK?} +dL.K,. 3.27)

The transformation expa K, induces a hyperbolic rotation
between the first two terms. Hence, if [a| < | |, we can trans-
form a into zero; if |a| > |b |, we can transform b into zero;
and if |a| = |b |, the first two terms reduce to

(L, + K,)* + (L, — K))* In these coordinates we have

L, = 3/9¢ and the term L,K; will be odd under the transfor-
mation ¢— — ¢ which shouid leave S, invariant. Hence,

d = 0.1f |a| = |b |, K, can be used to scale the value of a (and
b ) with respect to c. Using expaK,, parity, and linear combi-
nations with 4 we can finally reduce S, to one of the forms:

K{+K} +aKiLK,+K,L,—L,K,~K,L, +aK?
(@>0) (3.28)
L+ K) + (L, —K ) +eK} (e= +1).
In the first case we distinguish between the regions
O<a<l,l<a<w,and — w0 <a<O.
(i) S, = K3, nor(X;) = {L,,K,}: Imposing
[K%,S,] = 0 and using linear combinations with 4,4 , and
K% we have
S;=alLi —K} —L; +K})+ b L+ L,L, +KK,
+KK)+celL? —K5+L2—K3)+dL.K,.
(3.29)
In these coordinates we have K = d/98 and L,K,
changes sign for B— — f3. Hence, d = 0. The operator
expalL, will rotate between the first two terms. Hence, we

can always rotate b in zero (the case a®> + b ? = 0 would lead
back to type II coordinates). We thus obtain

S;=Ki—Li+al}—K3), O<laj<l  (3.30)
and we distinguish between 0 <a <1 and —1 <g <0.
(iii) Sl = (Kl + L2)2>
nor(K, + L,) = (K3,K + L,,K, — L }:
(3.31)

The operator S, satisfying [K, + L,,S,] = 0 can be written
as .
S, =G(K% +K§ —L%)-}-b [(K, + L)L, + LK+ L,)
+ K3(K; — L) + (K, — L)K,]
+c[(Ky — L)’ + (K, + L,)]
+d (K, +L)K,—L,)).
(3.32)
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The separable coordinates (u,v,t ) will be such that

K, +L,=43/d,. The term (K, + L,)(K, — L,) will be odd
under the reflection +— — ¢; hence, d = 0. If a #0, we put
a =1 and use expa(K, — L)) to transform 0. Further
expfBK, will scale ¢ with respect to a. We obtain

S, =Ki{+K; ——L% +€[(K2—L1)2+(K1+L2)2],
e= +1. (3.33)

(c = Ois excluded, since it would lead to type 111,.) Ifa = 0,
b #0, we put b = 1 and use expa(K, — L,) to transform
¢—0. Finally a = b = 0 is excluded, since it would lead to
type IL.

(iv) S, = (L; + aK3)?, nor(L; + aK;) = {L;,K5}:
(3.34)

The most general second-order operator commuting with
L; + aK; (a+#0) can be reduced to, for example,
K.(bL, + ¢K5) and hence leads back to type II coordinates.

Type IV, coordinates are obtained similarly as type 111,
ones. Indeed, we consider the subgroups O(3),0(2,1), and
E(2) of O(3,1) and take S, as the corresponding Casimir op-
erator. The operator .S, will then be a second-order operator

in the enveloping algebra of 6(3), 0(2,1), or e(2), respectively.
These operators must be classified into orbits under O(3),
O(2,1), or E(2), as the case may be, and orbits corresponding
to squares of generators must be excluded. For O(3), O(2,1),
and E(2) we obtain one, six, and two orbits, respectively.'”

Finally, we are left with the generic case IV,. The opera-
tors §, and S, are such that neither of them is the square of a
generator or a Casimir operator of a subgroup of O(3,1) [nor
is it conjugate under O(3,1) to such operators).

A further subclassification is obtained by considering
discrete subgroups of O(3,1) leaving the individual pairs of
operators invariant we omit all details here but summarize
the results in Table III, where we give the invariant opera-
tors, the subgroup reductions, and identify the coordinate
system by the number it carries in Refs. 14 and 36.

D. The group 0(2,2)

We shall consider this case in somewhat less detail than
the previous ones. Separable systems of coordinates on the
hyperboloid x? + x3 — x5 — x; = 1 were discussed in Ref.
16. The subalgebras of 0(2,2) were classified in Ref. 20 and a

TABLE III. Diagonal operators and corresponding subgroup chains for separable coordinate systems on the O(3,1) hyperboloid.

Type Diagonal operators Subgroup chain

I LiK3 0(2) 2 O(1,1)
(L, + KP (L, — K\ T(2)

mI, L7+L3+L3L; 0(3)20(2)
K*+K:—LL:? 0(2,1)20(1,1}
K} +K3—L}K? 0(2,1)30(1,1)
K} + K3 — LK, + LyP o2 1121
(L — Ko + (L, + K\\.L3 E2)20(2}

I, L3,Ki+K:+aeK;3 O<a<ll<ac<o

or —w<a<0 O2)x14(Z,T)

LiLK,+K,L, —L,K,—KL,+ak? az0 O2) X L,(X,Y)
LAL, + Ko + (L, — K\ + €K 3 €= +1 OR2)X14X,Y)
KiK!—L3i+4all?—K32) O<a<lor —l<a<0 O(1,1)X1,(X,Y,Z,T)
(Ky+ LYK + K3 — L3 +€[{K,~ L) + (K, + L)) e=+1 T(1) X L(X,Y)
Ky + Lol (K, + L)Ly + LyK, + Ly} + K5(Ky — L) 4+ (K, — Ly)KS T(1) X 1,(X)

WV, L}+L3+4+L3L}+al? O<a<l OR) D1 X, Y,Z,T)
K*+K3—L}L?—akK} a< —1lor0<a 02,1)D1,(X,Y,Z,T)
K} + K5 —L3K] +aK,L; + LK) O<a OQ,1)DL,(Y,Z)
K} +K5 —LiLi + (LK, + KoL) 0(2,1)2L(Y,Z)
K]+ K3 —L3K3 + (LK + KLy 0(2,1)D1{Y,.Z)
K+ K} —L3KK, + KK, + KoLy + LK, 0{2,1)D1,(Z)
(Ky+ LK, — L) LS + (K + Ly EQ2)DL,X.Y)
(K + Lo + (Ky — L\ Ly(K,y + Ly) + (L + K))Ls E(2)D1,(X)

IV, M?4+bM24+aM?—(a+b)K? —(@+ 1)K} —(b+ 1)K},abK} +aK3 +bK35,  l<b<a L(X,Y,Z,T)
M2 —aK? —bK: —(a+b)K: +{a+ )M3 +(b+ 1M}, 1,X,Y.Z,T)
abK? —aM? — bM?, l<b<a
2aM? — @+ 1)K — M%) —alK2 — M%) — b{K.M, + MoK, — MoK, — K M), L(Y,Z)
(@ +bIM? —a(K: — M3+ b(K:M, + M,Ky), abeR
(K, + M) + (K, + M + @+ DK + K3 — M3 +alM: ~K3), L(Y,Z)
(Ky+ M,)* —alK, + M) +aK?, l<a
(K, + M)+ (Ky+ My —(a+ 1)K} — M3 + K5 —alK; —M3), L(Y.Z)
(K; + M, — alK, + M) —aK ] l<a
(K, + My — (K + M, — (@ — 1)K} — M3 + K3 —alM: —K?), (Y. Z}
(K 4+ Mif — alK; + M) — aK '} O<a
M — K} =M — (M, — K)f — MM, ~ Ky) — (M, — K3)M,, L(Y.Z)
(Mz - KJ)Z - K\(Kz - M}) - (Kz - Ms)Kl
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FIG. 1. The O(2,2) conjugacy classes of subalgebras of 0(2,2). The param-
eters take the following real values:

€= + 1,0<|c|<1,d>0,e>0, f#0,0 < |g|<1,0 <k < 1. A line connects
each algebra with its maximal subalgebras. A solid (broken) line indicates
an inclusion for all (some) values of the parameters involved.

diagram of them is given in Fig. 1. We use the isomorphism
0(2,2) ~0(2,1) ® 0(2,1) and write the algebra 0(2,2) in the
form {4,,B;}:

[Al»Azl = —Aa’ [A3>A1] =A2, [Az»As] =A1 ’
[BnBz] = - Bz, [33’B1] = Bz’ '[Bz,Ba] = Bl »
[4,,B,]=0, k=123

(4, and B, are the compact elements).

Let us discuss the individual classes of coordinates.

Type I: The algebra 0(2,2) has no MASA of dimension
3, and hence this class does not occur.

Type II: There exist six different MASA of dimension 2,
each corresponding to a different system of coordinates. Sys-
tems I1, 12, and I3 of Ref. 16 are orthogonal and correspond
to the subalgebras {4,,B;1, {4,,8,}, and
{A, — A4,,B, — B,}, respectively. Systems 14, IS, and 16 are
nonorthogonal and correspond to the subalgebras
{A43,B, — B3}, {4,,B, — B;}, and {A,,B,}, respectively.

Type 111, and 111,: These do not occur since the centra-
lizers of all one-dimensional subalgebras are either Abelian,
or reductive of the type

{4:] & {B,,B,B,}, {4,} ® [B,B),B;},

or {4, — 43} @ { B,,B,,B5} .

These do not lead to separable coordinate systems on the
considered hyperboloid [they would on the direct product of
two O(2,1) hyperboloids].

Type II1,: The algebra o(2,2) has three non-Abelian su-
balgebras with second order Casimir operators distinct from
the Casimir operators of 0(2,2). These are

(D) e(1,1):{4;, — By,4, — A3,B, — B3}
[here S| = (4, — B,)",S, = (4, — A,)(B, — B;) leads to one
coordinate system],

(i) o(2,1):{4, + B,,4, + B,,A; + B,} ,

(i) o(2,1):{4, — B,,4; + B,, 45 — B} .
Each of the 0(2,1) subalgebras leads to three different sub-
group type coordinate systems.

Type I11,: The one-dimensional subalgebras providing
1, type coordinates are {A4; + B}, {45 — B,}, {4, + B,},

(3.35)
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{A,— A; + B, — B;},and {4, — 4; — B, + B,}, leading to
two, two, nine, three, and three systems, respectively.

Type IV,: The same subalgebras e(1,1) and o(2,1) as in
case I11, lead to these “semisubgroup” type coordinates, of
which there exist 8 +6 +6 = 20.

Type IV,: The remaining generic case leads to 22 more
coordinate systems. '®

Thus, altogether 74 separable coordinate systems exist.
Of these exactly six are nonorthogonal. We shall not discuss
their discrete symmetries here.

E. The group E(2,1)

Separation of variables in three-dimensional Min-
kowski space has not been investigated with the same
amount of detail as in the other three-dimensional spaces of
constant curvature. The coordinate systems can however be
extracted from Refs. 17 and 14. The subgroup structure of
E(2,1) on the other hand is known.?' We write the algebra
e(2,1) in the form {K,,K,,L,P,,P,P,}:

[K,K,] = — LB’[LS’KI] = sz[Lsz] = - K,
[Kf’Po] = P,-,[K,,Pk 1 =84Py[Ls,P,] =0,
[L31P1] =P2,[L3’P2] = _Pl’[P;qu] =0,
(Gk=12uv=012).

(3.36)

Type I: There is one three-dimensional MASA:
{Py,P,,P,} corresponding to Cartesian coordinates.

Type II: There are four different MASA of dimension 2.
Two of them {K|,P,} and {L,,P,} correspond to orthogonal
coordinates, and two others correspond to nonorthogonal
ones. These are

S, =(P0_P2)2’ Szz(L3+K1)23

X=XX3 P=X, —X3Xx5, 1= — X, + X3 + X35,
and
SI:'(PO_P2)2’ Szz(L3+K1+P0+P2)2:

X = x,3(x, + x3), y=x1+x2—x§(x?2+ %),
t= —x,+x2+x3+x§(%+ %)

Type I11,: Among the nine types of one-dimensional
subalgebras of e(2,1) precisely three algebras have non-Abe-
lian centralizers, two of which are direct sums. These are as
follows: (i) { P;} with cent( P,) = P, & {K,,P,,P,}: Hence,
S, = P3 and S, is an element of the enveloping algebra of
e(1,1), not equal to the Casimir operator, nor to the square of
a generator. This leads to eight orthogonal coordinate sys-
tems. (ii) { P,} with cent( Py) = P& |{L,,P,,P,}: Hence,

S, =PjandS,iseither L,P, + P.LyorL? + a(P? — P2)
with a > 0 (two orthogonal systems).

Type I1I,: The only element of e(2,1) that has a nonse-
parable centralizer is ( P, — P,) with
cent( Py — P,) = {L; — K| ,P, + P,,P,,P, — P,} (thisis a
nilpotent algebra). In this case we have nor
(Py—P))={K,L,— K ,P,+ P,,P,,P, — P,}. The choice
S, = (P, — P,)’ and S, a member of the enveloping algebra
of cent( P, — P,) (not equal to a square of a generator, nor to
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a Casimir operator) leads to three nonorthogonal coordinate
systems. These are as follows:

(i)Sz=P,(L3—K,)+(L3-—K1)Pl,
x=x3\/x2, y—t=x—1x3,
y+i1=2x,;

(ii)Sz=(L3_K1)2+4P? >

x=x3\/1+x§,y—t=x1—5x§x2,
y+it=2x,;

(iii) S, = (Ly — K,)* +8aP,(P, — P,), a>0,
X =XXy + i,y—t:xl—lzxzxi
X2
2
X a
+a_+ 30
X2 6(x,)°
y+t=2x,.

Type I1I;: Subgroup type coordinates in this case only
originate from the O(2,1) subgroup. We obtain three coordi-
nate systems, corresponding to S, = L1,K%, or (L, — K,)*
and S, =K{ +KZ L1,

TypeIIl,: Taking S, = L },K 3, or (L; — K,)* we obtain
10 orthogonal coordinate systems.

Type IV,: Semisubgroup type coordinates again origi-
nate from O(2,1) only and six types of them exist.

Type IV,: The generic class here consists of 22 types of
coordinates.

The total is 54 orthogonal coordinate systems, and five
nonorthogonal ones. We shall not go into the problem of
discrete symmetries here.
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A number of fixed-plethysm generating functions are given for SU(2); a fixed -plethysm
generating function gives the content of the component with definite exchange symmetry of the
direct product of a given number of copies of an irreducible representation R,, with / running
through all values. New symmetries are found relating antisymmetric to symmetric products, and
relating plethysms in which the number of factors is interchanged with the factor representation
label /. Expressions for two-box plethysm generating functions for SU(3) and for fixed-plethysm
generating functions for SU(2) based on reducible representations are also given.

PACS numbers: 02.20Qs

1. INTRODUCTION

For over a century there have existed examples of a
certain type of generating function’ related to the represen-
tation theory of the group SU(2).

Consider the tensor product of p copies of a representa-
tion R, of SU(2)

R &-®R = o n'[A]XR,. (L.1)
[Als

The sum is over representations s of SU(2) and those repre-
sentations [A ] of the permutation group S, whose Young
tableaus have no columns exceeding / + 1 in length. The
dimension of the SU(2) representation R, (or R,)is/ + 1 (or
s + 1); thus /(or s) is twice the angular momentum associated
with the representation / (or s). The partial sum & ;n2'R_ in
(1.1), to be denoted by R [*/, is the plethysm of exchange
symmetry {4 ] based on the representation R,; the coefficient
n} ! is the multiplicity of the representation R, in the pleth-
ysm. The S, representation [A ] is more explicitly written
[1#,2%,...,/"] where the non-negative integer A, is the num-
ber of rows of length / in its Young tableau. The A, satisfy

r

S i, =p. (1.2)

i=1
Cayley, Sylvester,' and collaborators long ago calculat-
ed a rational form of the generating function
FppS)= § npipese, (1.3)
ps=0
for the symmetric pelthysm R [, 0</<12.
Analogous generating functions have been given®™ for
groups (including finite groups) other than SU(2) and for

more general plethysms. We describe such generating func-
tions as being of the Cayley-Sylvester, or fixed-/, type. For
practical reasons, R, is usually restricted to representations
of fairly low dimension.

Multiplicities n} ! of the symmetric part or n,, of the
full tensor product were studied previously (cf. Ref. 5 and
references therein).

Recently* examples have been given of a new type of
generating function

[ ](L,S)=Zn},’”LSS:. (1.4)

ls
We describe them as being of fixed-plethysm, or fixed-sym-
metry, type. The Young tableau [A ], for practical reasons, is
restricted to have a fairly small number p of boxes. This
paper is concerned with fixed-symmetry generating
functions.

In Sec. 2 we give explicit expressions, for a number of
fixed-symmetry generating functions; their interpretation is
explained.

Section 3 points out some remarkable symmetries con-
necting apparently unrelated plethysms and their generating
functions.

Section 4 explains how the generating functions of Sec.
2 are derived.

Section 5 contains a brief discussion of possible generat-
ing functions of more general type. Fixed-symmetry gener-
ating functions of type [2] and [1?] are given for SU(3) repre-
sentations. Generating functions for plethysms [1], [2], [1%],
[3), [1°], [2,1] based on reducible SU(2) representations are
also shown.

J
2. SOME FIXED-SYMMETRY GENERATING FUNCTIONS

Fixed-symmetry generating functions of symmetric type [ p], 0<p<5, are*®

$0)LS)=(1—-L)"",
¢ L,S)=(1—-LS)"*,
$12)(L,S)=[(1 - L1 —LSYH]~!,

“'Supported in part by the Natural Sciences and Engineering Research
Council of Canada and by the Ministére de I’Education du Québec.
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$i3)(L,S) = (1+ L3SP)[(1 — L)1 - L1 - LS,

(2.4)

$1a (LS) = (14 LSO)(1 = L1 — L)1 — L1 - LS 7", (2.5)

$is1(L,S) = [(1 = LH(1 = LO(1 - LS*)1 - L2S*)] !

X[ —=L3SY 1+ L3S+ LSS+ L3S"+ S+ LoS*+ 59

+L7(S5+S7—+—L8(32+Sx)+L”S“} +1( —L’z)_l{L3(S3 +S5)

+LAS* 4+ L3S+ S+ LS + LS+ L8S* 4+ L°%S*+ S5+ L'"S*+ S

+L“(S—+—S3)+L12+L'3S+L'4S4+LI6SZ+L18}] . (2.6)
Fixed-symmetry generating functions ¢,,,, of antisymmetric type [17], 1<p, are related to the fixed-symmetry generat-

ing functions of symmetric type through

S (LS)=LP " ¢, \(L.S). (2.7)
For mixed symmetry [2,1] the generating function is
LS
Pl2a = 3 T (2.8)
(1 —L(1—LS)1—LS?
For the three mixed symmetries with four boxes the generating functions are
L 2Sz

(L,S) = =L L,S), 2.9

¢[2,1 1( ) (1 —L)(l ~L2)(1 —LSZ)(I -LS4) ¢[3.1 ]( ) ( )
L+ L*s*

$21\(L,S) = i (2.10)

(1—L2SY1—LS*1~L)Y1—L?%

For the rectangular Young tableaus with six boxes we find

1

L+L5s4+L5sl0+L7s6+L8s4+L10+LIOSG+L14SI()

3,(L,S) =
¢,, 1( ) (1 *Lz)z(l —Lf’)(l __LZSS) (

+

(1—L2S%1 —L%

LZs2+L356+L4s4+L5S8+L5sl0+L5sl2+Lés6+L7s6+L7s8+L7s]0+L8S8+L9sl2

(1—LS%(1 —LS?

+

L256+L4S()+L4S8+L4S12+LGS4+Lés6+2L6S8+L6sl0+L8S4+L8S10+LIOSI()

(1 —LS%(1 — L2S%

.+_

LASZ+L4s6+L5s2+LSSG+2Lés2+L7s2+L7s6+L8S6+L9s2+L9s6+L10S6)

(1 —LS3H1 - L%

=L 7'¢;» (L,S).

The generating functions (2.1)—(2.5), their antisymme-
tric counterparts, and (2.8) are given in Ref. 4. They are re-
produced here for the sake of completeness, because of
changes in notation, and to correct misprints in Eq. (7.11) of
Ref. 4.
of the indicated symmetry based on any SU(2) representation
R,. For example, the plethysm of exchange symmetry [27]
based on the SU(2) representation R, is given by the coeffi-
cient of L *in the expansion of ¢ ,: |(L,S ), Eq. (2.10), namely,

242544+ 8°4+28% 4 52, (2.12)
This implies that the component of the direct product of four
[ = 4 representations (angular momentum 2) with exchange
symmetry [27] contains the SU(2) representations 12, 8
twice, 6, 4 twice, 0 twice.

It is interesting that the spinor representation R, never-
appears in the symmetric or antisymmetric plethysm for
three copies of any R (but it does appear just once in the
plethysm of mixed symmetry {2,1]).

3. RELATIONS BETWEEN PLETHYSMS

Some seemingly unrelated plethysms apparently have
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(2.11)

r
identical SU(2) decompositions.

Consider the plethysm of symmetry [x*] (rectangular
Young tableau) based on the SU(2) representation R, with
I =y + z + 1. The six plethysms obtained by permuting the
three positive integers x,y,z appear to have the same SU(2)
content. That is, the multiplicities of (1.1) satisfy

Lx ¥}
y+z—1s

by~

n =n?, ., (x, yz21).

(3.1)

_4s = etc.

Here the first equality holds also when z = 0. In terms of
generating functions

L *y+l¢[xv](L,S) =L ‘x+l¢[y;](L,S)

=F, ., (LS)=etc. (3.2)

The generating function F'in (3.2)isafixed-/(/ = x +y — 1)
generating function for rectangular plethysms of y rows; its
dummy L carries the number of columns. It is a special case
(allA; = OexceptA, = L )ofthe fixed-/ generating functions
for general plethysms described in Ref. 4.

With the help of branching rule tables’ we have checked
numerous examples of (3.1). Although no complete proof
exists, the following argument makes (3.1) extremely plausi-
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ble. First consider the dimension of the plethysm [x”] based
on /=y + z — 1. It is the dimension of the representation
(0,...,0,x,0,...,0) { yth label = x; for definition of the notation
see Ref. 4) of SU( y + z). This is found to be

x+y+z—1 x —
H it HJ' H k! H h!
i=0 h=0 33
~x+z——1 y+z~1 ( )
L
I=0

which is symmetncal in x, ,z. Also the highest representa-
tion R, in the plethysm has s = xyz, again symmetrical in
X, V,Z.

As the second case, consider the plethysm of symmetry
[x,1%~ '] (hook-shaped Young tableau) based on R; with
! =y + z — 1. The two plethysms obtained by permuting x
and y, keeping z fixed, seem to have the same SU(2) content.
That is the mutiplicities satisfy

ni o =nl 0 xp>0. (3.42)
and the generating functions are related by
Lx¢[x‘lu |](L,AS)=L'V¢LV'1}-|](L,S). (3.4b)

We have applied the same checks as for the relations (3.1).
This time the dimension of the plethysm is

x+y+z—1) (3.5)
e +p— 1 — Dy — izt
and the highest s is
Zx+y—1)+1, . (3.6)

both symmetric in x and y.

We have a complete proof of the relations (3.1) forx = 1
[they then include the relation (3.4) with x = 1]. Begin by
showing

my. =2 (y>0), (3.7a)
which is equivalent to the conjectured Eq. (8.1)
¢[1/>](L!S) =L7! ¢[ P ](L’S) » O<p, (37b)

of Ref. 4. Equation (3.7) states that the symmetric plethysm
of y boxes based on the SU(2) representation R, has the same
SU(2) content as the antisymmetric plethysm of y boxes
basedon R, , , ;. The proof proceeds by showing that the
weights in the antisymmetric plethysm are identical to those
in the symmetric one. Start by giving all y weights their
maximum values; in the symmetric plethysm they are all
equal to z; in the antisymmetric case they are respectively
z4+y—1,z4+y—3,.2—y+ 1;in both cases the maxi-
mum total weight is zy. Now any other assignment of the y
weights is obtained from the initial one by specifying z + 1
integers J; satisfying

O0<ip<ih < <3 Y i =p; (3.8)

i=0

i; is the number of weights which have been reduced by ;
from their original values; in the antisymmetric case, to
make the /; unique it is agreed that no weight will jump past
any other when their values are decreased. Since the same
sets of {; describe the symmetric and antisymmetric weights,
the two plethysms contain the same weights, and hence the
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same SU(2) representations. Hence (2.7) and (3.7) are proved.

Because of conjugation symmetry [the yth fundamental
representation of SU( y + z) has the same SU(2) content as
the zth] we have

m_=nt s p2>0; (3.9)
substituting (3.7) in (3.9) shows that
n =ngl. (3.10)

Equation (3.10) represents the surprising (to us) result that
the symmetric plethysm of y boxes based on R, has the same
SU(2) content as the symmetric plethysm of z boxes based on
R, . In terms of generating functions, (3.10) implies that the
Cayley-Sylvester fixed-/ generating function F,(P,S) of Eq.
(1.3) (see also Ref. 5})is equal to the fixed-symmetry ¢, ,,(L,S )
of Egs. (2. 1}+2.6) when / and P are identified with p and L,
respectively.

4. DERIVATION OF GENERATING FUNCTIONS

To derive (2.11), start with Eq. (3.7) of Ref. 4, in which
Ay, Aj, Ay, As have been set equal to 0. The result,

F Ay M, M)
=1 =AI—A M- AT M), @)

is the generating function for O(5) representations (labels
carried by M,, M,) contained in rectangular two-rowed
plethysms (number of columns carried by A,} based on the
(O1) representation of O(5). To convert (4.1) to the generating
function for SU(2) representations contained in rectangular
two-rowed plethysms based on R, of SU(2), substitute it into
Eq. (23) of Ref. 2, the generating function for O(5) D SU(2)
branching rules. The form of {4.1) indicates that only the part
of Eq. (23), Ref. 2, even in U,, U, is required; call this part
G'(U3, U2, A). Then, according to (3.2), we find

L~"'¢(LS)=L -2 #»(L,S) = F;(L,S)

=(1-L3'"9'(LL%S), (4.2)

where ¢,: (L,S') and ¢,s(L,S) are given in (2.11).

We now sketch the derivation of the mixed-symmetry
generating functions (2.9) and (2.10). For each Young tab-
leau it is straightforward to establish counting rules for
weights. Thus for [2,17] each set of four distinct m’s is count-
ed three times and a pair of equal m’s with two distinct m2’s is
counted once (the number of times a set of m’s is counted
depends only on the partition of p, not on the particular m
values.® One can then write a recurrence formula for multi-
plicites of (total) weights

N}jy‘llz]_N[z‘ll +N172m i +N}2;12],m71
N}] ]2m+l + NI—-2m+I
+NI~2m u+ Nl——l.m+2l
+ N}Z—IZ,m + 2N}l—212.m + N}UZ.mfl
+N (4.3)
N %) is the multiplicity of the total weight m in the plethysm
of symmetry [A 1based on the representation R, ; the terms on
the right-hand side of (4.3) correspond to choices of weights
from the representation R, _, together with zero, one, two
or three weights + /. Usingn}? ! = N{A] —N!%] . one
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finds the recurrence formula
(2,12

nl.s ]
02,17 1

= ”172‘15 + nlﬁll's~l

[1%) [2,1 2,1
—nllh, o+ Py — o,

(1%] [2,1] {1? 1?

+n st T+ nlflz,sle —”5—]2.21-5—2
{1%) [2 12

+ i+ n 4+ 20
(1] (1] 1

+m =, o+ Y, (4.4)

It is understood that n% ! vanishes if either subscript is nega-

tive. Now multiply (4.4) by L 'S* and sum over / and s. The
result is a recurrence formula

Bi2: (LS}
=L%$;,(L,S )+ LS+ (LS,S) — L?¢» (LSS )

+L*S? ¢, (LS,S) —L*¢;, (LSS )

+ LS 2¢5 (LS ~,S)

+L?S ¢, (LS ~'S)+ L3Ss* é1: (LS2S)

— L ZSZ ¢“2 ’(LSZ,S -])

+ L% % ¢ (LS AS)+ L? &2 (L,S)

+2L° 12 \(L.S) + LS? ¢y, (LS,S)

._L2¢[1 ](LS,S_I) +L2S—2 ¢“ ](LS——l’S) .

(4.5)

It is understood that negative power of S are to be discarded
on the right-hand side of (4.5); this may be done with the help
of Eq. (7.6) of Ref. 4.

Relation {4.5) expresses the generating function ¢ ;=
of (2.9) in terms of generating functions of lower plethysms
which are all known.

The derivation of ¢;, ;-,(L,S'} described above can be
repeated for any plethysm. It turns out, however, that this is
not always the most practicable way of deriving a fixed
plethysm generating function. The generating function for a
plethysm with a rectangular Young tableau can be found
from an appropriate fixed-/ plethysm; thus the method used
to derive Eq. (4.2) gives very simply the result

L%0O,L,S

G (LS ) = ~ﬁ——) (4.6)
in agreement with (2.10); the function ¥ in (4.6) is given by
Eq. (23) of Ref. 2.

It is also possible to find a generating function by in-
specting plethysms of the symmetry in question for a number
of low values of / {method of elementary multiplets®). The
plethysms are found from SU(/ + 1) D SU(2) branching rules.

A simple label-counting argument shows that the num-
ber of denominator factors in a fixed-plethysm generating
function equals

r+(p—10b, 4.7)
where r is the number of representation labels (rank) and b is
the number of internal labels of the group in question. For
SU(2), one has r = b = 1; therefore the number of denomina-
tor factors is p, the number of boxes in the Young tableau of
the plethysm. For SU(3) one has r = 2, b = 3, and the num-
ber of denominator factors is 3p — 1.

The symmetry (3.7), which relates symmetric to anti-
symmetric plethysms, can be used to simplify a result of Ref.
4. Equation (7.5) of Ref. 4, satisfied by generating functions
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#11-1(L,S ) for antisymmetric plethysms implies an analogous
equation for generating functions ¢, ,(L,S ) for symmetric
plethysms. It turns out to be

(1 —L?¢,\(L,S)
=LS?¢,,_ ,(LSS)+LS ?¢,,_,|(L/S,S)

—LS? ¢, ,(LS,1/S)
+ &, 2 LS)+8,(1 +L)+ 6, , (4.8)

which replaces the much more complicated (7.10) of Ref. 4.
Negative powers of S are to be discarded from the expansion
of the right-hand side of (4.8); ¢, , (L,S) = 0 if p is negative.
Similarly, Eq. (7.9) of Ref. 4 is equivalent to the much
simpler

W | [p—1]
R =+ M

+ n;P—_l,}]—I,s+I+pAl - n}£7.11+]p-—s73
+nf7 4 8,0 81080 + 8,068,100 +8,16108 -
(4.9)

n}P) = 0 if any subscript or superscript is negative.

5. CONCLUDING REMARKS

(1) Fixed-/ generating functions may be reinterpreted as
generating functions for fixed plethysms of type [ p] or [17]
[Eq. (3.10)]. The form in which they are given by Franklin
and Sylvester is inconvenient because their series expansions
contain negative terms and consequent cancellations. They
are being rederived in completely positive form.'°

(2) Fixed-plethysm and fixed-/ generating functions are
not the only kinds one might define. For example consider

FPLS)= ¥ nPPeLSY, (5.1)
pls=0

the generating function for all symmetric plethysms. It con-
tains the fixed-/ generating function (1.3) as the coefficient of
L ' and the fixed-plethysm generating function ¢, »i(L,S) as
the coefficient of P *.

Multiplying Eq. (4.8) by P # and summing over p leads
to a functional equation satisfied by .#(P,L,S ),

(1—L*— P #PLS)+ % f(Ps,LS, é-)
_ PLSAPSLSS)— TE (£ L ,S)
S S's
—1+L+P. (5.2)

Negative powers of S are to be discarded from the expansion
of the left-hand side of (5.2). The symmetry [Eq. (3.10)j of
S#(P,L,S)in Pand L is obvious in (5.2). The solution of (5.2)
would contain all the results hitherto obtained for symmet-
ric and antisymmetric plethysms, and much more.

The generating function

ZPLS)= 3 nllPrLIs", (5.3)

pls=0
for all antisymmetric plethysms is related to (P,L,S ) be-
cause of (3.7). We find

#(PLS)=L '[#(PLLS)—1]. (5.4)

In deriving (5.4) one has to take into account also the trivial
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relation @0 ,(L,S) = @0 ,(L,S) = (1 — L)~ " excluded in
3.7).

Besides fixed-/ and fixed-plethysm generating functions
one may define symmetric and antisymmetric fixed-s gener-
ating functions defined by the summations

S nPPrL! and
pl=0
They are the coefficients of $° in #(P,L,S ) and «/(P,L,S},
respectively. No closed expression is known for such gener-
ating functions.
(3) Fixed-plethysm generating functions are not re-
stricted to the group SU(2). For example

F, ](A,B,a,b)

_ 1 + ABab + A*Bab? + AB %%

= 1= A1 —Bb 1 —A% 7)1 — Bl —AB) ’
and (5.6)

Fi:)A,Bab)
_ Ab + Ba + ABab + A’B*d’b?

(1 —Ada?)(1 — Bb?(1 — A% %1 —B%?(1 —AB)’
are generating functions for the symmetric and antisymme-
tric parts of the Clebsch—Gordan product of two equal repre-
sentations of SU(3). The dummies 4,8 play the role of L in
the case of SU(2); they carry the labels of the representations
being multiplied; a,b play the role of §'and carry the labels of
the representations into which the product decomposes.

(4) Using the well known relation® between Young tab-
leaus and irreducible representations of the groups SUn),
one can translate the symmetries (3.1) and (3.4) into the equa-
lity of dimensions of certain representations of SU(n) groups
of different ranks. Denoting a representation of SU(n) by
non-negative integers A,, / = 1,...,n, equal to the number of
columns of length 7 in the corresponding tableau, one con-
cludes from three of the six relations (3.1) that the
representations

S ndprLt,

pl=0

(5.5)

Ai=yb,, I=12,.x+z—1,

Ai=28,, i=12,.,y+x—1, (5.7)

A, =x6,, i=12,..z24+y—1,
of the groups SU(x + z), SU( y + x), and SU(z + y) have the
same dimension for any positive integers x,y,z. For example,
putting x = 1, y = 2, z = 3, one gets the representations
(0010), (200), (03) of SU(5), SU(4), SU(3), all being of dimen-
sion ten.

Similarly from (3.4), one finds that the representations

Ai=x—-1)8,+6,, i=12,.,p+z—1,

(5.8)

Ai=(y—-1}6,+6,., i=12,. x+z—-1,
of SU( y + z) and SU(x + z) have the same dimension for any
non-negative x, y,z. An example is the coincidence of dimen-
sions for (101) of SU(4) and (21) of SU(3).

(5) It is also possible to define fixed-plethysm generating
functions based on reducible representations. Rather than

discuss the general problem we mention here some simple
examples for the group SU(2). Define
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Sy LS)= > mjiLyL3S’, (5:9)

I,s=0
where n[/;| is the multiplicity of R, in the plethysm [4 ] based
on the reducible representation R, ® R, . Each¢; isasum
of generating functions corresponding to all possible split-
tings of the Young tableau [A ] into two disconnected tab-
leaus. For that purpose the trivial tableau * with zero boxes

has to be taken into account. The lowest cases then are
&)L ,L2sS)

1
R TR N T

1
(1—LSY1—Ly)’
i) (L1LS)
=M 4+ 00 +00 -
1
(1= L)1 = L3)(1 — L,S?)
1
T I—LLii — LS~ LS)
1
o L—Lsi-Ly
$u (LiLysS)
=-H+oo +HB -
L,
(1— L1 — L3)1 — L,S?
1
T U-LL) LN~ LS)
= L , (5.12)
(1—L3)(1 = L,S1 — L))
$i1(L1LyS)
=[O0 + Oom + Mo +04d
1+L3S3
(1= L)1 —L3)1 —L3SH(1 — L,S?)
4 1+1
(1= L3 —L3Ly 1 — L,S)(1 — L,S?)
+ {L1‘__’L2} >
$ue (L1 LS)
=-ﬁ +0H +Ho +ﬁ .
B L +L3S?
(=L~ L)1 = L3SY1 — L,S°)
N L,+L,L%S
(1 =L —L3IL)N1 — L,S)1 — L,S?)
+ (L Ly},
2 (LuLoS)
=+ (oH+ om)
+{ Ho+ mo)+ B -
_ LS
(=L = L3)1 — L,S 1 — L,S)

+ (5.10)

(5.11)

(5.13)

(5.14)
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N 14+ L,+L,L,S+L\L3S
(1=L,S)1—L3)1—-LIL)1 —L,S?

+ [Ly«—— L,}. (5.15)

In (5.10)—(5.15) we indicate symbolically the correspondence
between a split Young tableau and its contribution to

&4 (Ly,L,,S). In each split tableau the left factor refers to
the variable L, the right one refers to L,. The variables S
from each factor have been combined by means of the gener-
ating function for SU(2) Clebsch—-Gordan series {(Eq. (10) of
Ref. 11}.

(6) Finally, one may wonder why the symmetries dis-
cussed in Sec. 3 are limited to plethysms with Young tab-
leaux of two types only (rectangular and hook shaped). Is this
not a particular case of a more general symmetry? We have
only a partial answer to that question: The symmetries [cf.
(3.1), (3.4a), (3.7a)] imply relations between two generating
functions [cf. (3.2), (3.4b), (3.7b)]. If the two generating func-
tions in each of these relations are to differ by a power of the
variable L, then the symmetries we describe are the only ones
possible.

Note added in proof: B. G. Wyboume has pointed out to us
that Eqs. (3.7a) and (3.10) were known to Murnaghan. See
F. D. Mumaghan, Proc. Nat. Acad. Sci. 37,439 (1951) and
40, 832 (1954); also B. G. Wybourne, J. Math phys. 10, 467
(1969).

266 J. Math. Phys., Vol. 22, No. 2, February 1981

ACKNOWLEDGMENTS

We are grateful to J. McKay, R. Stanley, and B. Wy-

bourne for helpful suggestions.

'J.J. Sylvester and F. Franklin, Am. J. Math. 2, 223, 293 (1879); F. Frank-
lin, Am. J. Math. 3, 178 (1880}; J. J. Sylvester, Am. J. Math. 4, 4] (1881).
Sylvester and Franklin refer to Cayley’s first and second methods in deriy-
ing their generating method, but do not given an explicit reference to
Cayley.

R. Gaskell, A. Peccia, and R. T. Sharp, J. Math. Phys. 19, 727 (1978].

*J. Patera, R. T. Sharp, and P. Winternitz, J. Math. Phys. 19, 2362 (1978);
P. E. Desmier and R. T. Sharp, J. Math. Phys. 20, 74 (1979).

*I. Patera and R. T. Sharp, J. Phys. A Math. Nucl. Gen. 13, 397 (1980).

5P. Gard and N. B. Backhouse, J. Phys. A Math. Nucl. Gen. 7, 1793 (1974);
M. A Rashid, J. Phys. A Math. Nucl. Gen. 10, L135(1977): V. V. Mikhai-
lov, J. Phys. A Math. Nucl. Gen. 12, 2329 (1979).

°J. Patera and R. T. Sharp, in Recent Adlvances in Group Theory and their
Application to Spectroscopy, edited by J. Donini (Plenum, New York,
1979).

"W. McKay and J. Patera, Tables of Dimensions, Indices and Branching
Rules of Representations of Simple Lie Algebras (Dekker, New York, 1980}
(to be published).

®D. E. Knuth, Pac. J. Math. 34, 709 (1970).

°V. Bargmann and M. Moshinsky, Nucl. Phys. 23, 177 (1961); V. S. Devi
and M. Moshinsky, J. Math. Phys. 10, 455 (1969); R, T. Sharp and C. S.
Lam, J. Math. Phys. 10, 2033 (1969).

193, Bystricky, J. Patera, and R. T. Sharp (in preparation).

'3, Patera and R. T. Sharp, in Lecture Notes in Physics (Springer, New
York, 1979), Vol. 94, pp. 175-83.

J. Patera and R. T. Sharp 266



General U(/V) raising and lowering operators

M. D. Gould?

Department of Mathematical Physics, University of Adelaide, G.P.O. Box 498, Adelaide, South Australia,

5001

(Received 21 September 1979; accepted for publication 10 December 1979)

It is the aim of this paper to obtain the general form of U(n) raising and lowering operators. The
raising and lowering operators constructed previously by several authors are then compared. The
Hermiticity properties of these operators are also investigated. The methods presented extend,

with trivial modifications, to the orthogonal groups.

PACS numbers: 02.20.Qs, 02.20.Rt

1. INTRODUCTION

In the 1960’s a great deal of interest was generated in
extending the angular momentum techniques of Wigner and
Racah to the general unitary and orthogonal groups. This
has led to the introduction of the group-theoretical concept
of operators that lower or raise the highest weights of repre-
sentations of a subgroup contained in an irreducible repre-
sentation of the group. Such operators may be regarded as a
generalization of the raising and lowering operators L . ap-
pearing in the theory of angular momenta.

Such operators were first constructed for the unitary
groups by Nagel and Moshinsky' who applied them to the
analysis of many body problems.? Subsequently raising and
lowering operators were constructed for the orthogonal
groups by Pang and Hecht® and Wong.* Following the defi-
nition of Nagel and Moshinsky' the lowering (raising) oper-
ators shall be polynomials of the group generators that,
when acting on a basis vector of an irreducible representa-
tion of the group which is of given weight with respect to the
subgroup, lower (raise) the weight. Furthermore, they shall,
when acting on a basis vector of highest weight of the sub-
group transform it into a basis vector of highest weight of a
lowered (raised) irreducible representation of the subgroup.

It is important to note that the raising and lowering
operators for a subgroup are essentially only defined by their
action on a state of highest weight for the subgroup. We see
therefore that such operators are not unique. Hence the rais-
ing and lowering operators constructed previously for O(n)
and U(n) are only one particular solution to the problem.

Recently Bincer® obtained raising and lowering opera-
tors for the orthogonal and unitary groups using methods
based on the characteristic identities satisfied by the infini-
tesimal generators of the group.® These operators of Bincer
appear in a compact product form which is useful for manip-
ulations. In subsequent independent work of the author’ an
alternative set of raising and lowering operators for O(z) and
U(n) were constructed using techniques similar in content to
Bincer’s. Our operators, like those of Bincer, may also be
written in a compact product form.

Recent work of the author® shows how these techniques
may be extended to obtain the matrix elements of the group
generators. Central in this approach is the concept of ““simul-
taneous shift operator” which shifts the representation la-

“Present address: School of Physical Sciences, The Flinders University of
South Australia, South Australia, 5042.
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bels of U(n) and each of its canonical subgroups in a certain
prescribed way. These operators may therefore be regarded
as generalizations of the raising and lowering operators dis-
cussed in this paper. A general procedure for constructing
raising and lowering operators for a general semi-simple Lie
group is discussed in Ref. 7.

It is the aim of the present paper to investigate the con-
nection between the various raising and lowering operators.
We shall obtain the general form for a raising (resp. lower-
ing) operator for U(n). It shall be shown that the raising and
lowering operators constructed in Refs. 1 and 5 are identical.
By contrast the operators constructed in Ref. 7 are shown to
be different. The behavior of these raising and lowering oper-
ators under Hermitian conjugation is also investigated. It
shall be shown that the raising and lowering operators con-
structed in Ref. 7 are unique with respect to the property of
being Hermitian conjugates of one another.

The techniques employed in this paper are similar in
content to Bincer’s except for our use of the U(n) contragre-
dient identity. This enables raising operators for U(n) (which
are absent in the work of Bincer) to be constructed in anal-
ogy with the lowering operators.

Although we shall only discuss the unitary group it is
clear that the arguments extend to O(n) with little modifica-
tion. Also it is of interest to extend these results to the non-
compact groups O(n,1) and U(n,1). Patera® has shown that
the Nagel-Moshinsky operators are also a suitable choice for
U(n,1) while Wong'® has shown that his operators for O(n)
extend to O(n,1). Wong and Yeh'! have also recently investi-
gated the extension of Bincer’s operators to O(n,1). One may
follow through their derivation to conclude that the raising
and lowering operators constructed in Ref. 7 also extend to
O(n,1) and U(n,1) as does any general raising (resp. lower-
ing) operator for O(r) and U(r) (defined in the sense of Na-
gel and Moshinsky).

2. THE CHARACTERISTIC IDENTITIES

The generators a'; of the Lie group U(n) may be assem-
bled into a square matrix a which, on an irreducible repre-
sentation of the group (finite or infinite dimensional) with
highest weight A = (4, 4,, ..., 4,,), satisfies the polynomial
identity®

[f@—4, —n+rn=0.
r=1

This polynomial identity may be written in a representation
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independent way as

J1G-a)=o, o

r=1

where the operators a, lie in an algebraic extension of the

center of the enveloping algebra.'? (Note that any symmetric

combination of the a, necessarily lies in the center Z. In
particular the coefficients of the identity (1) are central ele-
ments.) The eigenvalues of these operators on any represen-
tation admitting an infinitesimal character y, (or equiv-
alently on any irreducible representation with highest
weight 1 ) are given by

ue)=A +n—r.

Associated with the matrix a is its “‘contragredient” &
with entries given by

&= —d.

The matrix  satisfies the polynomial identity
[[@-a)=o, @
r=1

where the roots @, arerelated tothea, bya&, =n —1 — a,.

By virtue of the identities (1) and (2) one may construct
projection operators

= b
I£r \@&, — Q

_ a-a
Plr] = ,
[r] [1;11’(&, "‘&1)

which enables arbitrary functions of the matrices @ and @ to
be defined by setting

P@= S P@)Plr],

r=1

P@= 3 P@)PIr.

r=1

Plr]

The projection operators P [r} and P[r] are well defined
elements of an extension of the enveloping algebra although
they need not be defined on representations where the eigen-
values of some 2, and ¢, (r+ k ) coincide. This however can-
not occur on finite dimensional representations [nor on uni-
tary representations of the noncompact groups U( p,9)} and
hence, for the applications we have in mind, the projectors
P[r] and P[r] are always well defined.

If 4 (resp. ¢ 7) is a vector (resp. contragredient vector)
operator of U(n) then we may resolve ¢ and ¢ into shift
vectors®

b=, 9= 3900,

r=1 r=

which alter the U(n) representation labels according to
a ylr] =¢lri(a, +6,.),
a, ' [r] = ¢trl(a, —6,) -
(Note that this shift property also extends to infinite dimen-

sional representations.) Such shift operators may be con-
structed by applying the projectors P[r] and P[r]:

YIr) = Py = vPI7,
Yrl=Plrig' =y'Pr] = @lrD'.
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It was shown in Ref. 7 (see also Ref. 13) that if v, is an
arbitrary maximal weight state of U(n) with highest weight
A=A, Ay .., 4,) then

P[r)ivo=0, for j>r and i arbitrary,

_ )]

Prl,vo=0,
As a consequence of (3) we see that on the maximal weight
vector v, the shift vectors ¢{r] and ¢ '[r] must satisfy

‘/}[r]i]_)o:o’

rlv, =0,
Using the definition of vector operator equation (4) then im-

plies that ¥{r}" v, and ' [ 7], v, are maximal weight states of
weight A + 4, and 4 — 4, respectively.

3. GENERAL RAISING AND LOWERING OPERATORS

It is our aim here to determine the general form for U(n)
raising and lowering operators and to compare the operators
constructed in Refs. 1, 5, and 7.

Throughout we shall let ¢ denote the U(n) vector oper-
ator with components ¢ =a', ., ({ = |, ..., n) whose con-
tragredient has components ¢', = a" 7', The operators
¥[r]"and ¢'[ 7], will shift highest welght vectorsof U(n) ina
finite dimensional irreducible representation of U(n +1).
These are the U(n) raising and lowering operators construct-
ed in Ref. 7. For convenience we denote them by ¢, and

1, respectively. Finally we denote a naximal weight state
of U(n) [i.e., a semi-maximal state of U(n +1)] by the pat-
tern [ "*'). Here A,, ., and 4,,, as usual, refer to highest
welghts of finite dimensional irreducible representations of
U(n +1) and U(n), respectively.

Suppose now that R ", and L ’, arearbitrary raising and
lowering operators of U(#n) effecting the shifts
/li,n +1 > ’l',

—_—
Ain

in41 >
A’i,n + 5ir ’
/{i,n +1 >_>
/{’i.n

ii,n +1 >

/{x,n - ‘Sir ’
respectively. According to Nagel and Moshinsky such oper-
ators are of the form

an zh(a)rjain+l ’ (5)
Lrn :an+ljh(g)jr’ (6)
for a suitable polynomial 4 (x).

Resolving ¢', = a"*', into its distinct shift compo-
nents allows us to write Eq. (6) in the form

L', =3 ¢lLh@). @

=1

for j<r and i arbitrary .

for i<r, @

for i>r.

Now acting on the state |f’i_-,',' "'} the operators ¥'[/ ],,
{ < r, vanish by virtue of Eq. (4). Hence, acting on the state
[ ), Eq. (7) reduces to

;”in +1 1n+1
L) - swne[ ). ®)
iwn lor ,n

However each operator ¢/'[/ ], (for /> r) effects the shifts
A;,—Ai, — 8,. Hence in order to obtain the required shifts

Lr
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we must have 4 (a,) = O for /> r. Hence h (x) must be divisi-
ble by the polynominal IT,_ ,(x — a;). In the limiting case
where 4 (x) =11, ,(x — a,) we obtain the operators con-
structed by Bincer.” We have shown then that a general low-
ering operator is of the form

v.B+ SYlLB

l<r

where B and 3, are invariant multiplies of the identity [or
equivalently of the form a" +' 4 (aY, where h (x) is divisible
by I, (x —a))].

Note also that the Nagel-Moshinsky operators L ", are
of the form a" *' ;4 (a), for a suitable polynomial 4 (x)
which, according to the remarks above, is divisible by the
polynomial I, _,(x — «,). However it is well known that the
Nagel-Moshinsky operators L 7, are homogeneous of de-
gree n — r +1 in the group generators from which it follows
that 4 (x) is of degree n — r which is precisely the degree of
I, ,(x — ;). Accordingly we must have

h(x) = CIH(X —a),

where c is a constant dependent on the roots ;.
From Eq. (8) acting on the state [jﬁ:z *') the Nagel-Mo-
shinsky operators L 7, reduce to
A’i,n +1 >
A’i,n '

A
P ) =", c[l@ ~a)
in I>r
By comparing the normalization of our lowering operators
', with the normalization of the L *, the constant ¢ may be
determined. By this means we obtain

a —a, —1
c=H(—————' )
I>r ar—’al

Hence the Nagel-Moshinsky lowering operators may be
written

L rn = an -ng(a)ir ’ (9)
where g(x) is the polynomial

g@:H@_m%ﬁ;ﬁ:L>

i>r a, —Qq,

Lr

n

These are essentially the operators constructed by Bincer®
(up to multiplication by an invariant multiple of the
identity).

Equation (9) is just one representation of the Nagel—
Moshinsky operators. Expanding the polynomial g(x) into
powers of x we may write

S a,—a,——l)
§x) kZoX SkII;Ir( a, —a, ’
where S is a polynomial in the a,(/ > 7). By replacing the a
with Lie algebra elements €, = a”, + n — r we obtain the
Nagel-Moshinsky operators in their original form.'

Using Eq. (4) one may show, by the same techniques,
that a general raising operator [see Eq. (5)] is of the form

R", =h(a),d

where £ (x) is divisible by the polynomial I, _,(x — a,). In
terms of the matrix @ a general raising operator may more

r

n+1 2
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usefully be written

an =ain+1 g(aj”
where g(x) is necessarily divisible by I1, _,(x — &;). The
limiting case where g(x) = II,_,(x — &) gives the raising
analogue of Bincer’s lowering operators (although these op-

erators do not appear in the work of Bincer). The raising
operators of Nagel and Moshinsky may be writen

a, —a; —1 .
R’n =n[<r - (a—ai)fan+!
ar_al
. o &,—&1—1)
=da, a—a) |———]. 10)
+l[l;[’( 1) ( &,—51 (

4. HERMITICITY PROPERTIES

It was shown by Nagel and Moshinsky that their raising
and lowering operators are not Hermitian conjugates [as one
may show by comparing Eqs. (9) and (10)]. It is natural then
to determine under what conditions the Hermitian conju-
gate of a raising operator is a lowering operator (and vice
versa). We answer this by showing that our raising and low-
ering operators are unique with respect to the property of
being Hermitian conjugates.

In the last section it was shown that a general lowering
operator may be written in the form

L', =4".8+ S¥18, (11)
Ter
where 3 and 3, are constants dependent on the roots «;,.
Similarly a general raising operator may be written in the
form

Ri,=u+ | ygll] (12)
Comparing Eqgs. (11) and (12) we see that (L ",)" cannot pos-
sibly be a raising operator unless 3, = 0 for / < 7; i.e., unless
L ", is an invariant multiple of ¢, . (An analogous state-
ment holds for R ", .) Accordingly we see that the raising and
lowering operators ¢", and ¥, (constructed in Ref. 7) are
unique with respect to the property of being Hermitian
conjugates.
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Expansion of a function about a displaced center

M. A. Rashid
Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria

(Received 11 October 1979; accepted for publication 18 January 1980)

An extremely simple closed expression is obtained for the coefficients which appear in the
expansion of a function of a special type about a displaced center. A conjecture about the
vanishing of a certain coefficient which appear in the expansion of a Slater-type orbital about a
displaced center is also proved. :

PACS numbers: 02.30.Bi, 02.30.Mv

1. INTRODUCTION

Sharma’ has obtained a general and closed expression for the coefficients which appear in the expansion of functions of a
special type about a displaced center. In our review of Sharma’s work,? we pointed out that the four summations in his
expression for the coefficients b, (s/[LM ) could very easily be reduced to two. In the present paper, we show that we can
eliminate three of his summations to obtain a simple expression for these expansion coefficients. Also we utilize our expression
to prove a conjecture about the vanishing of the expansion coefficients F, .. (NLIM } appearing in the expansion of a Slater type
orbital whenever k' >/ + N. .

To facilitate comparison with Sharma’s work, we have used the notations of his paper throughout.

2. DISPLACED CENTER EXPANSION

Let (r,6,4 ) and (R,0,9 ) be the spherical polar coordinates of the same point P with respect to parallel set of coordinate
axes at A and B respectively where Bis at a distance a from 4 along the positive z axis. In this situation ¢ = @. We try to express
a function

(I/R }fy. (R)Y [(6,9),

which is centered at B as

(/R o (R)Y(O,8) =3 (1/r)a;(NLM |a,r)Y ['(6,6 ), (1)
]

i.e., as a linear combination of functions centered at A.

The problem is to find a simple closed expression for the coefficients a,;(NLM |a,r) which appear in the Eq. (1) above.
Sharma' obtained the following closed expression for these coefficients’:

a + r

a/(NLM |a) = (1/a) 3 (r/a)* ' S b,(sILM) | fu, (R)(R /)~ dR, 2)
where U 5 -
btz — L1 (L2 £8 Iz LB
X Z (— 1ptate+ap+p —L- ”(ZL — 2p)(21 - 2p")/[ PYL —p)lg!
X5 —p— ML +M—s5—p— g+ Wl p)go— g — Pl — M — v+ g —p' — )] 5)

We shall adopt the following convenient conventions throughout the paper:

(i) The factorial notation is used even when the argument is not necessarily a nonnegative integer. Quite generally
x!=T(x+ 1)

' (ii) The ranges of the summations appearing in the various expressions are omitted since these are fixed by the nonnegati-

vity of the arguments of the factorials with integral arguments.

We rerr?ark tl_1at in Eq. (3) above, the presence of (L — p){((/ — p)!) does not contribute any extra restriction on the ranges of
the summations since from L — M>0,4>0,5 —p — ¢'>0,L + M — s —P—~q+q¢>0( +M>0,¢>0,5s —q—p’
>0,/ —M —v+q—p — q'>0), we conclude that L — P>0(1 — p>0). This remark is useful since, the duplication formula

220 =TI (2z+1)= (1/\/ TRz + Yz +1)= (I/\/—1r_)22"(z — Iz, (4)
for the gamma functions, enables us to replace 2% ~ X (2L — 2p)l/(L — p)tand 2% =221 — 2p")\/(I — p')l, by (1//7)
(L—p—NWand(1/v7)l —p' — 1)L, respectively. This results in an expression for the coefficient b, {sILM ) wherein the finite
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p,p’ summations can be performed using*

—1p (@ — 6)! _ la—bMa~c)
25: (=1 Slb—8c—8)  bla—b-o)’ )
to arrive at
b, siLm) = UL ((ZL + 1)1 + (L + M) — M)!)vz
27 (L—-MWMN+M)
X S~ 1T — (175—S+q')!(1—i—v+q)!(—M—%+s+q—q')!(M~§+u—q+q')! p
& g~ N0 — gL —M—s—q+qW—M—v+q— g}~ M—}+gM—}+q) o
Our aim is to replace the double summation in the above equation by a single summation. First we use’
M~}+v—g+q) _5 (=L—}+s+)
M4+ qML+M—5—q+qMo—ql 3 0—g—pl Ly +v+s-—pL+M—s—v4q 1o’
and
(—M—1+s+qg—q) :E (—1—=14540)
(—M—L+ il —-M—v+qg—g)s—q') Zols—qg —ol(—I-}+s+v—~oll-M—s5s—v+q+o0)
and perform the ¢,¢’ summations utilizing.
! fa —
-t qp__dla=d (5)
5 ONb — b)l(c + &) bib+cMa—b—c)
which is essentially the same as Eq. (5) and can be obtained from it by taking 5 — § as the new b. This results in
L+ M
b, (SILM ) = (—1 ((ZL + )27 + 1)L -J—M)!(I—M)!)V2
29? (L—MW +M)
XL~} =Ml -4 ~v—~L—-3+s+v(—I—~1+s40)
XZ M—i4s—op{—M—-1+v—p)
o oplls—oMo—pML+M—v—o0+pl-M—s+o—pN—L—1+s+v~—p)
(=1—}+s+uv—o), Y

on making use of
M—-i+s—v+p—olN-M—-}—s+tv+o—pl=TM+l+s—v+p—ol (—-M+}—s+v+o0+p)

_— ™ — (_1)M+s+u+o+p' (8)

sintfM +L+5—v—0+p)
On comparing Egs. (6) and (7) we note that though Eq. (7) still contains two summations, the number of factorials within
the new summations is two less.
Next we replace®

(—M—L+v—p)
L+M—v—o+pl—M—s+o—pN—I—L+v+s—a)’

by
1 S -1y L—-Lt—0g—1)
L+l~s—vl4 t\L+M—v—o+p—tWl—-L+s+v—a—1)
— 1 2(_1)L+M+a+z (“M”i+t)! ,
(L+1—s—uv4 LAM—-—o0—tN—v+p+t(—L—-I-M—-1+s+v+1t)
in Eq. (7) and perform the fwo o and p summations utilizing Eq. (5) and’
1 _ (@ +c)!
L SO bl —biof ~ abilase 5]’ ®)
to obtain
b,(SILM) = _1_((2L + 1)(21 + 1](L+M)!(I—M)!)V2 (MWL —s— Ml —v—J =11 +s5+)
’ 21 LM+ M) S + 1 —5 —v)

M1 W—L —1 |
XZ(—I)‘ (—~M—-L4+t(—~L—-L+s4+v+1) . (10)
7 tMLAM—t N (~L—-i4+t{~L—-{-M—1+4s+v+1)
In the above equation, the coefficient b, (s/LM ) has been expressed as a single summation though the expression lacks
symmetry between L and /. But we can indeed restore it by making use of the type of arguments given above to obtain the final
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expression
b,(sILM) = L—_z—l—)i [RL+ 1)+ 1)L +MNL —MM + MM — M2
T
(L—j—s)!(l—}‘k—v)!2 (—M—i+s+v—2¢)
SWL+!—s—v) TN -M—tW-—-M—t)(—M—1—1)(2M +¢t})!
which has the obvious symmetries
b(SILM) = b, (sIL(—M))=b (vLIM) — 1)+, (12)

The above two equations are the main results of the present paper. In a future publication, we hope to present interesting
applications of our results. We conclude this paper by proving that the coefficient F, ., (N/LM ) in Sharma’s paper indeed
vanishes for k' > N + /. This result was conjectured by Sharma by noting that it leads to physically correct large r behavior of
the a’s for Slater orbitals.

; (11)

3. Vanishing of 7, (NILM) for k'>1+ N

The coefficients F, ., (NVILM ) are expressed in terms of
the coefficients b, (sILM ) by®

b,(SILM )N — L + 2s)!

Fi[NILM) = , (13)
el ) ;U:(k’—-2v)!(N—L—k—k’+2s+2u)!
which takes the form [on using Eq. (11) and writing s = u — v]
L
Fo (NILM) = ‘2l (2L + 1)20 + WL + ML — MW + M) — M)
T
s M itu i) E., (14
TN -M— W -M—tW(—-M—L— )M+t L+ —uf{N—L—k—k'+2u)
where
Ekl_:z(L—%—u+v)!(l——%—v’)!(N—L+2u—2v)!. (15)
vl — vk — 20)!

v

We show below that the quantity E,. vanishes whenever k' >/ + N. This will establish that F, ., (VILM ) = 0 for
k'>I+ N

Now from N — L + 2u — 2v»0, YN — L} + u — v>0. Suppose initially that {{(NV — L — k') + uis an integer (necessarily
nonnegative since from Eq. (14) N — L — k' 4+ 2u>k>0). Then

W —L)+u—vl! _ (N — L)WYN — L — k') + u)!

= , 16
(u —vl[(k'/2) — v]! ; GN—L—pM3IN—L—k')+u—ply(—N+L+k’)—v+p) (e
and
=1 — o N—L—)+u—v) _ 2(_1)0(1—k’/2)!(21(N~L—k’)+u)!(%(N-—L-—k'-1)+I+u—v—a)! 17
4k — 1) —v)! < oMl —(k'/2)—o)yN—L—k')+u—oal) '

which are valid since on the right, we have terminating series. In Eq. (17), we will have toreplace (/ — k '/2)//(l — k'/2 — o)l by
(= D=1+ (k'72)— 1+ o)/ =1+ (k'/2) — 1)tin case ] — (k '/2) is a negative integer. Note also that for a Slater-type
orbital N — L>0.

Substituting from Egs. (16) and (17) in the expression for E, . in Eq. (15), we note that the v-summation can be performed
which results in

B, =yt kv s UV = LI =k /NN = L — k') & u)?
* S poll—(k'/2) - oWyN—L)—p)!
(L~ —uyN+L—k)+!—0fN—L+I!—4—k'+u—0—p)
AN—L—k')+u—odN—L—k')+u—pli{—N—L+k')+pN+I—k' —o—p)

(18)

NowilN+L—k')+l—o=(L—~!—-u)+ (YN —-L—k')+u—0)>0,sinceeachof L +/—u, YN —L — k') +u—ocis
nonnegative whereas for k' >N+, N+!—k'—o0—p<0.ThusE,. =0fork'>N+ 1.

However, if (N — L — k') + uisnot an integer, (N — L — k' — 1) + u will be a (nonegative integer) and we can modify
the above argument slightly to arrive at the same conclusion.
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'R.R. Sharma, Phys. Rev. A 13, 517 (1976).

“Review No. 15183 by M.A. Rashid published in the Math. Rev. 53 (June
1977).

*This is obtained by combining Eqgs. (16a) and (17) in Ref. 1.

See Eq. (A.1.2) in A.R. Edmonds, Angular Momentum in Quantum Me-
chanics (Princeton U.P. Princeton, New Jersey, 1960).
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This is an application of Eq. (9) in reverse.

®This is an application of Eq. (5) in reverse.

"See Eq. (A.1.1)in A.R. Edmonds Angular Momentum in Quantum Me-
chanics {Princeton U.P., Princeton, New Jersey, 1960).

8See Eq. (23c) in Ref. 1.
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On some properties of solutions of Helmholtz equation®

A. G. Ramm

University of Michigan, Department of Mathematics, Ann Arbor, Michigan 48109

(Received 12 May 1980; accepted for publication 12 September 1980)

We give a new method to prove results of the following type. Let: (\7° + k*)u =0in
D = {x|x|>R }, k?>0. (1) If ueL *(Dy), then u=0 in Dy. (2) If |x|"u(x)}—0 as |x|— oo,

X4+ X3 <exy Pp>0,m=1,2,3,.., |x|(u/d|x|/ — iku)

PACS numbers: 02.30.Jr

1. INTRODUCTION

Some of the above results were proved by a different
method in Refs. 1 and 2, but the new method of the proof'is of
interest in our opinion. We start with the following theorem.

Theorem 1: Let

(V24 k% u=0 inDg, k2>0. (1)
and
uel *(Dy). 2)

Then u=01n Dy.
Proof. From (1) and (2) it follows that (see Appendix)

Vuel 3(Dy) (3)
and

.
e = [ o7 tes 28— S bt} g
S+ oN ON

=f (g_él_ __uag—)dt,
Sk oN N
(4)

where N is the unit normal to the sphere Sy = {x:|x| =R }
directed outside of Dy,

g (xpk) = exp( + ik |x — y|)
v mjx —y|
Ix —y| = {7 = 2rlpleosy + )2, r=Ix|.  (5)

Now the main idea can be explained. We analytically contin-
ue functions (4) on the complex plane z = r exp(i) (see also
Refs. 3-5). From (4) it follows that (w=x[x|™)

explikz
el g

_ expl — tkz)
. flzo), (6)

ufx) = ulr,w) = uiz.w) = (zw)

where f|(z,0) and f,(z,w) are analytic in z for |z| > R and
bounded near infinity. Thus

flew) = 3ok j=12 7

But in this case (6) implies that f; = f,=0. Indeed, if z = iy,
Y= + oo then ([exp(ikz))/z)f(z,») in (6) goes to zero expon-
entially, while ([exp( — ikz)]/z)f,(z,w) goes to infinity expon-
entially unless /,==0. Thus u(z,0)=0, u(r,w)=0in D,.

Let us show how the idea works in a different problem.

“Supported by AFOSR 800204.
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— Othen u=0in Dy.

[x] >oe

2. RATE OF DECREASE OF SOLUTIONS TO
HELMHOLTZ EQUATION

Theorem 2: Let (1) hold,  satisfies the radiation condi-
tion and
|x|"u(x)—>0 as x—o0, p<clxsl P
c=const>0, 0<p, m=123,., (8)

where p = (x? + x3)"/%, then 4=0in Dy.

Proof: Since u satisfies (1) and the radiation condition,
we can use the first equality in (4) and the third equality in (6).
If p = 0 the condition (8) says that u(x) decreases faster than
any negative power of (x| at infinity in the cylinder p<c.
From this and (6} it follows that f,=0 for » directed along
the axis x,. By shifting the origin a little, we conclude that
f1 = 0 along any ray in the cylinder p<c. Thus =0 in this
cylinder and by unique continuation theorem for solutions
of homogeneous elliptic equations #=0 in Dy. If p> 0 our
argument is a little more complicated. In this case let us write
the equation p = ¢|x,| ~ 7 in the spherical coordinates:
r?* lcos?6-sind = c. For large r the angle @ is near 0, and
8 = 6 (r) is an analytic bounded function of cr ~ ' ~” for large
r. Let us prove that u = 0 in the body r” * 'cos”6sinf<c.
From this and the unique continuation theorem we con-
clude that u=0in D,. Let us take in (4) x = (r,8,(r)), where
8, (r) is constructed as & (r) but instead of c we use 0 < b <c.
For simplicity we shall write & () instead of 6,(r) in what
follows. Then @ = w(r) and w(#} is an analytic and bounded
function of the argument br = ' ~ 7 for large r. From this it
follows that f;(r,«(r)) will be analytic and bounded near infin-
ity on an appropriate Riemann surface (which by the way
will be finite-sheeted for rational p. Since we can always find
a rational number p, > p such that the body »' *?cos” 8
sinf = b contains the body ' " #'cos”'8sind = b, we can
consider only finite-sheeted Riemannian surfaces). If f,(z) de-
creases faster than any negative power of z on such a surface,
/f1=0.Thus u(x) = Oonany curve 7* * 'cos’@sinf = b<cand
we conclude that =0 in D, .

3. GENERALIZATIONS

(1) We can consider general elliptic equations with con-
stant coefficients in R",

(2) It is possible to consider the case when u(x) is a solu-
tion of (1) in a domain with infinite boundary.
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1. APPENDIX
Lemma 1: From (1) and (2) inclusion (3) follows. Let

g(r)=J,:dr ’ZJS, Ju (r, W) P dow,

g (r) increases monotonically and g(w) < o,

g =r| luro)?do>0g" =2r) |u*dw
s, s,

ar
Here we assume without any loss of generality that u is a real
valued function [since the coefficients of Eq. (1) are real]. If
g"{r,)>0asr,— 0, then

L dS, 50 as z,—o0. (A1)
s, dr -

But from (1} it follows that

+ 2r2J" dulr, ) ulr,w) do.

|Vu12dx=k2f (4 dx

fR§|x\§rn RLIxI<ry

du f du
+ | « s Y S,
L,“ ar e T s Yy
" (A2)
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From (A1), (A2}, and (2) we get (3). If g"(#) does not go to zero
whatever sequence r, — we choose, then |g"|>€> 0 for
all 7> R,>R.If g" >¢, then g'{r)— + . This is impossible
because of (2. Ifg” < — €, then g'(r)— — . Again this is
impossible because of (2). This completes the proof.

'0. Arena and W. Littman, “Farfield behavior of solution to P.D.E.,” Ann.
Sc¢. Norm. Super. Pisa 2B, 80727 (1972).

*T. Kato, “Growth properties of solutions of the reduced wave equation
with variable coefficient,” Commmun. Pure Appl. Math. 12, 402-25
{1859).

*A. G. Ramm, “About the absence of the discrete positive spectrum of the
Laplace operator of the Dirichlet problem in some domains with infinite
boundaries,” Vestn, Leningr. Univ. Mat. Mekh. Astron. 13, 153-6 (1964);
1, 176 (1966).

*A. G. Ramm, “Nonselfadjoint operators in diffraction and scattering,
“*Math. Meth. Appl. Sci. 2, 327-46 (1980).

SA. G. Ramm, Theory and Applications of Some New Classes of Integral
Equations (Springer, New York, {980).
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Gauge equivalence of exactly integrable field theoretic models

J. Honerkamp

Fakultat fiir Physik der Universitdt Freiburg, D-7800 Freiburg, West Germany

(Received 20 November 1979; accepted for publication 18 January 1980)

Exactly integrable field theoretic models are constructed which are gauge equivalent to the 7-
component or m-n component nonlinear Schrodinger equations and to the O(n) nonlinear o-
model. We obtain the CP "-Heisenberg model or the Grassmann—Heisenberg model and the
generalized sine-Gordon model respectively. Consequences for the conserved quantities are

discussed.

PACS numbers: 02.30.Jr, 03.65.Fd, 11.10.Np, 11.10.Lm

1. INTRODUCTION

Recently Zakharov and Takhtadzhyan' and, indepen-
dently, D. Chudnovsky and G. Chudnovsky,? pointed out,
that the nonlinear Schrédinger equation (NLSE) and the
equation of a Heisenberg ferromagnet (HF) are gauge equiv-
alent. Gauge equivalence means that the two pairs of linear
differential equations

$. . = Uilx,54 )4, {i: 1, for NLSE (1.1a)
$,. =VixsA)p,  li=2, for HF (1.1b)
where U, V, in these cases are polynomials in A of order one

resp. two, can be obtained from each other by a gauge trans-
formation independent of A:

é, =8¢, U-
1=gUxg ™' +g.87" Vi=gVg '+gg " (12)
Because the consistency conditions of (1),

Ui —Vix + [Us V1=0, (13)

lead to the nonlinear differential equations defining the mod-
els, the gauge transformation constitutes a field coordinate
transformation by which the nonlinear field equations and

also the conserved quantities transform into each other.

In this note we show in section 2 that a gauge equivalent
model to the n-component nonlinear Schrédinger equation
presented by Nogami and Warke® and by D. Chudnovsky
and G. Chudnovsky” is a generalized Heisenberg model
where instead of a set of spin components {.S;} a matrix

SeCP" = U(n + 1)/U(n) ¢ U(1)

represents the field coordinates.

A slight modification allows us to discuss a model
which is gauge equivalent to a Heisenberg model for a matrix
S on a Grassmannian manifold U(z + m)/U(n) ® U(m) or
even for SeGL(n + m)/GL(n) ® GL(m).

In Sec. 3 we discuss a model which is gauge equivalent
to the nonlinear O(n) invariant o-model.* The gauge equiv-
alent models are, for n = 3, the sine-Gordon model and, for
n >3, their higher generalizations, which have also been ob-
tained by another method.® In Sec. 4 we discuss some conse-
quences for the conserved quantities of those models which
are related by a coordinate transformation. As an example
we do this in the O(3) o-model (sine-Gordon model).

2. THE HEISENBERG MODELS

We start with the »-component nonlinear Schrédinger
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equation’ for the 2n fields. (@,,....¢, ), (¥ 155X 0 ):

- i¢j,t +¢j,xx + 2¢j Z PrXe = 0 (218)
k=1

and

Nio + Xxx + 24 kz @i¥e =0 (2.1b)
=1

These equations are the compatibility equations for the lin-
ear system

¢x = U1¢’ ¢1 = l¢’ (22)

where U, ¥, are (n + 1) ® (n + 1) matrices and polynomials
in A:

U =iAl'+ A4, V,=By+214,+2AT, 2.3)
with
I =diag(l, —1, —1,..., —1), (2.9
0 990,

—Xh

do=] —xz 0 Q2.5
_Xn

By,= —il4,, +il4} . 2.6)

We define g(x,?) as a solution of (2.2) for A = 0. Then

8 =Ag8, 2.7

8 =By, (2.8)
and

U, =g'Ug—g'g. =g 'itlg +g'4g —g''g,

=S,

where

S=g'rg. (2.9)
Furthermore

V=g 'Vig—g g, =2g U + 2iA%S.  (2.10)
By use of I'4,]"= — A, one can show that

SS, =287'g, =287 '4.8 . (2.11)
Hence

V,=ASS, + 2i4°S. (2.12)
The linear system now reads:

by, » = ilS,, (2.13a)

b2 = (ASS, +2iA7S)4, . (2.13b)
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Because of § = g~ 'I'g, we have as condition on §
S?=1,
trS= —(n—1),

and the compatibility equation for (2.13) is
iS, =1 [S.5,,].

For ¢, = y;* we have geSU(n + 1) and because of
S =g~ 'I'g with "by (2.4):

SeCP" = Un + 1)/U(n) ® U(1).
Equations (2.1) read

(2.14a)
(2.14b)

(2.15)

Nt + Xioxe + 2, kZ, x| =0. (2.16)

In the case where y;, @, are independent complex coordi-
nates we have SeGL(n + 1)/GL(n) ® U(1). This approach
can be immediately generalized to the Heisenberg equations
of motions (2.15), (2.14a), and trS = — (n — m) for

SeU(n + m)/U(n) ® U(m) or even for

SeGL(n + m)/GL(n) ® GL(m) if we start with the linear
system (2.2) and (2.3), where now, (say m < n)

F:diag( an J1-1-1, -1 ) (.17
P11 P12 Pua
0 : :
Ay = A A AT
= X1 — Xmi
0
_Xln"'_an
B,= —ilAq, +il4}.

Note, that again ', " = — A,, hence with S =g~ 'I'g,
again

28748 =SS, . (2.19)
The field equations for the 2m-n complex fields are
Ao, +iTA, , — 24 =0. (2.20)

We call these equations the Grassmann Schrodinger equa-
tions or the m-n-component Schrodinger equations.

Examples:

{iym = 1, n = 1; {2.16} is the usual nonlinear Schro-
dinger equation SeCP ' = SU(2). Equations (2.14) and (2.15)
are the equations for the O(3) invariant Heisenberg model.

(fiyn=2,m=2;¢, =x; . Now

1 0 0 0
0 1 0 0
= 2.21
r o 0o -1 0 ( )
0 0 0 -1
and
0 0 i x:i
0 0 X2+1 Xz-;
Ay =
—Xun —Xu 0 0
— X2 T X2 0 0

Hence (2.20) reads (@ = 1,...m =2; b= 1,..,n =2)
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2 ,
~ W apt + Xab xx T2 z Xkb(ijXaj)' (2.22)

k=1

Of course, from (2.22) one infers immediately the gener-
al structure of the mn-component Schrodinger equation in
terms of the field components. These theories are especially
interesting because a quantization procedure analogous to
the usual nonlinear Schrédinger equation® is certainly avail-
able. The consequences of the gauge equivalence for the
quantized version of the models could especially be studied
at first in the context of these nonrelativistic theories.

3.THE « MODELS

We start with the system of linear differential equations
for the O(n + 1) nonlinear o-model as given by Pohlmeyer*:

¢1,§ =(1—- g)qaqlgjyab(bl:——'(]l‘ﬁl , (3.1a)
&, =— gfl)qaqs,?abQSxEVx‘ﬁl . (3.1b)
Here £ and 7 are the light cone variables: £ = (¢ + x);
7 = it — x). The indices g, b run from 0,1,...,n and the F
are generators of the O(n + 1). In terms of the basis elements
of the Clifford algebra’ [C, = {I"',....,[""}] we have
y‘ab___ - }; [Fayrb]r
F=4re
The ¢“ (@ = 0,1,...,n) are components of a (n + 1)-dimen-
sional unit vector, ¢°¢° = 1; we choose also qiqe = 1 and

949, = 1. Hence also e.g. ¢°q;, = 0, etc. The equations (3.1)
are compatible if

9 +(4,°9:)9° = 0. 3.2
The gauge transformation

U,=g'Ug—g8.,

Vi=g'Vig—g'8»
leads to the expressions

Ci=g'9q;5g, (3.32)

C,=g"9'¢;.5 g, (3.3b)
with

ge0(n +1).

Proposition: One can find a geO(n + 1}, so that

Ci= —{/ar", (3.42)

C,= —(i/2)e, ", (3.4b)

where e, (i = 1,...,n) are the components of a n-dimensional
unit vector: 27_ , ¢;2 = 1. g is not yet completely specified by
(3.4a) and (3.4b) because any transformation g, generated by
F Ui, j50,1) leads to

g 'T 180 =r,

gy ‘e lN'gy=el"=e/l"
Proof: (a) We have

C% — g—lqaqzchgﬁ'abg‘cdg _ ‘l‘ ,
because of
=1, giq; =1 ¢q°%=0.
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Hence we may choose a g which tr'ansfcl)rms’q"q”g F®toa
diagonal matrix, which has to be a.constant matrix. If we’
choose I" ! to be the diagonal matrix of C, we have

Cl = — (i/2)r 1.
(b) In the same manner we show
C’= —1.

Then C, may be represented by
Co= —(@/20e; """+ 4 e, "',
with
(rr'y, =258, D e*=1.
i=1
Because for g7 —q, C,—C|, the matrix I 'is represen-
table by a linear combination of the {I"'\,...,I"""}. By a fur-
ther transformation which leaves I' ! invariant, one may ar-
range C, in its standard form
C,= — (/e "
Then we obtain

U,=@/¢r' +4,, (3.52)

Vo= (@/2)(1/§)e,I"" + B, , (3.5b)
where

Ay= —g'g. —(@/DI'"; By= —g'g, —(i/2el"

(3.5¢)

Now, the compatibility equation for U,, V,,

U,, — Vie + U, V5] =0, (3.6)
leads to

e, ' = [Adye, "), (3.7)

[I'.B]=0, (3.8)

Aoy —Bo e + €, F " + [40,B,] =0.

(3.9)
Equation (3.7) can besolved by the ansatz ’
o= 3 a,F'+ > cw T
e=2 ek #1
Because g until now is only specified up to a transformation

generated by the 5 °* (e,k # 1,0) we may choose such a gso
that c,, = 0. Then we obtain from (3.7)

epel*=a,e, [F5I]

- kgz (akek)rl + kgz akrke}.

Hence
= — kz a.e, (3.10)
=2
e =aie, k=2,.n (3.11)
From (3.11) we infer
s
aq = —=
X S _ (3.12)

whereby (3.10) then reads
€ e€ = — z ék.gek
k=2
which, of course, is true.
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From (3.8) we get

By=c, "' + c;FY ey = —cy, (3.13)
i j#£1,0
so that we obtain finally from (3.9)
a, F'*—c L' —c; Fi+e T
+ca " +2a,c,, F*=0. (3.14)
Hencec, ;, =0,¢;, =0,¢, =0. Thenc¢; = ¢;(1) and
a,, +e. +2a.,(7)=0. (3.15)

But the term ¢,,.% *in ¥, can again be transformed away so
that we end up with the linear system.

Uy=ilriy 3 % g (3.16)
2 K=2 €
i ;
V = —-—e.rl’ 317
2 2; i ( )
and the field equations are
(e, e /), +e. =0, k=2,.,n (3.18)

Equation (3.18) was derived in Ref. 5 by another method, the
associated linear problem indicated by the matrices in (3.16),
and (3.17) has also been found by Eichenherr and
Pohlmeyer.®

Note that by (3.5¢) we have

—g“g§=(g")gg=il“‘+ g gk
2 =2 e,
—g'e, =Yg = S el
Hence
giEm =L =1). (3.19)

Examples: (i) n = 2 [O(3) model]. We choose

e, =cosa, e, = —a, sina,
e, =sina, e,, = a, cosa, (3.20)
e,c/e, = ay; ‘
hence
ae, +sing =0,
with
1 0 0 1
R
0 —1 R VY x
(3.21)
y‘lzzi( 0 —1)
2\ +1 0/’
then
Uy=L¢r— La0
2= ?g - ‘z—ag
i 1 0) 1( 0 —ag)
= 2§(0 1 +—2— +a, 0 , (3.22)
1
V,= -E% [cosaa® + sinao']
_ i (cosa sina)
2f \sina —cosa/’ (3-23)
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(i1) n = 3 [O(4) model]. We choose
e, =cosa, ¢,= —a sina,

e, = sina cosw, €,¢ = Q; COS COS® — W, Sina sinw,

(3.24)

e; =sina sinw, e;, = @, cosa sinw + w, sina cosw,

and
a, = a; cosw — o, tana sinw, (3.252)
a; = a, sinw + o, tang cosw. (3.25b)
The field equation can be written as
a;, + tanaw. o, + sina =0, (3.26a)
g + a0, +oca, —— =0. (3.26b)

cos“a
With

+1 0 0 1 0 i
N N )
0 -1 r 1 0 r —i 0

1/{0 -1 1 0 —i
F2 __( ), G _ _,( ),
2 \1 0 2\ —i 0

we obtain (compare with Ref. 4)

U — 1 ( 0 (—a; — iy tana)e"")
>7 2 \(a; — iw, tana)e ~* 0
.5( +1 0) 32
.y 2 o 1) (3.27a)
- _1_( .+ coEQz sinwe ) (.27b)
24 \singe ™" — cosa

4. IMPLICATIONS FOR THE CONSERVED QUANTITIES

In order to study the consequences of these equiva-
lences let us restrict ourselves to the nonlinear O(3)o-model.

In terms of the angle coordinate a the linear equations
read [see (3.22) and (3.23)]

0 -
09, = [ig‘;-aa + i( % )]¢25U2¢2» (4.1)

2\, 0
{ [ cosa sina
= — = . 2
9,9 24 (sina — cosa )¢2 Vi 4.2)

We now change from the light-cone variables to coordi-
nates x,¢:
E=Yt+x), 7=}~ x.
If we require a(x,? }—0 for |x|—« We obtain
d,¢,=4d; — 9, )¢2‘ - (i/2)(03/2)( & — 1/5 ). (4.3)
We define two sets of fundamental Jost solutions y ;* tod, ¢,
= YU, — V,)¢, by the asymptotic conditions:

+

Xz

The transition matrix between both fundamental sets of so-
lutions then is defined by®

—>
X— % oo

/e — /60 (4.4)

N _ A(§)  BoS)
X2 =T2X2v TZ(§)=(-—B2+(§) A;(;))
(4.5)
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Doing the same for o-model coordinates we obtain

dedy = §[H(& — 1N(aXqe) — 4i(1/§ — 1)(aXq,)]-0¢,.

(4.6)

Now by (3.3), (3.4) we have, in this case,
(@xg,)o=gog™, @7
(gXq, )0 = g(cosao® + sinac')g!, 4.8)

and by (3.19), e.g.,
g'@=x"x=1).

Hence for x— + o weobtaing'—1; forx— — « we obtain
g'—1, (¢ = 1), and therefore

@xq;)o(axq,)e — o5 4.9

@xXe)0.axa,)e — 5 '(Doyr()=r (4.10)
Therefore T

duby = H(E—1/5)0, @10

ax¢le_:w (S —1/E)ne,. (4.12)

We may define again a set of fundamental solutions y = by

Yir(g) — e VA 4.13)
X— + oo
Xrxg) — et 4.14)

and also a transition matrix by

A,(¢) By($) )

—B(§) A8/

On the other hand we have, especially because of g¢, = ¢,
X =gy, 4.15)

because in the limit x— 4 oo both sides agree. Forx— — «

we obtain

T )t HE VLR £ 1)y £ o Ve,

=T, T =(

or
7(§) =1 (D7 5), (4.16)
which agrees with
r(¢=D=1
If we parametrize
(D) = ( _aB, f) aa' + BB =1,
then
A($)=a'4(5)+ BB, (&) 4.17)
B(§)=a'B (L) — P4 (5). (4.18)

It is interesting to discuss the time behavior. We know that’
A §1) = A4,(£,0),
B,(£,t) = By( £,0)e6+1/6)

and therefore B (t) = B(0)e” %, a(t) = a(0). Then 4,(&,t)
and B,( {,t) are not time-independent in general, but the
combination
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a(0)4,(5) —Be” B [ (£) = 4,(§). (4.19)
If we expand the right-hand side in a Laurent series about
£ = 0 we obtain

+ o

(8= Y I
and the I are the local conserved quantities of the sine—
Gordon model. Doing the same expansion for the left-hand
side is not of great help unless 8 = 0.

If B = B,({ = 1) = 0 (i.e. the reflection coefficient for
zero momentum is zero) we obtain also in the nonlinear o-
model conserved quantities as coefficients in Laurent expan-
sion of the Jost function 4 ,( ) about £ = 0, and these are
related to the local conserved quantities of the sine-Gordon
equation by a normalization factor @ = A4,(0) and by a co-
ordinate transformation. These conserved quantities of the
o-model should be the local ones. The nonlocal charges'® are
obtained by expanding 4,( ) about w = 0,
w=(1-¢)/(1 + ¢) and equation (4.19) would mean, for
B =0, that these are related in the same way to nonlocal
charges of the sine~Gordon equation.

But one should stress that our asymptotic conditions
(4.9) and (4.10) are very different from the condition in Refs.
4 or 10, and that all these conclusions are a consequence of
3 = 0. This point deserves further study.

Gauge transformations on the linear system provide a
powerful tool for the construction of field-coordinate trans-
formations. They show that some models are classically
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equivalent and differ only by the choice of coordinates. The
quantized version of these models may become really differ-
ent because of different quantization rules.

The theories which are gauge equivalent to the CP "o~
models are given elsewhere.'!
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A method for evaluating integrals over the Fermi distribution function using results from Mellin—
transform theory is presented. The connection of this approach with the operational result of
Blankenbecler is explicated. The method is used to calculate the profile function for a Fermi

distribution.

PACS numbers: 02.30.Qy

INTRODUCTION

Some time ago, in a brief note with the same title, Blan-
kenbecler’ presented a formal device for evaluating integrals
over the Fermi distribution function. In several special cases,
i.e., the scattering form factors for the Fermi distribution
and the “‘modified Gaussian” distribution,’ the result was
shown to be expressible in closed form. This concise method
was later used by Kittel® in a textbook calculation of the
linear term in the heat capacity of a free electron gas.

Here a powerful alternative approach to such integrals
is presented in terms of the transform calculus. The connec-
tion of this more prosaic approach with Blankenbecler’s’
operational result is explicated. The present technique is
shown to be useful in dealing with the calculation in the
impact-parameter representation of the profile function in
the case of a Fermi distribution.

Method: Following Blankenbecler,' the required inte-
gral is of the form

fw h(x)[exp(x —y)+ 1} 'dx

= [ hwesoty — silexpb —x1+ 1)k, 1)

where, for the moment, x and y are teken to be the energy and
the Fermi energy, respectively, in units of kT; it is assumed'
that # may be integrated once to yield the function H (x). The
point of departure for the present discussion is a result from
the theory of the Mellin transfrom,*

__f__=_LJﬂ (2)
14+f 2miJe sinmz’

where L is a path extending from § —ieo to § + i oo, for
0 < £ < 1. With the identification,

S=-exply —x), (3)
the integral (1) may be written as
wdz J B (x)e? 4)
277'1 L sinwz

After integration by parts, this becomes

2mi ). sinmz [H(x)e*z"|0+LMH(x)ze*z"dx]. ®

The further assumption, consistent with the applications in
Ref. 1, that H (0) = 0 is now made, although this is not at all
essential to the present method. Thus the integral (5) may now
be written as

1 me?dz
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1 ™ gze®

2mi J ~iw SinwZ

dzJ: H{x)e > dx, (6)

where the contour L has been shifted to the imaginary axis
since z = 0 is no longer a singular point. Introducing g, the
derivative with respect to y, expression (6) can be put into the
form

L R

27 J —iw sinmd

e‘yf Hix)e ™ dx, (N
and, after an additional transformation of variable, z = is,
one finds
md *
sinrd

dx H (x)——L J dx v =

smm? .f dx Hx)olx =)
= [mdcscmd 1H (y); (8)

the last result is Blankenbecler’s operational form.

Variants of this approach based on other results from
Mellin-transform theory are possible. Thus, the integration
of expression (1) by parts yields

jw h(x)[explx —y)+ 1] "dx
- —F h(x) dIn[exply — x) + 1]

= h (O)ln[exp(y} + 1] + fwln[exp(y —x)+1]1dh(x); (9)

this suggests using the result

In(1 + ) = =~ f

in the evaluatmn

§ + ioc

dz, 0<{<1 (10)

ioo zsinmz

J‘w dx h'{x)In[exply — x) + 1]

&+ foo z ©
L me’dz J dx h'(x)e . (11)
2mi Js—iw 2SINTZ Jo

Thus, for example, the recent discussion of the form
factor for a Fermi distribution,

F(2) = (4m/q)p,Iml, (12)
where
I— —iir o9 (13)
dq 1 + e(r — /B
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[o, is the normalization (F(0) = A), ¢ is the nuclear shape
radius parameter, and £3 the diffuseness parameter] given by
Amado, Dedonder, and Lenz® is now simplified consider-
ably through the introduction of the Mellin transform (10).
One has

I= B—[f dr éInle - ('-Wﬂ+1)]

:BL(_‘I_ J‘*"” dzm f d,e,-q,_ﬂ,_c,,ﬂ)
dg \2mi Jr _iw zsinmz Jo

2 + oo c/B
_B d (q f dz _;ez___)
2i dg —iw  zsinwz(z — igB)

0<& <) _ (14)
Closing the contour in the left half-plane, one obtains I as the
sum of contributions from the poles at z = igff and z = 0,

— 1, . Since F (q) receives no contribution from the pole at
z =0, it is easy to see that F{g) can be represented by the
contribution from the pole z = igf3 alone,

F(q) = (87%p,/q)Be ~ ™(mfsingc — c cos gc), (15)

as long as ¢ is in the region 1/78<g<c/mB>.

CALCULATION OF THE PROFILE FUNCTION FOR A
FERMI DISTRISBUTION

It was recently noted’ that a description of the nuclear
shape in terms of the Fermi distribution function is a valu-
able tool in elucidating various characteristic features of ha-
dron-nucleus elastic scattering at high energy. The profile
function ¢ (b ) in the eikonal amplitude,®

flg) =ik f " Togb )1 — e~ db, (16)
]
given by
- _[m pliz + %) %)z, (17)

plays a central role in that discussion. As a final illustration
of the approach to integrals over the Fermi distribution
function detailed above a useful expression for ¢ {b ) is present-
ed in this case.
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e~ sr/B

+ie dy
b — d Jﬁ Bandl ?sc/B
1b)= 2POJ' ’ (P — bz)”2 i 200 sinms

T + foo </
= —ipoh dsers K,(g>, O<co<l) (18)
o — ico sin7s B
since
“ tdt
K, (z)= e — 19
=] et (19)

Evaluating ¢ (b ) at the nuclear radius (b—c,.) for example,
one finds® the asymptotic expression in powers of the small
parameter 7 = 3 /c,

T+ i sc/B 1/2
tc)= —ipyc f ds e‘ (-7—3—)

6 — e sinms \2sc
X [1+ 3B/(8sc) — 1582/(128s%c?) + -
= pol2mBef[ (1 — v2)5 () + 31 — 1/V 24 Gr
— 1 = V2v25 )77 + ), (20)
after closing the contour in the right half-plane. On the other

hand, for small impact parameters at, say b = 0, one finds,
using the result

Ki(z2)~1/z (z—0) (21)

and closing the contour in the left half-plane,

U+'°° sc/ﬁ
)=~ —tpoBf

— i SSlIl1T s

]e — sc/B

~2polc +Be =), (22)

where only the contributions from the poles at s =0, — 1
have been retained; in this region one finds that the profile
function becomes propertional to the nuclear radius.’

'R. Blankenbecler, Am. J. Phys. 25, 279 (1957).

2E. Hahn, D. Ravenhall and R. Hofstadter, Phys. Rev. 101, 1136 {1956).
*C. Kittel, Elementary Statistical Physics (Wiley, New York, 1958), Sec. 20.

*H. Hochstadt, The Functions of Mathematical Physics (Wiley-Intersci-
ence, New York, 1971), pg. 80.

°R. D. Amado, J. -P. Dedonder and F. Lenz, Phys. Rev. C 21, 647 (1980).

®AsinRef. 5, ¥ = (o, /2){1 — ir), where r = ratio of real to imaginary part
of the forward amplitude; b is the impact parameter and g the momentum
transfer.
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Let { W, | be a projective system of state operators defined on the finite tensor products of some

family {7, } of Hilbert spaces. We prove that all projective limits of { W,

« } onthe complete tensor

product @ ., 7, can be generated from every single projective limit by certain operations. In

addition, we provide a necessary and sufficient condition for {

incomplete tensor products of the 77, ’s.

PACS numbers: 02.30.Tb, 03.65.Ca, 02.50.Cw

1. INTRODUCTION

In a preceding paper,' we established necessary and suf-
ficient conditions for a projective system { W, K € #(T')}
of state operators to have a projective limit on the complete
tensor product & ., #,. In particular, we showed that, in
contrast to projective systems of probability measures,? a
projective system of state operators may have none or many
projective limits. Therefore, the purpose of the present paper
is to clarify the structure of the set of all projective limits
belonging to a given projective system of state operators.

In Sec. 2, we recapitulate the basic notions of Ref. 1 and
compile the required facts about infinite tensor products of
Hilbert spaces. In Sec. 3 we investigate the structure of the
set £ of all projective limits of a projective system. In its first
part, a Choquet-type theorem is established for € and it is
proven that € is the norm closed convex hull of its strongly
exposed points. In the second part of Sec. 3 it is shown that €
can be obtained from any element Weg by the relation

L=u"'uW),
where u belongs to a class of explicitly given mappings from
the set of all state operators on ® .., 5%, intoitself. In Sec. 4
we consider special projective limits which live on incom-
plete tensor products, and we give a necessary and sufficient
condition for such projective limits to exist. It turns out that
this kind of projective limit is unique if it exists.

2. MATHEMATICAL PRELIMINARIES

Throughout this paper, ‘“Hilbert space” means “com-
plex Hilbert space of dimension >1.” If %" is a Hilbert space,
% (%) denotes the Banach space of all bounded linear oper-
ators on %~ equipped with the operator norm }|-||, and
J (") denotes the Banach space of all trace class operators
equipped with the trace norm ||-||,. A state operator (STO) on
J7 is an element of (%) = {Xe7 (K ): X>0, tr(X) = 1}.
“Projection” will always mean “orthogonal projection.” For
0#£g@e”, P(p) denotes the projection onto span{g}. The
range of a mapping f is denoted by rngf.*

In the sequel we consider an arbitrary nonempty collec-
tion {#°,:teT } of Hilbert spaces which we keep fixed for the
rest of this paper. By & (T') we denote the directed set of all
finite nonempty subsets of 7" directed by inclusion. To every
@£ MC T we associate the complete tensor product
FEM: = @ opy I, ;' for T we write . The unit operator
on 7 ™isdenoted by 1,,. Anelementa = ® ,a, in &
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Wy ] to have projective limits on

with ||a, || = 1 (V#€T) is called a product unit vector (PUV).
Two PUV’s a,f3 are called equivalent (written a ~f3 ), if
2.1 —A{a,.B,)| < «. The set of all (~}-equivalence
classes a, b, is denoted by I". The PUV’s in ael" span a
closed subspace 7%, of #” which is called the incomplete
tensor product (ICT) of the 77°,’s with respect to a. If

a= ®,a,isaPUVina, thenthesetofall PUV’s ®, 53, such
thata, = B, for all but a finite number of /€T is total in 77, ;
in this sense, #°, is generated by any PUV in a. If we want to
refer toa partlcular generating PUV in a, say a, we also write
25”[(1] for % The complete tensor product is the direct
sum of all ICT’s, =8 ac rﬁf Q, denotes the projection
from 7 ontod"f If {¢,:teD }, D < T, is acollection of unit
vectors €,€5%°,, then we abbreviate ® 1 € by €[D].

Let Z be the set of all families {z,: tT } of con}plex
numbers of modulus one. If @ = ®,a, isa PUV in /% and
5 = {z,}eZ, then ya: = ®,, (z,a,) is again a PUV in .
za is equivalent to ¢ if and only if I1,_., z, converges (i.e.,
3, |argz, | converges). Two PUV’s a3 are called weakly
equivalent (written =), if there is a € with a ~ ;8. The
equivalence relation “ " is compatible with and weaker
than the relation ““ ~.” So it induces an equivalence relation
in I by

a--b:(3 aeca, Peb) a~p

for which we use the same symbol. The closed subspace
spanned by the set of PUV’s which are weakly equivalent toa
PUYV Beb is called the weak incomplete tensor product
(WICT) of the &, ’s with respect to b and is denoted by #°,,,
or 18],

%wb = G) %a (21)

Toevery 563 there is a unique unitary operator U (3} on r
such that U( 5) a = ya and

U () Tal) = X150l
for all PUV’s %", Hence every U (y) leaves all WICT’s
invariant, To every b—-a there is a 6.2 such that U (4)
[ﬁ/ )= J‘V For cpeﬁ/ E [@ ] denotes the projection onto

span “span { U (5)p:5€2 }. A cylinder operator is an element in
%(% of the form Y ® 1 x with Ye (%" *) and KeF (T).
Lemma 2.1°: (i) If £e77, for some bel, then E [£ ] com-
muteswithall U (3)and @, ,E[£]1Q, = P(£),and E[E] Q.
for all cel” which are not weakly equivalent to b.
(ii) Every cylinder operator commutes with all U () and

Qn "
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For##ACBCT,® (4,B)denotesthepartial tracefrom
TN\H B)to T (7 1), for © (A, T ) we write @,." A family { Wy,
: KeF(T)} of STO’s Wy eT (%) is called a projective sys-
tem,if Wy = @ (K,H) Wy forall K, He 7 (T)withKCH. A
STO Ve7 (57) is called a projective limit of the projective
system { W, ], if Wy = @ V for all Ke.Z (T). The set of all
projective limits of the projective system { W.: KeF (T')} is
denoted by &({ Wk }).

3. THE STRUCTURE OF £({W, })

If T is finite, then our problem is trivial: Every projec-
tive system | Wy :Ke# (T')} of STO’s with finite T has exact-
ly one projective limit, namely W,.. We therefore assume in
the rest of this paper that T is infinite. Since the projective
system { W, : Ke ¥ (T'}} is kept fixed throughout the paper,
we will write € for &({ W }) and ¥ for #(T).

Lemma 3.1: As asubset of the Banach space .7 | (JV) Lis
bounded, closed and convex.

Proof: Boundedness of € is obvious and convexity fol-
lows from the linearity of the trace and the partial trace.
Let(X;),.x be a sequence in € and Ye.7 | (%f) such that
|| X; — Y||,—0. By Theorem A.3 of Ref. 1 we have

”WK - Oy Y”l = ”@K(Xi - Y)”1<”Xi - Y”p

which implies that W, = @, Y for all Ke.# . Hence Ye€and
2 is closed. |

The following propositions show that € is generated by
its extremal points.

Definition: Let X be a (real or complex) Banach space
and B a bounded subset of X. xeB is called a strongly exposed
point of Bif there exists a functional feX * with || f{| = 1 such
that f(x) > f(y)forallyeB, y£x and such that || y, — x||—0
for every sequence (y, ) in B with f( y, }— f(x).

Proposition 3.2: Qis the ||-||,-closed convex hull of its
strongly exposed points.

Proof: We show in the Appendlx that | (Jf) has the
“Radon—Nikodym property.” So the proposition follows
from Lemma 3.1 and from a theorem of Phelps.%’ [ ]

Since every strongly exposed point is extremal; Proposi-
tion 3.2 implies the Krein—-Milman type assertion that & is
the closed convex hull of its extremal points. With regard to
the extremal points of &, there even holds a Choquet type
theorem. For C a convex set, exC denotes the set of all extre-
mal points of C.

Proposition 3.3: For every Weg there is a complete
Borel probability measure ¢ on € such that

W = Bochner — j xdp(x)
b
and p(ex) = 1.

Proof: Let C (I" ) denote the set of all countable subsets of
I'. For AeC (I") we define

A A
=0 X,,
acA
A A

L= (WeA (X ) mgWCH,},

and
=N, .
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Z” is a separable closed subspace of % and L, is a separa-
ble subset of the Banach space 7 (J‘V) Since  and &, are
both bounded, closed and convex, £, is also bounded, closed
and convex. And since .7 (#°) has the “Radon-Nikodym
property,” it follows from a theorem of Edgar that, to every
Ve, there is a probability measure 4 on the universally
measurable subsets of £, such that ¥V = § xdu(x)as a
Bochner integral and u(ex®, ) = 1.”* Now ex@,
=g ,nex¥since &, is a face of & (i.e., from
W=pV, + (1 —p}V,,0<p<1and Wel,, Vet it follows
that V,e, for i/ = 1,2). Hence the trivial continuation of &
from £, to € yields the assertion for every We . Thus the
theorem is proven since @ = u {&,: 4eC (" }}. n

Unfortunately, these propositions give little informa-
tion about the concrete structure of € since we failed to speci-
fy all extremal or strongly exposed points of €. Therefore, we
will try a new approach to gain insight into the structure of €.
To this end we consider operations which generate new ele-
ments of & from given ones.

Lemma 3.4: Let (R, : iel } be a family of mutually or-
thogonal projections on #° such that 2, R, = 1; and that
every Q, is smaller than or equal to some R, . Then, for every

Ves (ﬁ/},g
Ve£<:>(},‘ R,VR, ) 8.

iel

Proof: Let Ve’ (ﬁ”) By Lemma 2.1(ii), every R; com-
mutes with all cylinder operators, and so we get

tr[V(Y® 1T\K)]

_ tr[(zR,.) V(Ye IT\K)]

iel

=Ztr[R,»V(Y® 1r. &) R;]

el

= Su[R VR (Yol ]

=:[(ER,~ VR, )¥o 14|

el
for all Ke.¥ and Ye % (57 ¥). Hence

OV =6, (ZRi VRi)
il

for all Ke.% which yields the assertion. ]
The prescription
X>aX: = 3 0, XQ, (3.1)

ael”

uniquely defines a mapping q from . (QAV) into itself, and
Lemma 3.4 implies that

Wele—qWel (3.2)
for all We.” (ﬁ/).

Lemma3.5:Let W=3_, c,V, bean arbitrary count-
able conyex decomposition of a STO We % (#) in
Vies (ﬁi’) and let { U;: iel } be a family of unitary operators
on & of type U(3). Thcn

We£<::>(Zc,- U, U;") es.
il
Proof: Asaconvex sum of STO’s, W = 2,c, U, V,U*is
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also a STO. From Lemma 2.1(ii) we conclude that
tr[Wy(Yelr k)]
=Y ctr[UV,U¥Ye 1, )]

iel
= %,Ci V(Yo lr k)] =tr[W(¥Yel, «)]
for all Ke.#, Ye# (57 X) which proves the assertion. [ ]
Let o be a mapping from I” into itself such that o{a)+-a
and a--b=>cla) = ofb), and let { U, : acl” }\be a faglily of uni-
tary operators of type U () such that U, (#,) = #°, forall
ael. Then

= > U,Q.WQ,U? (3.3)

sel”
uniquely determines a mapping from . (JA?) into itself, and
we conclude from Lemmas 3.4 and 3.5 that
W 38—u, We (3.4)

for all We.” (% and all mappings u,, of type (3.3).

Lemmas 3.4 and 3.5 show how to construct new ele-
ments of € from known ones. The following theorem even
shows that all of £ can be obtained in this way from every
single element.

Theorem 3.6: For all mappings u_ of type (3.3) and all
wel,

L=uu,W). (3.5)

The proof of this theorem is based on
Lemma 3.7: Let M, M, be two STO’s in &, each with a
countable convex decomposition

Mi = 2 cinXia (3'6)

in STO’s X, €.#(%) such that 4, CI" and rngX,, C &, for
all ac4, and i = 1,2. If a-b implies that a = b for all
a,bed,ud,, then M, = M,.

Proof: Assume that a—~b—a = b for all a,bed4,u4, and
consider an arbitrary element bed ud,. Let Bbeany PUVin
& » and @, any unit vector in #° %, Ke.% . Then we infer
from M, ,M,<8 that

tr[MPlgx ®BIH \K1)®1; 4]
=tr[M,Plpx @ BIH\K])® 1, 1] (3.7)

for all He.# with KC H. The net
{Plpx ®BIH K )91, , : HeF}

of projections converges strongly to E [ ] with
@: = @, 8 B [T \K 1."° Hence, since the trace is normal,
(3.7) yields

t(M,E [®))=t(M,E[®]). (3.8)

Ifbed,, ke{0,1}, it follows from P, , from Lemma 2.1(i)
and from our assumptions that

triM, E{D])
2 Cia (X, E[P]))

=Cupy tr(Xkb E[D])=cp tr(QpXiw E[P])
= tr( Xy P(P)) =y (P X(u®P) . (3.9)

If b€4,, it follows from the same reasons that
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(M, E[®])=0. (3.10)

Hence we conclude from (3.8) to (3.10) that ¢,, (P X, D )
= ¢y, { P X5, @) for all bed ,n 4, and that ¢, (DX, D)
= 0 for bed, \(4,n4,). Since the set of all vectors of the
form @ @ [T \K]is dense in77,, it follows that ¢,, X,
= ¢,, X, for all bed N4, and ¢, X,,, = O for all
bed, \(4,n4,) and k = 1,2. Hence M, = M, ]
Proofof Theorem 3.6: Let X, Y be arbitrary elements of
and let u, be an arbitrary mapping of type (3.3), with the
associated family { U, :ael" } of unitary operators. Choose
any diagonal representation

X= ngp(%), Y= Yy, P¥,) (3.11)

ueB
of X, Y [that means: (@, ) and (¢, ) are orthonormal sequences
andx,,y, > Oforall vju]. Then the STO’s u, X, u, ¥ can be
written in the form

t,X= > ¥ x, PlUg,.) =

D8 X,

ved eeE, acS
(3.12)
naY= E Ey d,ie P(Ue'p,ue): Zhh Yb ’
ueB ecF, beR
where E,: = {eel": Q. @, 70}, = [eel:Q, ¥, #0},
cve: = ”Qe¢7v“’ dye: = ”Qe¢p “ 4
¢W: = (cve]_l Qe@v for eeEV ’
¢ye: = (d,ue)—l Qe'py for eeF}l. ’
g.==“(z 2 xe P(Uerpve)),
ved ole) =a
mi=tr(S 3 y.di PUM),
ueB ale) =b
S: = (ael" g, #0}, R:={bel:h,#0},

Xpo=g"'2 3 x, & P(U.p.),
ved ofe)=a
and
Yoi=hy'Y Y y,di PUY,.).

ueB ole) =b ~

Trivially, 2,5 8. = 1, Zger b, = 1and X, ,¥,€7(F) with
rngX, C &, , mgY, CH, , for all acS, beR. Moreover,
{SUR}C rngo so that a,be(SUR ) and a—+b imply that a = b.
Hence we conclude from Lemma 3.7 thatu, X =u, Y. W

Corollary 3.8: For every acl, £ contains at most one
STO X with mgXC Cﬁf

Prog[ If € contains elements X, Y with rngX C 9?, s
rmngYC#°, , for some acl, then we infer from Lemma 3.7
that X = Y. [ ]

Corollary 3.9: Suppose that € contains a STO W with
mgWC . , for some acl". Then

(i) mgXC #°,, forall Xet;

(ii) To every bel” with b--a, € contains exactly one STO
W, with mgW, C5°, , and all these STO’s are unitarily
equivalent by some unitary operator of type U (3).

Proof: Assertion (i) follows immediately from (3.5) and
the construction of the mappings u,,. To prove {ii) we assume
elements b,cel” which are weakly equivalent to a. Then there
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exist mappings u,, u,, of type (3.3) such that o{x) = b,
u(x)=cforall x+a. Hence W,: =u, W and W :=u, W
are contained in € with mgW, C%, , mgW . C7°, . By
Corollary 3.8, W, and W, are the only elements in € with
ranges in /7, and 2? , respectively. According to (2.1) in-
Jra, there isa unitary operator U, of type U (z) with
U,(J‘Vh) = d‘!’ Hence rg(U, W, U* )C% By Lemma
3.5, U, W, U *ef and so we see from the above uniqueness
argument that UL, UT =W, . ]

Up to now, no statement concerning the cardinality of
has been made. In view of the following proposition, we re-
call the general assumption of this section, viz. that T is
infinite.

Proposition 3.10: If €0, then € contains uncountably
many mutually orthogonal STO’s of the form P (¢) (called
pure states).

Proof: By assumption, & contains an element X. As a
STO, X has a diagonal representation of the form (3.11).
Hence q.X [cf. (3.1)] can be written as

X = ZvacfeP

vedq ecE,,

(13.13)

with the symbols introduced in (3.12) infra. Going over to a
single index in (3.13) we get a countable convex decomposi-
tion of ¢.X into pure states,

gxX = Z}’i Py,

el

(3.13a)

where every unit vector y; ig contained in some ICT. Since T
is infinite, every WICT in 5 contains uncountably many
ICT’s.'! So we can choose, to every i€l, uncountably many
unitary operators U, of type U (3) such that the U,;’s all liein
different ICT’s. Hence the unit vectors

= ZJJ’.- Uy x:
iel

are mutually orthogonal and
4P (P) = zy,‘ U, Ply) U}
iel

From (3.13a) and Lemma 3.5 we conclude that P (@) €2 for
all /. a
We close this section by exhibiting two classes of

strongly exposed points of €.

Proposition 3.11: (i) Let % be a Hilbert space and
0#ge . The purestate P (@ ) is a strongly exposed point [in
the Banach space .7 (J%7)] of any subset of .#(%") which
contains P (@ ).

(ii) If € contains an element ¥ with rng ¥’ Cﬁf for some
bel, then Y is a strongly exposed point of &

Proof: (i) It is obviously sufficient to prove that P (¢ )isa
strongly exposed point of #(.%"). The functional f£.7 (.%")*,
defined by (X ): = (@,X@ ), exposes P(p ) in (%) since
| fIl =1and (p,P(@)p) = 1> (@.Xp ) for all Xe (¥,
X #P(p). Let WbeaSTO in S (%) and

W= Zwi Pla,)
iel
a diagonal representation of W. Then
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1w —Plp)li i
= IIEwi(P(ai) —Plp ))”1

< w; ||Ple) ~Plg)llt

=4S (1 = (e, £)13) = 41— (@ #p))

=4[ f(Plp) — f(¥)],
where we used the equation ||P(a) — P(B)||}
= 4(1 — [{a, B )|?) from the proof of Corollary A .4(f)in Ref.
1. So P{p) is a strongly exposed point of #(%").
(ii) If @ is a unit vector in ¥ and R any projection in
AB (), then one easily checks that
|[RP(@R* + R*P(a)R }|;<2||R ‘a|| = 2(a,R ‘a)'*.
(3.14)
Now, let Ye® and rngY C dé‘\fb . Then we choose an injective
mapping y: [ —I" such that ¥(x) = Y yK=x <y, 7(X)+X
and y(a) = b for all a—-b. Since Q, YQ, = 0 for all x#b, we
find u, Y = ¥ and, by Theorem 3.4,
= (Wes(Fn, W=Y].
Hence to every Wef belongs a subset {a,el™: ieN} of I' such
that a, =b and

Y= 3 U.0,WQ,U?,

i=1

(3.15)
where we can assume that U, = 1. Let #<€ and let
W= >uw Plg)
jeJ

be a diagonal representation of W. Then

W — Q0 WO II:i<IIQs Wil + |G W2y + Qs WG, »

(3.16)
Qs WOl =tr(@Qs W) =1—1tr(Q, W), (3.17)
10, W2 + Qs W01,
<gw,-nQ.,P(¢j)Q¢ +03 Plg) Gl - (3.18)
Equations (3.14) and (3.18) yield
19y wo, + Qs Wo,li<2 ij <‘Pj ’Qlt ¢’j>l/2
jet
<2(ij (@, ,Q¢<p,>)”2 =2[1—tr(Q, W)]"*.  (3.19)
jeJ
Combining (3.16), (3.17), and (3.19) we get
W — @ WQ,|l,<3[1 — tr(Q, W)]"2. (3.20)
From (3.15), (3.20) and from
| 3 vowovz
< 2,2 Q. WC. s
= 5 wlo,W)=1-tQ, W)
we finally arrive at
1Y — W|2<16[1 — tr(Q, W)] (3.21)
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for all We 8. So, if (V, ),y is any sequence in € with tr{Q, V)
—tr(Q, Y) = 1, then we see from (3.21) that || ¥/, — Y ||,—0.
Moreover, the functional X —tr(Q, X ) in 7 (#")* exposes Y
in & because Corollary 3.8 and Y<Q, imply that tr(Q, W)

<tr(@, Y) = lforall We & W #£7Y. So Yisstrongly exposed
in & ]

4. PROJECTIVE LIMITS ON INCOMPLETE TENSOR
PRODUCTS

The ambiguity of the projective limit of a projective
system { Wy :KeZ (T')} of STO’s is due to the special con-
struction of the (so called) complete tensor product
H = ®, r#, which, in some respect, is “too big.” To
avoid this ambiguity, one can think of allowing only those
projective limits whose ranges are contained in ICT’s which
are the smallest subspaces of 7 that can reasonably be re-
garded as tensor products on their own. As guaranteed by
Corollary 3.8, these particular projective limits are unique if
they exist at all.

Theorem 4.1: The projective system { Wy :Ke5 (T}
has a projective limit with its range contained in 5[] if and
only if the operator net

(Wi ® Pla[T\K )k

converges weakly to a STO, say ¥, on 2. In this case,
rngV C 77 Ta] and V is the unigue projective limit with this
property.

Proof: (I) Assume that (Wy ® P{a[T \K ]))x con-
verges weakly to Ve ¥ (7). Then'?

lim Wk ® Pl@[T\K])—V|,=0. (4.1)
Since Q,(Wx © Pla[T\K 1)) =0 for all b#[a],
gV C #al. (4.2)

If V= 2_,v,P(¢;)is a diagonal representation of ¥, then to
every ic I there is a net (@« )¢ of unit vectors @, € # such
that

lim|¢; — g & a[TN\K]|| =0.

Hence

lim[ sup ||l@i
H Ke . #

KDH

— o ® alK \H]li] =0 (4.3)

and

S 0,Pl@w ®a[T\K])H =0, (44

el 1

From (4. 1), (4.4), and from
|[w = Supipu)

el

= mWK - Zv,-P(cp,-K)} ® P(a[T\K])H

icl

1

<|Wx ® Pl@[T\K]1)-V|,
+b V— S uPlpx ® a[T\K])l

ic i

b

we get
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W — EUP¢1K)

el

lim ' =0 (4.5)

Finally, we conclude from (4.3}, (4.5) and Theorem 2.1 of
Ref. 1 that Ve £, and we conclude from (4.2) and Corollary
3.6 that V'is the only element in £ with rngV'C #Ta].

(IT) Assume that Ve®, rgV C 7#Ta] and let
V =2, v, P(¢;) be some diagonal representation of V. By
specializing part (II) of the proof of Theorem2.1 in Ref. 1 to
this case, we see that, to every /€ I, there is a family

{@ix:Ke F} of unit vectors @, €% such that
1ilr(n lpx ® af T\K] —¢:|=0 (V icl) (4.6)
and
lilr(nHWK-« S 0. Pl@s) ‘ —0. 4.7)
et

With @ = @, ® a[T\K ] weinfer from {4.6), (4.7), and
from a dominated convergence argument that

lim
K

\WK & P@lT\K])— | v,P(®y)

el

1 —0
' g

and

lilr<n HV > v, P (D)

el

' =0. (4.9)

From (4.8), (4.9), and from
Wk ® PlalT\K])—- V],

<HWK ® Pla[T\K]) - EvP(«D,K)

el
>uP

(Do) — VH
el 1

it follows that (W ® P(a[T \K }))x converges weakly to
V. |
Suppose now that only those projective limits are to be
considered whose ranges are contained in ICT’s. In this case,
it seems to be more appropriate to deal from the outset with
incomplete tensor products only, defined independently and
not as subspaces of 57, and to adapt the notion of the pro-
jective limit to the ICT as the proper tensor product of Hil-
bert spaces. If we want to refer to the ICT associated with the
family (a, ), r of unit vectors a,€ 7%, and defined indepen-
dently of 7, then we use the notation ® . (%°,,a,) instead
of %[a] By tr;, , and trx we denote the trace functionals on
T(® . (7, a,)) and T (%), respectively, and Y, de-
notes the cylinder operator on € . r(5#,,a,) associated with
Ye & ().
Definition: Let { W, :Ke% (T)] be a projective system
of STO’s Wy on FX. ASTO Von @ . .(5,,a,)is called an
[a)-projective limit of W}, if

trg(We ¥) =tr, (VY,o))

for all Ye# (5 ) and Ke F(T).

By identifying the product vectors in % and
® .. r(#°,,a,) which are associated with the same family
(B,),c r of unit vectors, we get a canonical isomorphism be-
tween ® . (#,,a,) and #°[ ® ,, ]. This isomorphism im-
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plies that the projective system | Wy :Ke % (T')} has an [a]-
projective limit ¥ if and only if it has a projective limit X on
# with mgX 'C#a] and that, in this case, ¥ can be identi-
fied with X | #7a]. We therefore obtain the following nec-
essary and sufficient condition for the existence of [a]-pro-
jective limits, a result which has been independently
established by Bartoszewicz without resort to Theorem 2.1
of Ref. 1."
Corollary 4.2: A projective system { W :Ke .7 (T')} has

an [a]-projective limit if and only if the net (W
@P(a[T\K 1))k in A(® . +(#,,a,)) converges weakly to
a STO, say ¥, on ® , ,(5,,@,). In this case, ¥ is the unique
[a])-projective limit of { W, }.
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APPENDIX

In this appendix we show that .7~ (ff) has the Radon—
Nikodym property. For the standard notions of vector mea-
sure theory used below, the reader is referred to Ref. 7.

Definition: A (real or complex) Banach space X has the
Radon-Nikodym property (RNP) if, for every finite measure
space (2, 1) and every u-continuous vector measure
G:«/ —X of bounded variation,

G (E } = Bochner — fgd,u
E

for some geL,(u,X ) and all Ec.«/.

Theorem A.17: The following statements about a (real or
complex} Banach space X are equivalent:

(i) X has the RNP;

(ii) every closed subspace of X has the RNP;

(iii) every separable closed subspace of X is isomorphic
to a subspace of a separable dual space.

Corollary A.2: For every Hilbert space %", the Banach
space .7 (¥”) has the RNP.
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Proof: Let % be any separable closed subspace of
T (). Hence there is a sequence (4;),. y in & such that

(VCe #)(Ve> 0T jeN) |C—4,] <€ (A1)

To every compact operator D on %, we define the closed
subspace -

L(D):=( g D)V(kerD))

of %~ which is separable. Hence the closed subspace

Hi= V L)

i=1
of % is also separable. If Q denotes the projection onto %,
then 4, = QA4,Q for all /eN. Hence

1C—4,[,>1Q(C—4)21l, = 1QCQ - 4,1,  (A2)

forall Ce % and ieN. Eqs (A 1)and (A2)imply that C = QCQ
or, equivalently, L (C)C 57 forall Ce %.Hence % isisomor-
phic to a subsapce of 7 (#°). Now, 7 (#°) is separable since
# is separable, and it is well known that .7 (7°) is a dual
space.” So we infer from Theorem A.1 that .77 (%"} has the
RNP. [ ]
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It is proved that the equivalence class of bundle representations of a group G on the product
bundle %, with total space B, = X X Y includes all representations of G on bundles % which are
homeomorphic (but not necessarily naturally homeomorphic) to the product X X ¥, provided
that G has the same action on the fibres of Z ;and % . The group 4 of the bundle % is immaterial.

PACS numbers: 02.40. + m

1. INTRODUCTION

In the definition of bundle representations,’-? the un-
derlying total space B, was taken as a natural product,

B, = X X 77. Since there exist bundles which are homeo-
morphic,* but not naturally homeomorphic, to the product,
it is reasonable to ask how one can represent groups on such
bundles. The answer is the following: The equivalence class
of bundle representations contains all representations on
bundles which are homeomorphic to the product, irrespec-
tive of whether this homeomorphism is natural or otherwise.
In this paper we shall prove this assertion.

We shall start with a remark on terminology. Steenrod*
defines a product bundle as one with a distinguished fibre-
preserving homeomorphism to the product, and with the
identity as the group of the bundle. Dieudonné® calls such
bundles trivial. To differentiate between these, and bundles
which are homeomorphic but not naturally homeomorphic
to the product, Steenrod introduces the notion of G-equiv-
alence to the product.® Dieudonné calls such bundles triviali-
zable,” and simultaneously emphasizes the distinction be-
tween trivial and trivializable bundles.

If one is interested only in topological invariants, which
is generally the case in the mathematical literature, there is
no point in distinguishing between trivial and trivializable
bundles. Consequently, in much of the mathematical litera-
ture one encounters the term “trivial bundles” without fur-
ther specification. A topologically trivial bundle may be ei-
ther trivial or trivializable in the sense of Dieudonné. In
Steenrod’s book the statement that a bundle is “‘equivalent to
the product” is stipulated to include the case that it is G-
equivalent to the product.®

However, in some physical applications of fibre bundle
theory which are currently under investigation, the nonto-
pological distinction between trivial and trivializable bun-
dles appears to be physically significant. In the geometrical
formulations of some gauge theories, a gauge transformation
corresponds to the passage from the one global trivialization
to another; the principal bundles involved are homeomor-
phic?® to the product, but there exists no distinguished
homeomorphism.'"!

In Sec. 2 we shall define group representations on gen-
eral fibre bundles (not necessarily vector bundles), and in
Sec. 3 we shall establish the main result via two elementary
propositions, one of which is proved in detail. Finally we
shall sketch, in the Appendix, the construction of trivial and
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trivializable bundles according to the Whitney-Steenrod
theorem, in order to provide a complete clarification of the
difference between the two.

2. GENERAL DEFINITION OF GROUP
REPRESENTATIONS BY BUNDLE MAPS

Let # = [B, X, m, A, Y] be a fibre bundle'? with total
space B, bases space X, projection 7, group 4, and fibre Y.
Let G be a topological group. We define a bundle representa-
tion of G on # to be a family {4 ( g)} of invertible bundle
maps'®A ( g): B—B, indexed by geG, which satisfy the follow-
ing conditions?:

(i) A (e) = the identity map, e is the identity of G:

(i) A (81)°4 (8,) = 1 (g:8>) V&, £:€G;

(iii) the map A:G X B—B defined by 4 (g, b) = A (g)b is
continuous (here beB ).

Clearly the family of bundle maps {4 {g)} induces a continu-
ous action {4 (g)} of Gon X.

3. THE MAIN RESULT

We now assume that (a) Z is homeomorphic to
& o= X XY {thebundle # ,is thecollection [B,, X, 7, Y1},
but {b) there exists no natural or distinguished homeomor-
phism between B and B,. We denote ¢, a global trivialization
of Bie.,

$,: X XY—B (1)
is a homeomorphism such that
mo¢,(x, y) = x YxeX, yeY. (2)

Here i belong to an indexing set J.

Proposition 1: A global trivialization ¢, of B induces,
from the representation {4 (g)} of Gon &, abundle represen-
tation (in the ordinary sense) {4,(g)} of G on % ,, where

hi(g)=¢ " oA (g)od,. (3)
If {h,(g)} and {A,(g)} are the bundle representations of G on
4 , induced by the trivializations ¢, and ¢, respectively,
then

h;(g) = -jS_ lhj ng)‘jS’ (4)

where £2;, is a coordinate transformation on the fibres'* of
A, given by

ﬂji = ¢j7 1°¢i’ (5)

®© 1981 American Institute of Physics 290



which acts on each fibre as an element of the group A4 of the
bundle #.
Proof: (a) h,(g) is defined by the commutative diagram

f Fig. 1:

T @
B
lfﬁ,——l

B
¢r1l
B,

B, ———————
k@

Since A (g) and ¢, are fibre-preserving homeomorphisms, so
is A, (g). The algebraic representation properties [i.e., (i), (ii)
of Sec. 2] of { h,(g)] follow by inspection. The continuity

property of A, [defined by analogy with 4, (iii) of Sec. 2; cf.
also (iii), Eq. (6), Ref. 2] are set in evidence by the diagram in
Fig. 2:

FIG. 1.

G XB 4
id X¢ ! 1

— B

1¢:'

G XB ———— B,

FIG. 2.

InFig. 2(id X ¢ ;7 ')g,b) = (g, 4 7 '(b)), beB, and one verifies
immediately that the diagram commutes.

(b) For every pair ¢;, ¢; of global trivializations, we de-
fine a continuous map'?

a;: X—4,
by

aji(x) = j,;l °P s
where the map ¢, , :Y—7"'(x) is defined by

¢ (¥) = $:(x, y).
The g, (x) satisfy

a; X)ay (x) = a; (x), (6)
and

[a;00]" = a;(x). Q)
Now consider the map

N, =¢,"'0¢;:B;>B,
and evaluated ;' © ¢,(x,p). Let ¢,(x,p) = b, thenm(b ) = x,
andé; ' °4,(xy) = ¢, '(b) = (x', ') (say). Then
b=¢,(x',y")and m(b) = x’, whence x’ = x. Thus we have
proved that £2;; acts as the identity on the base space, and is
therefore a coordinate transformation on the fibres. We
have, furthermore

aji(x) = 'jS(x)9
and, as is evident upon inspection, the {2, satisfy the same
relations (6) and (7) as the @, (x).

Proposition 2: Let { h (g)] be abundle representation of G
on %, and let ¢, be a trivialization of B. Then {4,(g)}, de-
fined by

Ag)=¢,oh(g)od, !
is a representation (in the sense of Sec. 2) of Gon #. If §,, ¢,

are two trivializations of B and {4,(g)}, {4,(g)} the corre-
sponding representations of G on %, then

A’j(g) = T‘ji olli(g) ° Tjrly
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where T;: B—B, defined by
Tji = ¢j ° ¢ i "
is a coordinate transformation on the fibres of % ; that is, the

representations {4,(g)} and {4,(g)} are equivalent. More-
over, the T}, satisfy the relations

T;Ty =T,

T; L= 7.

Proof: Similar to the proof of Proposition 1. The results
we have obtained above can be summarized in the following
theorem.

Theorem: The equivalence class of bundle representa-
tions of the group G on #, = [B,, X, m,, Y] contains all
representations of G on all bundles # = [B, X, m, A, Y]
which are homeomorphic to % , by fibre-preserving homeo-
morphisms, irrespective of the group A (provided that the
group G has the same action on the fibres of %, and #).

4. CONCLUDING REMARKS

The result proved above may appear surprising at first
glance, but ceases to remain so after a moment’s reflection.
The notion of a bundle representation, if properly formulat-
ed, ought to be invariant under fibre-preserving topological
equivalences. Such a definition is easy to give but harder to
use for constructive or computational purposes. The situa-
tion is exactly the same as in the theory of linear representa-
tions of groups. There a linear representation is defined in a
coordinate-free manner as a homomorphism of the group
into the group of linear transformations of a vector space.
However, to compute one often has to fall back upon marrix
representations, which require a choice of basis. One then
eliminates the basis dependence by passage to equivalence
classes. An “abstract” linear representation may be consid-
ered as an (appropriately defined) equivalence class of “con-
crete’”” matrix representations. So it is with bundle represen-
tations. An “‘abstract” bundle representation is the
equivalence class, under coordinate transformations, of a
“concrete” bundle representation which is defined, explicit-
ly and constructively, in terms of a specific global trivializa-
tion. Since we admit all fibre-preserving homeomorphims as
coordinate transformations, the nontopological distinction
between trivial and trivializable bundles disappears in the
passage from the concrete to the abstract.

As a byproduct of these considerations we arrive at the
following conclusion. Suppose that a bundle with group G is
G-equivalent to the product. If we want to construct a phys-
ical theory (using this bundle) in which G has a physical
meaning, then the mathematical structure which is signifi-
cant is a G-structure'® on the base space X, and not the topo-
logical structure of the bundle. In such contexts principal
bundles are only a convenient means for studying the geome-
try of G-structures.

Many applications of fibre bundle theory which are be-
ing considered appear to be of this kind. These include, apart
from the usual gauge theories based on Minkowski space,
the works of A. Bohm'” and W. Drechsler.'® Moreover,
Minkowski space itself appears to admit a (3,2) de Sitter
group structure, first noticed by Dirac.'® van Dam and Bie-
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denharn®® have made the remarkable suggestion that this
structure be used to bypass O’Raifeartaigh’s theorem.?! In
view of these works, it might be useful, for achieving greater
clarity, to shift the emphasis in such contexts from fibre bun-
dles to G-structures. The latter should be viewed as the pri-
mary objects with physical meaning, and principal bundles
as auxiliary mathematical constructs for studying them.

APPENDIX: TRIVIAL AND TRIVIALIZABLE BUNDLES

In all cases, a fibre bundle is an object which is assem-
bled, painstakingly, from its ingredients by the Whitney—
Steenrod construction, given in Sec. 3 of Ref. 4. We follow
the notations and terminology of this reference.

Recall that a coordinate bundle is called a product bun-
dle if there is just one coordinate neighborhood ¥V = X, and
the group G of the bundle consists of the identity alone. Ap-
plying the Whitney-Steenrod construction to this case, we
obtain the total space B, = X X Y, the natural projection
p: B,—X, and the identity map as the coordinate function. A
fibre bundle is a strict equivalence class of coordinate bun-
dles. To determine this class, we take any open cover { V; } of
X consisting of more than one chart, and G = {e}. Working
out the Whitney—Steenrod construction for this case, we find
again that the total spaceis X X Y, ¢; is the restriction of the
identity map to ¥, X Y for each je J, and the projection is the
natural one. The bundle is trivial.

Now suppose that we are given the following: there is
only one coordinate neighborhood ¥V = X; there exists an
effective topological tranformation group G of Y, an index-
ing set J, and a family of continuous nontrivial maps
g;:: X—G for each pair i, j of indices in J. The conditions of
the Whitney-Steenrod construction are met. The construc-
tion gives us a bundle with total space B, and for each je Ja
coordinate function

& X X Y—B,
such that
Lo Bix =gji(x) VxeX.

X
The space B is homeomorphic, in a fibre-preserving manner,
to B, = X X Y, but there exists no natural or distinguished
homeomorphism. The bundle obtained is trivializable but
not trivial. The passage from one global trivialization to an-
other is accomplished with the help of the group G of the

bundle.
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'Bundle representations were first defined in R.N. Sen, Nonrelativistic
Zero-Mass Systems, Lecture Notes, Gottingen (1974); H.J. Borchers and
R.N. Sen, Commun. Math. Phys. 42, 101 (1975). The definition was
strengthened, as regards continuity, in Ref. 2.

*R.N. Sen, Physica (Utrecht) A 94, 39 (1978). We shall be working with
this latter definition.

*We shall work exclusively with bundle homeomorphisms which are fibre
presserving. In B, = X X%, X is the base space and % the fibre.

*N. Steenrod, The Topology of Fibre Bundles (Princeton U.P., Princeton,
New Jersey, 1951, with an appendix added November 1956), see p. 16.

%). Dieudonné, Treatise on Analysis (Academic, New York, 1972), Vol. 111,
see p. 78.

®See Ref. 4, p. 17.

’See Ref. 5, pp. 78 and 79.

¥See Ref. 4, Secs. 4.3 and 4.4.

°In the geometrical formulations of gauge theories one works with differen-
tiable rather than topological structures; however, this extra structure is
not relevant in the present context.

19See, for example, W. Drechsler and M.E. Mayer, Fibre Bundle Techniques
in Gauge Theories, Vol. 67 of Lecture Notes in Physics {Springer-Verlag,
Berlin, 1977), and various articles in the following reference.

' Differential Geometrical Methods in Mathematical Physics, edited by K.
Bleuler et al., Vols. 570 (1977) and 676 (1978) of Lecture Notes in Math-
ematics (Springer-Verlag, Berlin).

2In order to avoid any misunderstanding, we state explicitly that wé use the
term “fibre bundle” in the sense of Steenrod, Ref. 4. For various defini-
tions of fibre bundles and fibre spaces, see, for example, W.S. Massey,
“Some problems in algebraic topology and the theory of fibre bundles,”
Ann. Math. 62, 327 (1955). D. Husemoller, Fibre Bundles, 2nd ed.
(Springer-Verlag, GTM 20, 1975\ calls a “bundle” what is called an espace
découpé by R. Godement, Théorie des faisceaux (Hermann, Paris,
1958) and space over X by A. Dold, “Partitions of unity in the theory of
fibrations,” Ann. Math. 78, 223 (1963).

*We call a bundle map invertible only if its inverse is also a bundle map.

“Coordinate transformations are discussed in detail in Ref. 2.

*See Ref. 4, Sec. 2.3.

'The concept of a G-structure is due to S.S. Chern. See his article “The
geometry of G-structures.” Bull. Am. Math. Soc. 72, 167 (1966). See also
S. Sternberg, Lectures on Differential Geometry (Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1964), Chap. VIIL.

7A. Béhm, “Relativistic rotators—a quantum mechanical de Sitter bun-
dle,” in: Proceedings of the International Symposium on Mathematical
Physics, 1976, Mexico City (University of Mexico, Mexico City, 1977).

'8See the contributions by W. Drechsler in Ref. 10 and in Group Theoretical
Methods in Physics, Vol. 94 of Lecture Notes in Physics, edited by W,
Beiglbock, A. Bohm, and E. Takasugi (Springer-Verlag, Berlin, 1979).

'P.A.M. Dirac, J. Math. Phys. 4, 901 (1963).

2°See the contribution by H. van Dam and L.C. Biedenharn, in Ref. 18.

2'L. O’Raifeartaigh, Phys. Rev. B 139, 1052 (1965).
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Minkowski space-time is developed in terms of a set of undefined primitive elements called
events, certain subsets of events called paths which correspond to the worldlines of free particles,
and a temporal order relation on each path. Nine axioms describe the existence and uniqueness of
paths, temporal order, connectedness, causality, collinearity, continuity, isotropy, and

dimension.

PACS numbers: 02.40. + m, 03.30. + p

INTRODUCTION

Minkowski space—time will be described in terms of a
set of undefined primitive elements called “events,” certain
subsets of events called “paths” which correspond to the
worldlines of free particles, and a temporal order relation
defined on the set of events of each path. The postulated
relations of temporal order may be thought of as applying to
freely moving observers who are capable only of distinguish-
ing between events in their own local histories. The axioms
permit the extension of these local temporal orderings de-
fined on each path to a global temporal ordering defined on
the set of all events.

In the present axiomatic system, all the axioms describe
properties of paths. The existence of “light signals” is de-
duced rather than postulated axiomatically as in the preced-
ing axiomatic systems of Walker,'* Szekeres,? and Schutz.*

In all these axiomatic systems, the concept of a “‘coordi-
nate frame” is developed from primitive notions which cor-
respond to the temporal order properties and kinematic be-
havior of free particles and light signals. Other axiomatic
systems, in which the existence of coordinate frames is as-
sumed, have been briefly reviewed by Schutz.*

The form of the axiomatic system resembles both that
of Hilbert® for Euclidean geometry and the previous system
of Schutz* for Minkowski space-time. The axioms of the
present system may be compared with those of Hilbert, and
it will be seen that all but one of the axioms have analogs
within Hilbert’s five axiom groups: the exception is the Axi-
om of Causality (Axiom V, 1.41) which expresses the essen-
tial character of a causal space-time and is therefore not
required for a geometry. Whereas Hilbert’s axiom system
contained an entire group of axioms stating the properties of
an undefined congruence relation, the present axiomatic sys-
tem contains one symmetry axiom (the Axiom of Isotropy,
Axiom VIII, 1.71) and does not require the introduction of a
congruence axiom at all. Instead, it transpires that all the
properties of a congruence relation can be deduced as theo-
rems within the present axiomatic system.

Some comparisons can now be made with the previous
axiomatic system of Schutz,* which was subtitled Kinematic

*' Permanent address.
™Visiting Scientist, January-August 1978.
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Axioms for Minkowski Space~Time and will subsequently be
referred to by the letters KA. The previous rather strong
Axiom of Compactness of Bounded sub-SPRAY (KA Axi-
om XI, 2.13} is now replaced by the considerably weaker
Axiom of Continuity (Axiom VII, 1.63) which is analogous
to the geometric axiom of the same name.> This axiom ap-
plies to the set of events of a path rather than to a set of
simultaneously coincident paths, so the axiom is not only
weaker but might even be regarded as being more intuitively
acceptable.

The present Axiom of Isotropy (Axiom VII, 1.71)is also
weaker than its predecessor (KA Axiom VII, 2.9), the signifi-
cant difference being that the present axiom does not assume
that signals are mapped onto signals. This symmetry axiom
may be interpreted intuitively as meaning that all “direc-
tions” are equivalent. Thus, it is this axiom which expresses
an idea similar to the “Principle of Relativity” of Einstein,®
who postulated that there should be no ““preferred coordi-
nate frames.” The axiom does not assume the existence of
coordinate frames, which will be developed from the axioms,
nor does it assume that isotropy mappings are automor-
phisms. What is assumed, for a given isotropy mapping, is
that the events on one path (an “observer’s path”) are invar-
iant, that paths are mapped onto paths, and that the map-
ping is bijective on one subset of simultaneously coincident
paths. ,

Two axioms are essentially different from those of the
preceding axiomatic system (KA). The Axiom of Unique-
ness of Paths (Axiom II, 1.12) is analogous to Hilbert’s Axi-
om of Connection (Hilbert,’ Axiom I, 2) and was previously
deduced as a theorem (KA, Theorem 6, 2.9), while the Axi-
om of Collinearity (Axiom VI, 1.51) is analogous to Hilbert’s
Axiom of Order (Hilbert,’ Axiom I1, 4) and is introduced to
replace the previous Axiom of Uniqueness of Extension of
Optical Lines (KA, Axiom V, 2.7) and the Axiom of the
Intermediate Path (KA, Axiom VI, 2.8).

Many properties which were taken as axiomatic in the
previous system are now deduced as theorems. Thus the
property stated in the Signal Axiom (KA Axiom I, 2.2) is
now deduced as Theorem 1.72, the Triangle Inequality (KA
Axiom IV, 2.4) as Theorem 1.66, the Uniqueness of Exten-
sion of Optical Lines (KA Axiom V, 2.7) as described in Sec.
2.D, the Existence of an Intermediate Path (KA Axiom VI,
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2.8) as Theorem 1.56, while the roles of the Axioms of Inci-
dence (KA Axiom XI, 2.11) and Connectedness (KA Axi-
om X, 2.12) are now subsumed in the axiom of Connected-
ness (Axiom IV, 1.31).

Within the present axiomatic system it is possible to
prove several propositions which are assumed by many other
writers. Thus, we do not assume the concept of a coordinate
frame, we do not assume that the set of events of each path
can be ordered by the real numbers, we do not assume that
light signals exist, nor do we assume that paths and light
signals have constant speed. These propositions all turn out
to be provable within the system.

Three properties of Minkowski space-time are of cen-
tral importance to the subsequent development. One-dimen-
sional kinematics is in many ways analogous to plane abso-
lute geometry, for it transpires that the concept of
parallelism can be applied to paths and, furthermore, the
corresponding question of uniqueness of parallelism is close-
ly related to uniform motion along paths. Both Robb’ and
Szekeres® observed that uniform motion implies uniqueness
of parallelism but, in the present axiomatic system as well as
in KA, the uniqueness of parallelism is proved and then it is
shown that this implies uniform motion along paths, so that
Newton’s first law of motion need not be assumed. The sec-
ond important property is that, in contrast to the Euclidean
velocity space of Newtonian kinematics, the velocity space
associated with Minkowski space—time is hyperbolic, a
property which is established by making use of a recent char-
acterization of the elementary spaces by Tits.®'® The third
important property is that space-time coordinates are relat-
ed to homogeneous coordinates in a three-dimensional hy-
perbolic space. Consequently, there is an isomorphism be-
tween homogeneous Lorentz transformations and
transformations of homogeneous coordinates in hyperbolic
space.

In this paper many details of the proofs have been omit-
ted in order to keep the paper to a reasonable length. Full
details of the proofs are given in a research report'’ which is
available on request from the Max-Planck-Institut fiir
Astrophysik.

1. AXIOMS AND PRIMITIVE NOTIONS

Minkowski space-time will be described in terms of a
set of undefined primitive elements called events, certain
subsets of events called paths, and a remporal order relation

< defined on the set of events of each path.

The set of all paths will be denoted by & and the set of
all events will be denoted by & . Individual paths will be
denoted by the symbols Q, R, S,-... Events belonging to a
path, say Q, will be denoted by the path symbol together
with a subscript, for example,Q,, Q,, @, ; or by means of
lower case letters such as a, b, c,--. If a € Q, we say that the
event a lies on the path Q or more simply that a lieson Q or Q
passes through a. An event may belong to two or more paths:
if Q N R = g, we say that Q and R coincide at a or that Q
meets Rat a.

The temporal order relation applies only to pairs of
events on the same path: The statement “Q, < Q,” is to be
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read as “Q, is before Q,” or “Q, is after O,”.
Minkowski space-time will be defined to be the ordered
triple # = (&, Z#, <).

A. The axioms of existence and uniqueness for paths

It is first necessary to ensure that & and & are non-
empty and that there are at least two distinct paths (where
the word “distinct” is used in the set-theoretic sense).

Axiom]I, 1.11 (existence): There are at least two distinct
paths.

Axiom II, 1.12 (uniqueness): There is at most one path
passing through any two given distinct events.

Within Hilbert’s® axiom system for geometry, these axi-
oms have their analogues in the Axioms of Connection (12
and I3).

The Axiom of Uniqueness is the first of three axioms
which express different aspects of the “law of inertia” or
“Newton’s first law.” The Axiom of Uniqueness expresses
the idea that paths correspond to the possible trajectories of
“free particles.” Other aspects of the law of inertia are de-
scribed by the Axiom of Collinearity (Axiom VI, 1.51) and
the Axiom of Isotropy (Axiom VIII, 1.69).

B. The axiom of temporal order

This axiom ensures that there are no closed time-like
world lines and is analogous to the axioms of order of geome-
try (see, for example, Hilbert’s® Axioms of Order II 1-3).

Axiom III, 1.21 (temporal order): The events of each
path are irreflexively and linearly ordered by a temporal or-
der relation <.

The axiom also ensures that, in the present axiomatic
system, we do not need to assume that the events on a path
are order isomorphic with the real numbers, nor do we as-
sume that a path may be prolonged (cf. Hilbert’, Axiom II
2.): This proposition is proved as a theorem (Theorem 1.43).

Although the temporal order relation < is clearly anti-
symmetric, there is no “anisotropy of time” within the axi-
omatic system since we can consistently interchange the
symbols < and >, the words “before” and “after”, and the
words “past” and “future” (see Sec. 1.C following). The
choice of one direction rather than the other as a “forward
direction of time” is simply a matter of convention within
this axiomatic system.

C. The axiom of connectedness
This axiom also has an analog in the foundations of
geometry [see, for example, Hilbert® Axiom (s) of Incidence
I 1]. Before stating the axiom we make the following defini-
tions: Given a path R and an event e¢R, we define
(i) the future of e in R:
R(e, +) = {g:g>e geR};
(ii) the past of e in R:
R(e, —) = {d:d <e, deR};
(iii) the unreachable set of e in R:
R(e,¢) = f:f%e feR].

The future of e in R is the set of events in R which are
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connected with e by paths directed from e to R, while simi-
larly the past of e in R is the set of events in R which are
connected with e by paths directed from R toe. Note that the
unreachable set is the set of events in R which can not be
connected with e by any path.

Axiom IV, 1.31 (connectedness): Given a path R and an
evente¢R, thesubsets R(e, — ), R(e,# ), R(e, + ) eachcontain
more that one event.

This axiom expresses the notion of the “boundedness of
relative velocities” although it should be noted that the con-
cept of velocity has not yet been developed. While this axiom
has some resemblance to Hilbert’s® first Axiom of Connect-
edness (Axiom I1), it also expresses an essential difference
between a geometry and a space-time. The other essential
difference is contained in the Axiom of Causality {Axiom V,
1.41). Note that, in Galilean space-time, the set Rle, 4 ) con-
tains exactly one event: Apart from this exception, all the
other axioms are satisfied by Galilean space—time but addi-
tional axioms would be required for categoricity.

D. The axiom of causality

This axiom expresses the second essential difference be-
tween a causal space-time and a geometry. In effect it states
that there is a temporal order relation on space-time permit-
ting the usual interpretation of causality, namely that “a
cause always precedes an effect in time.” Another interpre-
tation of the axiom is that there are no combinations of “for-
ward-directed path segments” which permit “travel into the
past.” For a further discussion of causal space-times, see
Kronheimer and Penrose!? and Woodhouse. ! Since the
classical geometries have no causal properties, it is not sur-
prising that the axiom of causality has no analog within Hil-
bert’s axiom system for geometry. In the statement of the
axiom, the temporal order relation < has the following
meaning for sets of events 4, B:

[4 < BY}=>[aed, beB=>a < b].

Axiom V, 1.41 (causality): Given a path R and an event
e¢R, then

R(e, —)<R(e,4)<Rle, +).

This axiom has, as a consequence, the following very
useful lemma which is logically equivalent to the Axiom of
Causality and which could have been used as an axiom in an
alternative axiomatic system. The choice of one proposition,
rather than the other, for an axiom is a matter of taste only
and is arbitrary to that extent.

Lemma 1.42 (direct path): Given two paths Q, R with
events a, b€Q and b, ceR, respectively, such that

a<bandbc<e,

then (i) there is a path S which passes through the events a
and ¢, and (ii) a <c.

Remarks: (i) This lemma also applies with time-re-
versed orderings. (ii) The lemma extends the transitivity of
the temporal order relations from events on the same path to
the set of all events & . Thus, the “local” temporal orderings
on paths can now be extended to a “global” temporal order-
ing on the set of all events #. Given any three events a, b, ¢
with a < b and b < c it follows that @ < ¢ and we are therefore
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justified in using the more compact expression a < b < ¢ with
the obvious meaning.

Proof: We are given that beR(a, + ), that ceR, and that
¢ > b, so by the Axiom of Causality (Axiom V) it follows that
ceR (a, + ); thus, a < cand thereis a path S containing @ and
C.

It will now be shown that each path has no “first event”
and no “last event.”

Lemma 1.43 (prolongation): Given a path Q with events
b, ¢ such that b <c, then there are events @, deQ such that

a<b<c<d.

Proof: By the Axiom of Existence (Axiom I, 1.11) there
is a path R distinct from Q, so by the Axioms of Uniqueness
(Axiom II, 1.12) and Connectedness (Axiom IV, 1.31) there
is a path S (which may be R) distinct from Q such that §
meets () at b.

Again by two applications of the Axiom of Connected-
ness, there is an event eeS such that ¢ > ¢ and an event deQ
such that d > e, so by the Axiom of Causality (Axiom IV,
1.41),d > c. The existence of an event a < b may be proved in
a similar manner.

E. The axiom of collinearity

This axiom makes it possible to discuss “rectilinear mo-
tion” in terms of “‘collinear sets of events” so, in effect, the
axiom asserts that “motion continues in a straight line” to
paraphrase Newton’s law of inertia. Whereas Jocal versions
of Axioms I, I, I1, IV, V, and VII hold even in general
relativistic space-times, there is no local analog of Axiom VI
which applies, except in certain special cases. The nonvali-
dity of the corresponding statement expresses the presence
of projective curvature. I am indebted to Professor J. Ehlers
for pointing this out.

The axiom of collinearity is a kinematic analog of the
geometric axiom of planarity given by Veblen'* and, as with
Veblen’s axiom, it also makes a statement about interme-
diacy which has the consequence that each path is dense in
itself (Lemma 1.52). Together with the Axiom of Isotropy
(Axiom VIII, 1.69), this axiom of collinearity enables us to
prove the important and subtle Signal Theorem (1.610)
which asserts that “light signals exist and have the expected
limiting properties of sequences of paths.”

To obtain an appreciation of the kinematic ideas ex-
pressed ty the axiom, the reader is urged to draw a diagram
carresponding to the statement of the axiom, by sketching
each path segment and then attaching a consistent temporal
ordering scheme to the diagram. If a template is made by
cutting a narrow slit in a sheet of paper, the “motions” of the
paths may be observed by moving the template gradually
across the diagram.

Before stating the axiom we make the following defini-
tions: If g, b, c are three distinct events on one path such that
either a < b < ¢ or ¢ < b <a, we say that b is between a and ¢
and we denote this by writing [abc]. If a, b, ¢ are three dis-
tinct events, not all on the same path, such that each pair of
events lies on some path, we say that abc is a kinematic
triangle.
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Axiom VI, 1.51 (collinearity): If abc is a kinematic tri-
angle and d, e are events with [bcd | and [cea] and if there is a
path de, then the path de meets the path ab at an event fsuch
that [af? ].

In Hilbert’s® system of axioms for geometry, the analo-
gous axiom is Axiom II 4. The ensuing discussion of collin-
ear sets of events has much in common with the description
of planes given by Veblen'* although in the present case, the
development of the kinematic theory is more complicated
due to the existence of pairs of events which can not be con-
nected by paths. Remember that a path corresponds to the
“world line of a free particle.”

Lemma 1.52 (each path is dense in itself): Given any
path Q with distinct events a, bcQ there is an event feQ such
that [afb ].

Proof: Full details of all proofs are included in Ref. 11.

Theorem 1.53: In the notation of the Axiom of
Collinearity

ldef],

i.e., if abc is a kinematic triangle and [bed ] and [cea] such
that d<e, then on the path de there is an event f for which
[def] (see Fig. 1).

Lemma 1.54

If abc is a kinematic triangle and [afb ] and [bed ] with'®
d<aanddsf, then on the path dfthere is an event e for which
[cea].

Theorem 1.55 (ordered coincidence): Let Q, R be dis-
tinct paths which meet at x. Let a, eQ and let b, deR. (i) If
x <a < b <d <e, then the paths ab and de meet at an event ¢
such that [abc] and [cde]. (i) If b <a <x <d <e, then the
paths ab and de meet at an event ¢ such that [bac] and [cde].

Given three distinct paths Q, R, S which meet at an
event x, we say that the event beR after x is between the paths
Qand Sif:

(i) for each event ceS with ¢ > b, the path cb meets Q at
some event g, and

(i") for each event ecQ with e > b, the path eb meets S at
some event d.

d a
FIG. 1. An event f for which [def].
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Note that (i") is similar to (i) but with the roles of Q and S
reversed, so the definition is symmetric with respect to Q and
S. An analogous definition applies for events before x, with
reversed temporal orderings.

To extend the definition of “betweenness” to paths, we
impose the further conditions (ii) and (ii") below. We say that
the path R is between the paths Q and S and denote this by
writing (Q, R, S) if

(i) all events on R are between Q and S,

(ii) for any path T which meets Q and S at events after x,
the path T meets R at some event, and

(ii") for any path T which meets Q and S at events before
x, the path T meets R at some event.

Theorem 1.56 {intermediate path): Let Q and S be two
distinct paths which meet at some event x, and let T be a path
which meets Q and S at events a and ¢, respectively, after x.
For each event b€T such that [abc], (i) there is a path R which
passes through x and b, and, furthermore, (ii) (Q, R, S).

Corollary 1.57 (coincidence): Let Q, R, S be distinct
paths which meet at x such that (Q, R, S). Let Tmeet Qata
and R at b. If a > b, then T meets S at an event ¢ such that
x<c<bcza.

In the subsequent development we will frequently be
discussing the properties of sets of paths which meet at a
given event. As in KA we will call any one of these sets a
SPRAY of paths, or more simply a SPRA4Y, where the upper
case letters indicate that we are referring to a set of paths
rather than a set of events. We define'®

SPR[Q.]: = {R:Q,€R, ReZ}.

The corresponding set of events is called a spray, where the
lower case letters indicate a set of events. We define

spr{Q. ]: = {R,:R,.€R,ReSPR[Q. 1}.

If Q, S are distinct paths which meet at an event x, we
define the collinear sub-spray

CSP(Q, S): = {R:(R, Q,S), (Q,R, S) or (Q, S, R);

ReSPR[x]}.

Given four paths Q, S, U, V which meet at an event x,
we write (Q, S, U, V) if (Q,S, U), (Q, S, V), (Q, U, V), and
(S, U, V). The notation {.,.,.,) may be extended in the obvi-
ous way to any set of paths provided that each ordered triple
satisfies the definition of betweenness.

Theorem 1.58: Let Q, S be distinct paths which meet at
x. Then CSP(Q, S) is a simply ordered set.

Lemma 1.59 (generation): Let Q, R be distinct paths
which meet at x and let T be a path which meets Q and R at
events other than x. Then the sub-SPRAY of paths which
join x to events of T is a subset of CSP(Q, R).

Remark: It may appear that the set of paths generated
by x and T is identical with CSP(Q, R). It will turn out, as a
consequence of the Uniqueness of Parallelism (KA, Theo-
rem 46, 7.5) that this is not the case, for there is one path in
CSP(Q, R) through x “parallel to” T and this path is clearly
not generated by x and T.

Corresponding to CSP (Q, R) we denote the sef of
events belonging to the paths of CSP (Q, R) by

csp{Q, R): = {e:eeS, SeCSP (Q, R) |,
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and we denote the set of events after the event of coincidence
by

csp'(Q, R): = {e:e> QnR, eccsp(Q, R) }.

Lemma 1.510 (containment): Let Q, R, S be distinct

paths which meet at distinct events b, ¢, d where b = SnQ,
¢ = QnR, d = RnS such that » <c <d. Then

csp*(R, S) Cesp(Q, R) Cesp'(S, R).

We define a collinear set of events in a manner which is
analogous to the definition of a plane set of points in absolute
geometry. Let R, S be any two distinct paths which meet at
some event. Then the set of events collinear with R and S is

col[R, S): = { W, :W,eW where W meets R and S at
two distinct events}.

The next theorem states that collinear sets of events have

properties which are analogous to the properties of coplanar
sets of points in absolute geometry. Anticipating the result of
part (i) of the theorem, we will define a collinear set of paths

COL [R, S]: = {U:Umeets col [R, S]in two distinct events}.

Theorem 1.511 (collinear sets): (i) Containment: any
path which coincides with two distinct events of a collinear
set is contained in the collinear set. (ii) Uniqueness: a path
and an event not on the path specify a unique collinear set.

Given two distinct paths Q, S which meet at an event x,
the set of paths CSP (Q, S) is linearly ordered and, accord-
ingly, we could assign a sense of direction'” to them. The
Intermediate Path Theorem (1.56) and its Corollary (1.57)
show that, for any path TeCOL [Q, S] — CSP(Q, S), the
restriction

T ={T,:T, >x, T,eT},
has the property that, for each T, €T, there is some path
ReCSP(Q, S) such that T, €R, and the events of T* before
T, are on one side of R while the events of 7" * after T, areon
the other side of R: In this sense, T* crosses Rincsp™ (Q, S).

Corollary 1.512 (crossing): A collinear set  can be giv-
en a sense of direction (left to right) which has the following
properties: (i) Each path S in 2 separates the events of 2 — S
into two disjoint sets—a left side of S and a right side of S; (ii)
A path T which contains one event T, from the left side of S
and one event T, from the right side of S meets S at an event
vbetween T, and T, ; thus, T crosses S at the event v; (iii) The
sense of direction is consistent in the sense that:

(a) if (all events of ) a path W is on the right side of a path
S, then the right side of W is contained in the right side of S
(and the left side of S is contained in the left side of W),

(B)if a path T is on the right side of a path S after
(before) an event v, then the right side of T after (before) v is
contained in the right side of S after (before) v; {iv) If two
paths meet, then they cross each other.

F. Signal functions and the axiom of continuity

The Axiom of Continuity is analogous to the geometri-
cal axiom of the same name as used by Hilbert® (Axiom V2)
and ensures the “existence of light signals.” Before stating
this axiom it is useful to establish a lemma which may be
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scribed kinematically by the statement “given any path there
is a faster path.”

Lemma 1.61 (there is no fastest path): Given a path Q
and an event e£Q, (i) the set Q(e, + ) has no first event, and
(ii) the set Q(¢, — ) has no last event.

The Axiom of Continuity which follows asserts that
each path has a completeness property which ensures that
the concept of “fastest signal” can be defined. Before stating
the axiom we need the following definition: A linearly or-
dered set is conditionally complete if each bounded subset has
an infimum and a supremum.

Axiom VII, 1.62 (continuity): Each path is conditional-
ly complete.

It is now possible to define two signal functions (see Fig.
2); the forward signal function is defined

Sro:Q—R,
{inf R(Q., +), if Q and R do not meet at Q,
= 0., if Q and R meet at Q,,

and the reverse signal function

fR‘Q:Q‘)R;
0 [sup R(Q,,—), if Q and R do not meet at Q
7 Q. if Q and R meet at Q,,

These signal functions correspond physically to light signals
(see Fig. 2) and, as might be expected, it transpires (in the
Signal Theorem 1.610) that pairs of functions, such as f 5,
and f 5, are inverses of each other. However, this is not
immediately apparent within the present axiom system since
there is no axiom corresponding to the property which
Kronheimer and Penrose'? and Woodhouse'? have called

£2.0Q,)

fra(Q, )

VAN

FIG. 2. Signal functions are defined by considering limiting properties of
paths. Forward signal functions are illustrated by broken lines (----) and
reverse signal functions are illustrated by dotted lines (-+-).
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FIG. 3. The signal function inequalities.

“future and past distinguishing.”

An immediate and useful consequence of the Axiom of
Continuity is the following:

Lemma (monotonic sequence property): Any bounded
monotone sequence of events on a path has a limit on the
path (with respect to the order topology).

Lemma 1.64 (signal functions are weakly order preserv-
ing): Given two paths Q, R with events Q,,0,€Q, then

() Q. < Q.= ro(QI< S Ro(Q2),
(i) Q. <@.=f ro(@:)< fro(L:):

Lemma 1.65 (signal function inequalities): Given any
two paths Q and R, then

() Sor °fRo<iges
(i) for ° S ro>igo>
where iy, is the identity function on Q. Let
R.:=[{o(Q,)andlet Q,: = f5r (R,). Then
(i) @, <@, =R, <R,
(see Fig. 3).

Theorem 1.66 (triangle inequalities): Let Q, R, S be
three paths. Then

() fsk °fRo>f s0r
(1) fsr °f ro<fso-
Remark: In the previous axiomatic system (KA), simi-

lar properties were taken as axioms.
Given two events a, b and paths Q, R such that

fRFQ (@) = b,

we say that @ and b are (forward ) signal related and write
a o b. The binary relation o is called the signal relation and an
expression of the form a o b may be read as “a signal goes
from a to b “or’’ a signal leaves ¢ and arrives at b.” Given
three events a, b, ¢ such that

acbandbocandaoc,

we say that the ordered set of events |a, b, ¢) is in optical
fine.'® A similar definition applies to events which are (re-
verse) signal related.
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Lemma 1.67 (optical line): If (Q, R, S) then, for all
0.€Q,

(1) the events Q,, f25(Q.), f50(Q.) are in optical line;

(ii) the events Q,, fro(Q.), fsx(Q.) are in optical line.

Theorem 1.68 (existence): Let Q, U be distinct paths
which meet at some event x. Let Q,,, O, €Q be distinct events
such that

x<@u<@ and  f(0.)>f50(Q,).

Then there exists a path S, between Q and U and distinct
from both, such that

S50(Qa) = f50(Qs)
(see Fig. 4).

Remark: At this stage we can not assert that S is unique.
The uniqueness of S can, however, be asserted after the Sig-
nal Theorem (1.72).

G. The axiom of isotropy

The Principle of Relativity of Einstein® states, in effect,
that there is no preferred reference frame. In the present
axiomatic system, the Axiom of Isotropy asserts that “all
directions are equivalent” and so it is this axiom which per-
forms a similar role to Einstein’s Principle of Relativity.

Axiomatic systems for the classical geometries usually
have a set of “congruence” axioms (e.g., Hilbert®) or several
symmetry axioms (e.g., Redei'?). In the present axiomatic
system for Minkowski space-time we do not need any con-
gruence axioms, and the Axiom of Isotropy is the only sym-
metry axiom required for categoricity. By means of “com-
parisons” using light signals and isotropy mappings, it is
possible to compare intervals of distance and time, and so the
concept of congruence can be developed without any further
axioms.

FIG. 4. The existence theorem.
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Although the question of “relative simplicity” of axi-
omatic structures can not be defined or answered in any pre-
cise way and is ultimately a matter of aesthetics or fashion, it
appears to the author that the additional structure of Min-
kowski space-time, compared with the classical geometries,
enables it to be categorized with fewer and simpler axioms.

Axiom VIII, 1.71 (isotropy): Let Q, R, S be distinct
paths meeting at x. If, for some event Q,€Q with Q, #x,

Sor °fRo(@) =/fgs °fs0(@))
then there exists a map & of & into itself such that

(1) @ maps & into itself,

fii) for 0,€Q, 6(Q,) = 0.,

(iti) @ induces a bijection on the set SPR[x] of paths,

(iviO(R)=S.

It may seem surprising that this axiom is sufficient for
our purpose.®® It transpires that 8 is an order-preserving bi-
Jjective mapping which sends signals onto signals as one
would expect (and require), and this is demonstrated in
Theorem 1.610 for the restriction to “‘one-dimensional mo-
tion™ and in Theorem 2.31 for the general case.

An immediate consequence of this axiom and the Col-
linear Sets Theorem (1.511) is that & sends collinear sets onto
collinear sets. Furthermore if Q, R, S belong to a collinear
set 2, then 8 induces a mapping of 2 onto itself and the
induced mapping has the same properties as stated in the
axiom.

Theorem 1.72 (signal): (i) Signal functions have inverses
and, for any paths Q and R,

Sfro=(fgr)"" and f&5 =(fgr) ™"

(i) Signal functions are one to one onto mappings. (iii) Signal
functions are strictly order preserving. (iv) Signal functions
are continuous (with respect to the order topology on each

path).

Remarks: Thus, both forward and reverse signal func-

tions may be expressed in terms of the (forward) signal
function

/i RQ": =f I?’Q}
which corresponds physically to a light signal: The reverse
signal function is related to its inverse, although the order of
the path subscripts must be reversed; thus,

Sor =fxo-
In Sec. 2, superscript + and — signs will be used to indi-
cate “modified signal functions” as in Walker'? and
Schutz.? After the proof of this theorem and throughout the
rest of this chapter, we will dispense with the symbols f*
and '~ entirely.

If three events, a, b, c are signal related as follows:

acbandbocandaoc,

we say, as before, that the events are in optical line and de-
note this by |a, b, ¢) where the notation indicates the direc-
tion of the (forward) signal relation. Similarly, a set of events
{Q", 0, 0"} isin optical line if and only if, for all @, b,
¢ with 1<a<b<gcegn,

0%, 0, ).

Physically, a set of events would be in optical line if they lay
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on a “light ray.” The existence of such maximal sets of signal
related events is proved much later within the present axi-
omatic system (see Sec. 2.D) since, at this stage, we can not
yet assert that [a, b, ¢) implies the collinearity of the events a,
b, c. Thus, it would be premature to speak of a “light ray.”
However, useful results can be established if we restrict our
attention to collinear sets. Anticipating the results of the
following theorem we will define an optical line to be a maxi-
mal subset of a collinear set such that any three events are in
optical line.

Theorem 1.73 (optical line): Let 2 be a collinear set of
paths and events belonging to the paths, let Q be any path in
2, and let Q, be any event of Q. (i) There are two distinct
optical lines, each containing @, and exactly one event from
each path in 2 (other than Q). The optical line which con-
tains events in the order from left to right is called a right-
directed optical line or simply a right optical line. The other
optical line is called a left optical line. (ii) Each optical line is
simply ordered, has no first or last event, and is dense in
itself.

Given a collinear set 2 and a path QcZ, we see that the
events ¢, and e, are reflections of each other in Q if they are
on opposite sides of Q in Z and if there are two events O,
0,€Q which are signal related to both e, and e,, i.e.,
ifQ, 0e,00, and @, oe,0 Q,. Wesay that two paths S, T
are reflections of each other in Q if their sets of events are
reflections in Q and we indicate this by writing $ = T, or
T=S,.

Lemma 1.74 (reflection mapping): Given any collinear
set X and any path Q in the collinear set, there is a reflection
mapping ¢ of the collinear set onto itself such that

(i) TeZ=4¢ (T)e2,

{ii)for any paths T, UeZ and any event T, €T,
Srv °SfurlT) = T,.=f 4 116 09 °fowwm (@ (T ) =&(T,),
fUT(Tx) = Uy:>f:b(U)¢(T)(¢ (Tx)) = ¢ (Uy)‘

H. Properties of collinear subSPRAYs

Given a path Q and an event Q. €Q and a sub-SPRAY
#[Q.1CSPR [Q.], we say that # [Q, ] is a bounded sub-
SPRAY if there are events Q,, @, after Q, such that, for all
paths ReZ [0, ],

fQR ofRQ(Qd) <@..
The next theorem establishes an important completeness
property of bounded collinear sub-SPRAYSs.

Theorem 1.81 (collinearity of the limit path): Let 3 be a
collinear subset, let QeI be a path with an event Q.€Q, and
let {R"™:n = 1,2, .; R"eX } be a bounded set of paths which
meet at Q.. If (Q, R",.._R™, R+ ...}, there is a unique
path S through Q. such that

) (Q,...R®, R"+1 8} and

(ii) for any event @, cQ with 0, > Q. ,

Jos © f50(Q) = sup{/for e © frmp (@,
fso' °fos'(Q) = inflf gl © f orn(@)}.
We call S the /imit path of the sequence of paths (R ).
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I. The kinematics of collinear sets of paths

It has now been shown that collinear sets of paths have
properties corresponding to those which were taken as axi-
oms in the previous axiomatic system (KA), with two excep-
tions. The first exception is that the property of collinearity
of the limit path (Theorem 1.81) has been established from
the Axiom of Continuity (Axiom VII, 1.62) rather than from
an Axiom of Compactness (Axiom XI, 2.13, KA). The sec-
ond exception is that an axiom of dimension has not yet been
stated.

Neither of these exceptions affects the subsequent de-
velopment which leads up to the kinematics of one-dimen-
sional motion. All the details may be found in KA Chaps. 4—
8. Those kinematic relations which will be needed to fully
develop Minkowski space-time will now be briefly reviewed
for the sake of completeness of the present exposition.

Given a collinear set J, each path belongs to an equiv-
alence class of paths which are described as being parallel
since they never meet (KA, 7.1). Whereas a “parallel postu-
late” is required to distinguish between the geometries of
Euclid and Bolyai-Lobachevsky, the uniqueness of parallel-
ism may be deduced as a theorem (KA, Theorem 46, 7.5) for
the present kinematic axiom system.

The description of one-dimensional motion can be sim-
plified with the use of “modified signal functions” which are
defined in the following way (KA, 43): Given any two paths
Q, ReZ, the modified signal function f g, which is related to
right optical lines is defined

20(@.),  if fro(Q,) is to the right of Q,,
fRo(Q) =1%x> if R meets Q at Q,,
or(Q,), if fgr(Q,) is to the left of Q,,

and the modified signal function f g, which is related to left
optical lines, is defined in a similar manner. In the remaining
part of this exposition, the symbols f* and f~ will desig-
nate modified signal functions and not the forward and re-
verse signal functions of Secs. 1. A-1.G.

The events on any path can be indexed with the real
numbers, to within an arbitrary strictly increasing linear
transformation (KA, 7.3-7.5), in such a way that, for any
two (collinear) paths Q and T, the modified signa) functions
have the form (KA, Theorem 49, 7.5 and Theorem 51, 8.1)

fé—S(St) = QaQ‘\lﬂ— v and vaS(Sr) = Q/J‘Q,hu&’
where a g5, Bos, 7, 6 are real-valued constants.

The directed rapidity of Q with respect to S is defined to
be

Fos = 1/2log(@gsBys ),
(KA, 8.1) and for any three collinear paths Q, S, T it is shown
(KA, Theorem 51, 81.) that

ror = Fos + s,
so that rapidity may be regarded as a “natural measure for
speed.”

By considering signal functions between parallel paths,
it is possible to represent an equivalence class of parallel
paths as

{S*x real, S* X |,
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with events
{ST:t real, STeX ],

where the coefficients of the ordered pair (x; ¢ ) of reals are
called position—time coordinates of the event $7 (KA, 8.4).
The set of all events in %, indexed by the corresponding posi-
tion—time coordinates, is called a coordinate frame in X; the
event (0; 0) is called the origin in position—time of the coordi-
nate frame; and the set of events {(0; ) ¢ real] is called the
origin in position of the coordinate frame.

Finally, any path through the origin in position-time
has coordinates which satisfy the equation

x/t =tanhr =y,

where r is the directed rapidity of the path and v is the veloc-
ity of the path with respect to the coordinate frame (KA,
Theorem 56, 8.4).

The reader is referred to KA Chaps. 4-8 for complete
details of the definitions and theorems which have been
briefly reviewed in this section.

2. THREE-DIMENSIONAL KINEMATICS

A. The axiom of dimension

The axiom of dimension, which is required to specify
the dimension of space—time could have been stated in sever-
al places within this axiomatic system and could even have
been combined with the axiom of existence. However, this
would have necessitated slight modifications®’ to preceding
axioms and theorems, and it therefore seemed more natural
to regard the properties of existence and dimension as being
independent.

Before stating the axiom it is necessary to define a con-
cept which is closely related to the concept of dimension. If
three distinct paths Q, R, S of a SPRAY can be joined by a

path W which is not in the SPRAY, we write Q, R, S and
say that the three paths are dependent (Fig. 5).

We say that S is dependenton Q' ", Q' 2'if Q' Q*’' S ;
otherwise, {Q'"’, Q'*", S} is an independent set of paths. Simi-
larly, T'is dependent on Q‘"’, Q'*’, Q**’ if there are paths S,
S each dependent on two of the three paths Q“", Q**’, Q*’

Q R S
W

FIG. 5. The paths Q, R, S are dependent.
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such that S‘’8>'T; otherwise, {Q'"’, Q'*, Q*, T} is an
independent set. Finally, U is dependent on Q", Q*, Q%

Q‘* if there are paths TV, T‘*’ each dependent on three of the

four paths Q'V, Q‘, Q*¥, Q‘* such that TV’ T® U.
The following definition enables us to specify the di-
mension of space-time. A SPRAY is a 3-SPRAY if (i) it

contains four independent paths Q'"’, Q®, Q*’, Q** and (ii)

all paths of the SPRAY are dependent on Q'"’, Q'*, Q**’,
Q<4 ' .
Axiom IX, 2.11 (dimension): If the set of SPRAYs is
nonempty, then there is at least one 3-SPRAY.

B. Geometric properties of simultaneously coincident
subsets

Lemma 2.21: Each 3-SPRAY is a three-dimensional
ordered geometry.

Proof: The proof consists in showing that the axioms for
an ordered geometry, as given by Veblen,'**? are satisfied.

Lemma: 2.31: Each 3-SPRAY is a locally compact pro-
jective metric space.

Lemma: 2.32: (i) Isotropy mappings are order-preserv-
ing bijections on .# and map signals onto signals. (ii) Rela-
tive rapidity is an invariant under isotropy mappings.

Theorem 2.33: Each 3-SPRAY is a hyperbolic space of
three dimensions with curvature of —1: the “points” of the
space are the paths of the 3-SPRAY and relative rapidity is
an intrinsic metric.

C. Characterization of Minkowski space-time

The usual characterization of Minkowski space-time in
terms of coordinate frames and the inhomogenous Lorentz
transformations between them, as well as the kinematic de-
scription of the trajectories of paths, now follows according
to the treatment given in KA?* (9.1-9.7, Appendix 2).

The existence of optical lines may be established by con-
sidering any two given signal-related events and the set of all
events which are signal related to both of them. Each of these
events must satisfy two equations similar to Eq. (2) of Theo-
rem 61 (KA, 9.5). For any given value of coordinate time
these equations describe sets of events lying on nonconcen-
tric spheres (in position space) with one point of tangency, so
the set of all signal-related events is a linearly ordered set as
described in Theorem 65 (KA, 9.7).

Minkowski space-time is now fully characterized in
terms of the conventional coordinate frames and the Lorentz
transformations between them, together with the trajector-
ies of free particles and light signals which correspond, re-
spectively, to paths and optical lines.

3. CONCLUSION

Minkowski space-time has been developed from nine
axioms which describe the kinematic properties of free parti-
cles. Thus, it has been shown that the axiomatic system is
categoric. The question of independence of the axioms has
not been discussed.

Many of the proofs'' involve methods which are essen-
tially global in character : for example, the theory of collin-
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earity developed in Sec. 1.E and the theory of parallelism
which leads to the kinematics of one-dimensional motion in
KA. It is conceivable that global axioms, similar to those
used here, might be sufficient to categorise other space~
times with special symmetry properties, such as the de Sitter
universe and the Robertson-Walker metrics, for example.

Einstein’s theory of General Relativity describes space—
times which need not have even local symmetries. Thus,
some of the methods used here would require considerable
modification before they could even be considered for an
axiomatic system to describe general relativity. It appears
that the pseudo-Riemannian space—times have somewhat in-
dependent substructures, namely, the causal, differential-
topological, conformal, projective, and metric structures.
Causal and topological properties have been discussed by
Kronheimer and Penrose'* while Castagnino,** Kundt and
Hoffman,?® Marzke and Wheeler,?® Pirani,”’ and Synge®®
have considered questions relating to time measurement and
the definition of the metric tensor. Axiomatic systems for
general relativity have been proposed by Reichenbach? and
Weyl,** who showed how pseudo-Riemannian space-times
could be developed from differentiable manifolds by consid-
ering the paths of freely falling particles and light signals.
This approach has been futher developed by Castagnino,*
and by Ehlers, Pirani, and Schild*' and Woodhouse,'* who
show how the different mathematical structures can be suc-
cessively developed on a space-time manifold by considering
axioms which describe the kinematic behavior of free parti-
cles and light signals.
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The spreading of free wave packets is expressed by means of the entropy of position for a certain
class of states. Connection between such formulation and the usual treatment is discussed.

PACS numbers: 03.65.Bz

1. INTRODUCTION

In quantum mechanics we may define a notion which is
a measure of uncertainty of the localization of a particle in
the space. If  is a wavefunction which describes the state of
the system then |¢#/|? is the probability density on the position
space. We may consider the quantity

SAe1D = = [ 19691 In]ye) |2 .

It has the properties of an entropy and we call it the entropy
of position. The uncertainty relation for position and mo-
mentum and spreading of a free wave packet expresses in
principle the uncertainty of localization of a particle. The
uncertainty of outcome of simultaneous measurement of po-
sition and momentum and increasing of uncertainty of posi-
tion during the free movement of the particle would be ex-
pressed by means of such entropy. In Refs. 1 and 2 it was
shown that the sum of these entropies for position and mo-
mentum in a given pure state is bounded from below. Using
this inequality in the papers quoted above the authors de-
rived the uncertainty relation in the usual form.

This article is an attempt to express the fact of spreading
of a wave packet for a free particle by means of entropy of
position. We also compare such formulation with the usual
one.

2. ENTROPY OF POSITION

We consider a moving particle on a real line R'. (An
extension of our result to higher dimensions is obvious.) The
Hilbert space corresponding to this system is L 2(R,dx)—the
space of square-integrable functions with the Lebesgue mea-
sure on a line. The position operator of the particle is defined
as follows (Q©)(x) = x¥(x) for every xeR' and all wave func-
tions YeD (Q )—the dense domain of Q in L 2(R!,dx). From
the spectral theorem® we know that for every Borel set
4e B (R') [# (R')—o-algebra of Borel sets on R'] a projec-
tor E (4 ) corresponding to Q is defined by the equality

(E@))(x) = x4 ()(x),
for every YeL *(R',dx), where y , (x) is a characteristic func-
tion of 4.

The probability that the measurement of Q in a state ¢/
gives a result in the Borel set 4, is u$(4 ) = f, |¢(x)|? dx.
Thus for position measurement in a pure state the Radon~
Nikodym derivative is p(x) = |¢(x)|* and the entropy of po-
sition in a state  is equal to

S()?) = —j|¢<x)|21nl¢(x)|2dx- 1)
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The possibilities of defining and the general properties of the
entropy of an observable were investigated for observables
with purely discrete spectrum,* for observables with abso-
lutely continuous spectrum® and for generalized observa-
bles.® In Refs 5 and 6 we obtained some inequalities for 2 von
Neumann measurement of an observable with continuous
spectrum and for a fuzzy observable which confirm our in-
terpretation of (1) as an uncertainty of an outcome of an
observable measurement.

3.ENTROPY OF POSITION AND A FREE WAVE PACKET

The dynamics of the particle is described by the group
of unitary operators U (¢) = e ~ “H> where H, = p*/2m, p—
the operator of momentum, m-—mass of the particle.

We show, that for a certain class of wavefunctions the
effect of spreading of the wave packets may be expressed by
means of the entropy of position.

Let L *(RY)NL '(R") and ||¢||, = 1, then for £ > 0 we
have the following inequality:

S¥1H) + SWO)|) > Inetr/m), 0]

where y(t) = e ~ " 3. To show (2) we need the following
result of Ref. 1.

Let L ?(R")-— the space of p-integrable functions
with norm for 1<p<2

ot = ( [ o1 a)”,

and

A 1 _
k)= ——— | e " *P(x)d"x
V @ny f

is a Fourier transform of ¢, then

121, <C Pl » (2a)

where

n/2p' — n/2,
C(p',p)=(i7—) (2—”) ’ and
P p

+ — =1

1.1
P p
We take an explicit form U (t) = e~ for teR' and
ve LYRY):

Yx,t) = (e~ " ¢)(x)

. m 2 ; 2
=1.1.m.(_—,) f emIx =212 3) dy,
2mit | ¥I<R
(3)

where Li.m. denotes the limit in the L -norm. Using
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e LA R")L '(R") and

; 2
ol 252 )

mix®
= exp 5 exp[ —

. . 2
imxy ) exp( miy ),
t 2t
we have

wr=(2) ool 52 )e(2)

where
F(y)—exp( - Yoo
Now we obtain
ool = (2 )7 A (2|

I

t [€1/2) — (1/p)]
(—) £,
m
= (172) = (1/p)]
(%) CrPIF,
m

t — [(172) — (/p") ,
=(_> Ce'plYl, , 4

m

N

where in the second equality we have changed the variable in
the integral, then we have used the mentioned inequality (2a)
for the Fourier transform. Using (1/p") + (1/p) = 1 we may
write (4) in the form

t ) =11/ - (/P

£y = ( L cpIl, — 9ol >0,

for p'>2, The function fis equal to zero at p’ = 2 because
1#ll, = l¥(2)}. and C (2,2) = 1. Thus the right derivative of
Sf(p') at p’ = 2 must be nonnegative. Because e L °nL ?,
exp( — itH,) extends uniquely to a map from L #(R’) to
L7{R") by the Riesz-Thorin theorem® for p'e[2, ] {for de-
tails see Ref. 8, proof of Theorem IX. 30). The function f( p’)
is determined on the interval [2, 0 ] and we may take such
derivatives. For ([, = 1, the right derivative of f( p’) at

p’ = 2 reduces to (2).

Equality in (2) holds if
: 2
w0 expl T2 ) = exp( — )

Such a function ¢ does not exist because ¢ is not a function of
time. We have sharp inequality but In(wet /m) is the best
possible lower bound for the sum S (|#]%) and S (|¥(2)|).

Using the concavity of entropy we may extend our in-
equality to mixed states, which have the following spectral
decomposition p = = p, |, (¢,], where |#,) is the basis
from L >nL . Extension to L >(R") is trivial and yields
n In(mret /m) in (2).

From (2) we see that the sum of uncertainties of local-
ization of a particle at r = 0 and ¢ > 0 is bounded from below
by an increasing function of time (logarithm). For two in-
stants of time ¢, > ¢, such that

In(met,/m) S (|¢(t,)|2) + S(|¢|2),
we have

S ([Y@)*)>S (1) ).
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If we wait sufficiently long then the uncertainty S (|4(z)|?)
will increase. Thus (2) in a certain manner reflects the
spreading of the free wave packets.

4. DISCUSSION

Usually in textbooks on quantum mechanics (for exam-
ple Ref. 9) the spreading of free wave packets is expressed by
means of the quantity

407 = f (& —(Q))[9(x)|* dx, where (Q) = ¥ Q¥).

Further for € D (Q )nD (P), where D (P)is adomain of mo-
mentum P we obtain

40} =40+2 [1(QP+PQ) —(Q) (P)] -

t 2

2
+A4P ? N
where

- f(p—<P>)2|tZ(p)lzdp-

Thus the standard deviation of position 4Q ? is an increasing
function of time at least starting from a certain point at
which it takes minimum. This means that the uncertainty
(according to this measure) of particle position will system-
atically increase if we wait sufficiently long. When i D (Q),
then 4Q? = w, and it is not a good measure of spreading of
the free packets. Inequality (2) enlarges the set of wavefunc-
tions for which we consider the effect of spreading. In L 'nL 2
there exist the functions for which AQ > = « but the entropy
of position is finite. The following function is a simple
example

1
x = \/;‘;ﬁl’[l.m 1),

where y |, .. (x) is a characteristic function of interval {1, »0].
Ifye D (Q )nD (P)andisintegrablethenof coursetheentropy
is also finite.

We will show how (2) is connected with the usual de-
scription of spreading of wave packets for the free evolution.
Let

my= (gl [ - @yl dx = 407)

m, = {luenls [ G- @) 1vmn ) ax = a03)

be two sets of wavefunctions (the functions are determined
up to a factor e/™, f—real function on R') with a finite
variance at 7 = Q and 7> 0. Only for such sets does the posi-
tion observable exists.'® Moreover, for every function be-
longing tothesesetsS (|¢|*)and.§ (|¥(z)|*) arefinite. Nodiffi-
culties with the interpretation of S = + oo arise. The states
e M, with maximal entropy of position has the following
density of probability distribution

2 N-1,2 R (x— <Q ))2
961 = @ra@?) 2 expl — E BT )
and similarly
I@b(x,t)lé = (277’AQ,2)“/2 exp( — % )
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Thus we obtain

SU¢D+ SIS YlH) + S ([9)]%)

=11In4r’e’AQ°AQ].
Using (2) and the last inequality we have
AQ2AQ %> (£ /4m?).
We see that for 1> 240 °m
402>40Q°

holds. For a time smaller than 24Q °m from (2) we do not

obtain any information above the behavior of the variance.

Equation (2) becomes an equality on the Gaussian state for
an asymptotic formula of e = "

e i ) ()

t

in the sense that the difference goes to zero in the L *-norm at
t-> 0. It is a slight modification of IX.33 in Ref. 7. For long
times, factors of the form exp(imx?/2t ) may be neglected. A
simple calculation for the asymptotic formula and

e D(Q)nD (P) shows that

2 2
Agfz(i_)mﬂ, and AQ%AQ2>( ! )
m? am?

The last inequality becomes an equality also on the Gaussian
state. We see that our result agrees with the usual formula-
tion for great values of time.
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Using (3) simple calculations show that for e L 'nL *a
more elementary notion also expresses the effect of
spreading

pE([ab 1) = f |90x2) |2 dx—s0,

when t— .
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The nonrelativistic Coulomb Green’s function G *)(r,,r,,k ) is evaluated by explicit summation
over discrete and continuum eigenstates in parabolic coordinates. This completes the derivation
of Meixner, who was able to obtain only the r, = 0 and r,— oo limiting forms of the Green’s
function. Further progress is made possible by an integral representation for a product of two
Whittaker functions given by Buchholz. We obtain the closed form for the Coulomb Green'’s
function previously derived by Hostler, via an analogous summation in spherical polar
coordinates. The Rutherford scattering limit of the Green’s function is also demonstrated,
starting with an integral representation in parabolic coordinates.

PACS numbers: 03.65.Db, 02.30.Hq, 02.30.Gp

1. INTRODUCTION

The nonrelativistic Coulomb Green’s function
G (r,,r,,k) [G (1,2,k ) for short] is the solution under specified
boundary conditions of the equation

(k2 4+ V2 42Z/r)G(r,rpk) =6 (r, —r1y). (1.1

Atomic units: # = m = e = 1, are employed for conve-
nience. Any Green’s function can, in principle, be construct-
ed from its spectral representation

Y. (DYr(2)
G(1,2,k) En: e
the summation running over the complete set of discrete and
continuum eigenstates. Meixner' in 1933 attempted to
evaluate the Coulomb Green’s function by explicit summa-
tion over eigenfunctions in parabolic coordinates. He was
able, however, to obtain closed forms only in the special
cases r, = 0 and r,— oo . Hostler? first worked out the gener-
al closed-form expression for G (1,2,k ) by summing over
Coulomb eigenfunctions in spherical polar coordinates. A
key element in Hostler’s derivation was an integral represen-
tation for a product of two Whittaker functions given by
Buchholz.?

We shall demonstrate in this paper that Hostler’s result
can also be derived by working in parabolic coordinates. We
will thus explicitly complete the work of Meixner. In addi-
tion, we shall obtain in straightforward fashion the Ruther-
ford scattering limit of the Green’s function and also a possi-
ble starting point for a compact treatment of the Stark effect.

(1.2)

2. COULOMB EIGENFUNCTIONS IN PARABOLIC
COORDINATES

Parabolic coordinates ( £,7,¢ ) can be defined in terms
of spherical polar coordinates (,6,¢ ) and Cartesian coordi-
nates (x,y,z) by the relations

E=r(1 +cosf)=r+z,

n=nl—-cos@)=r—z,

= = tan™(y/x). @.1)
Conversely

x =(£&n)'/2cosp, y={(£n)'/?sing,
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z=4§—m), r=4E+7) 22)

The volume element is given by
dr=YE+n)dEdndp (0<E,m< 00,0<8<27), (2.3)
and the Laplacian operator by

4 a J J J 1 3
v? -—(— —4 = —)+
5 8777,317

IR AT &n 3¢7
2.4)

The Coulomb Schrddinger equation
(€+V2+2Z/PNp=0, e=2E=k? (2.5)

is separable in parabolic coordinates as well as spherical po-
lar coordinates. The factorization

l/’( §’7I5¢) =f1( é—)fz(,’])eimd” m = 0’ i 19 i 2:"‘) (26)

leads to the ordinary differential equations*

L (e L)+ (z+ L5~ T reor=o

dt d¢ 4 4¢
2.7
a( a4 K om? _
dy (77 dn) + (22 T 417)13(’7) =0
where
Z,+2Z,=2 2.8)

Either Z, or Z, labels the one-parameter family of degener-
ate eigenstates for each value of € = k 2.
The subtitutions

F(x) =x"2M (— ikx),

x=£&m, z=—ikx, v, ,=Z ,/k, 2.9
bring (2.7) into the form of Whittaker’s differential equation
: _ 2
M"@) + (—i+ LA 1—;-"—)M(z)=0. (2.10)
4 z 4z

The solutions to (2.10) regular at x = O are the Whittaker
functions M "7, ( F ikx).” For m>0

MY (F ikx)
= (m!)“( F ikx)m D72 o F ikx/2
X Fy((m +1)/2 + iv;m + 15 + ikx), (2.11)

where ,F, is a confluent hypergeometric function. For m <0,
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the corresponding Whittaker functions are given through
the identity
'((1 —m)/2 — vy M ;™ — ikx)

=TI ((1 +m)/2 — vy M7 (— ikx). (2.12)
The functions (2.11) with alternative choice of signs are re-
lated by

M ™72 (ikx) = ™™+ V2 M 73— ikx), 2.13)
which shows incidentally that e +1V'M "*( — jkx)is a

real function.
The asymptotic form for M as x— o is given by®:

(kx) — ive — ikx/2
C((m+1)/2—iv)
(kx)iveikx/z

I'(m+ D72+ iv)

M ™ — ikx)~e~ ™" [

+e” im(m +1)/2

].(2.14)

For positive energy, the wavenumber % is real; to avoid di-
vergences in the wavefunctions (2.9) we must require that

(2.15)

Positive-energy eigenstates can be specified by the two
continuous quantum numbers

Tmv| <4

vi=2Z,/k and v,=Z,/k. (2.16)
Thus, Eq. (2.8) implies
k=Z/(v, + vy 2.17)

It is sufficient to assume k>0 and to choose real values for v,
and v,. Then both v, and v, can run over the range

{ — o, + ) but, by virtue of (2.17), their sum must be
nonnegative:

Vi + 1230. (2.18)

For compactness, we shall continue to write X in the argu-
ments of Whittaker functions, understanding 4 to be a func-
tion of v, and v, via (2.17).

The foregoing considerations lead to the following posi-
tive-energy Coulomb eigenfunctions in parabolic
coordinates:

Do ) = &7+ D22y P2 Z 12k 2072
XL ((m +1)/2 = )| [T ((m +1)/2 = iv,) | )2
XM [ — k€Y M7 — iky)e™. (2.19)

v,
The phase factor ™™ * /2 is retained for later convenience.
These continuum eigenfunctions are orthonormalized ac-
cording to

fff P m (GBI, e (E1:8)4( & + 1) dE d di

= 80y — ¥}) 80y — ¥5)8 . 2.20)
Meixner' and other authors employed eigenfunctions normal-
izedto8(k — k)6(§ — £'), in which ¢ corresponds to our vari-
able (v, — v,)/2. The more symmetrical normalization
scheme we have introduced will facilitate evaluation of the
Green’s function.

Equation (2.20) can be demonstrated with the help of the
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following integrals over Whittaker functions:

m+1 )
— v
2

21

fw M7 — ikx)M ™ — ik 'x) dx
0

2

=dge "IV 2~ Tk — k ’V’F(

J. M "™ — ikx)M 7/ — ikx)x" dx

2

=dgme T D 2T (Y — v’/

— v )
(2.22)

Equation (2.21) also occurs in the normalization of spherical
eigenfunctions. Both (2.21) and (2.22) can be demonstrated
from integral representations of Whittaker functions in terms
of Bessel functions’ with use of an integral given by Watson.?
More simply, by virtue of the fact that the principal contribu-
tions to (2.21) and (2.22) come from the asymptotic region
X— 0, it suffices to approximate the Whittaker functions by
their asymptotic forms (2.14). Using (2.16),

8(vy — v{)8k — k') = (Z/k*)8(v, — v})6(v, — v3)s
8(vy — v;)8k — k') = (Z,/k)S(v, — v{)8(v, — v3), (2.23)

which completes the required normalization.
The negative-energy parabolic eigenfunctions are quite
standard.® Expressed in terms of Whittaker functions'®:

'ﬁn,nzm (§!779¢)
zve m| + n ) (|m| 4+ n ) 12
= 771/2’1 [(' ’ nl)'ilz { 2) ] (é-n)—l/l
XML:"% | +1)/2 V43 /”)MLML/(W} Y (Zﬂ/”)elm¢’ (2.24)

nyn,=012,; m=0,+1,+2,.;
n=n,+n,+|m+1=123..

We shall also require Whittaker functions of the second
kind, W 7"*( — ikx), which represent solutions to (2.10) hav-
ing the form of outgoing waves. Specifically we note the
transformation"’

M7 —ikx)=e"

m,[ w2 (ikx)
T{m+1)/2 —iv)
W (— ikx) ]

+e~i(m+l)vr/2
r'((m+1)/2+iv)

(2.25)
the identity'?
W o m(— ikx) = W™ (ikx), 2.26)
and the asymptotic form as x— oo '*
W7 — ikx) ~( — ikx)™e™2. .27

Note that Eq. (2.14) also follows from (2.25) with (2.27).

For values of v occurring in the discrete spectrum [cf.
(2.24)] the two types of Whittaker functions become propor-
tional.’® Specifically

Wi, @=(=)("+mM7? ., (228
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A key result, both in Hostler’s derivation and in the
present work, is an integral representation for a product of
two Whittaker functions given by Buchholz.®> With appro-
priate specialization of the variables, we write

L((m + 1)/2 — )M ™ — iky)W ™/ — ikx)
=(— i)™+ 'k (xy)/? f ds exp[ + %k {x + ) coshs
0

xJ,, (k Jxp sinh s){coth(s/2)],

Re((m + 1)/2 —iv)>0, Imk>0, x>y. (2.29)

3. EVALUATION OF THE GREEN’S FUNCTION

The summation (1.2) explicitly written out in terms of
discrete and continuum parabolic quantum numbers
becomes

G2k)= § [Z 3 (k2+ %)ﬂtﬁ,,‘nzm(l)

m= — oo n=0n,=0

><¢:,nzm(2)+f dv.J dv, 0(v, +v)

X =) (D @] . G
The Heaviside function
1, for x>0,
Ox)= {O, for x <0. (3.2)

has been introduced to take account of the condition (2.18).
The wavenumber in the eigenfunctions has been redesignat-
ed «, to reserve k for the Green’s function. Putting in the
eigenfunctions (2.19) and (2.24), we obtain

® oM@ — $2)
GOk = m =Z» w (§1§2771772)]/2

x{ $ 3 (k2+ ZT)“ Z_ (il +m)iml + )

m=0n=0 ™ n,in,!
XM Tfﬂmtﬂ)/z (Z¢, /n)MlTL/Z(\mI +172 (Z&,/n)
XMme(w s Eni/n)M nmf(lmi +1)/2 (Zn,/n)
4 e n

87rlk2J. dvlf av,0 (vy +v,)
X [(vi 4+ )2 — Zk?] 1™+
—ivz)

2
(=l ) (=

IK§ )M m/2

2

XMm/Z

v,

—~ k&)
X M3 (— ikn )M 70— im]z)] . (3.3)

The M function of the argument £_ (the greater of £, £,)
can be transformed to a sum of W functions using (2.25). We
find

ein{m+ l)/Zew, lr(m ;‘ 1 — ivl)
XM 5 — ik M 3 — ikg)

_ m+l . ms2 m
__I‘( 5 +w,)M 2 (ikE YW ™ (iKE )

2
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Z f~s] o0
W,[ dVlf av, [(v, + v, —

m+1

+F( -—ivl)M,ff,l/z( ikE VW7 — ik ).

(3.4}
Wehave made use of (2.13) toget M ™7, to multiply W™}, .

— v,

Now the first term I'M Win (3.4) can be transformed into the
second by the substitutions

Vi— — V), Vo—>— "V,

(3.5)
By applying this in the continuum integral and noting the
identity
Ovi+v)+0(—vi—w)=1,
the Heaviside function is eliminated.
The functions of 77, and 7, are transformed in an analo-
gous way. Under the double integration, the two terms
I"MW make equal contributions. The continuum part of the
Green’s function thus reduces to the compact form

(3.6)

ZZ/kZ] -1

m-41

x|

XF<m+l
2

—iv,)M;’v'(z( — iK€ YW — iK€ )

- ivz) M7 ik W —ixn ).
(3.7)

The integrals in (3.7) can be most readily evaluated by
interpreting them as contour integrals in the complex planes
of v, and v,. The integrand is an analytic function of each
variable in its lower half-plane with the exception of a set of
simple poles. One should verify this, in particular, forv, = 0
and v,—0with Imv, <0. This correspondstox = Z /v,-»
with Imx > 0. From (2.23) and (2.27) we find the relevant
asymptotic dependence

F((m+1)/2 — )M —ikx YW~

~ei;c(x .- X, )/2’ (38)
which approaches zero as |«|— o« with Imx > 0. By virtue of
(2.12) and (2.26), m in the functions I"M W can be replaced
by |m|. This will make more explicit the poles of the
integrand.

We note also the asymptotic behavior as v,— 0 with v,
fixed. As k—0'°

Ikx )

L {(m +1)/2 — V)M ™ — k)W — ikx)~k.  (3.9)
Thus each factor TMW ~v, . Including the energy de-
nominator (~v, ~2), the entire integrand behaves as v, ~*
when |‘V1 |—-> 0.

Evidently, the v, integral can be evaluated by applica-
tion of the residue theorem after the contour is closed from
below with a semicircle at infinity. As |v,|-»> e, the contri-
bution from the semicircle approaches zero as a result of the
asymptotic behavior discussed above. The singular points in
the integrand arise from the factors ' ((|m| +1)/2 — iv,)
and[(v, + v,)* — Z */k *]"'. The gamma function has polesat
the points

v, = —i(Im| +1)/2+n), n, =012,  (3.10)

with the corresponding residues i( — )"/n,!. The energy de-
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nominator has a pole in the lower half-plane atx = k 4 i§ or
vi=—v,+Z/k—i¥, (3.11)

with residue k /2Z. Imk > 0 is taken, such that the resulting
Green’s function will correspond to G *(1,2,k).

The v, integral thereby reduces to ( — 27ri) times the
sum of the residues in the lower half-plane. The continuum
integral (3.7) can thereby be expressed as a sum of two con-
tributions: (3.12) plus (3.13). From the poles of the gamma
function [cf. (3.10)]:

Z & (=)
-2
irwrell) Yy
0 Z2 —1
x [ anfor+vr- £

bt (i oW (=g or (L i)
(.12)
X Mg

iK’n < )WII\’:Z‘/Z( - iKI77> )!

=i ) w=2/01+ v,

From the energy factor [cf. (3.11)]:

XW\ 3 —ikn, ) (v=Z/k). (3.13)
The second integration in (3.12) can be carried out in an
exactly analogous way. The v, contour, again closed by an
infinite semicircle in the lower half-plane, encloses only the
poles of I" ((jm| + 1)/2 — iv,), at the points

— vy MU — )

v, = —il(lm| 4+ 1)/2 + n,), n, =012, (3.14)
Thus, in Eq. (3.12),

V= —in +n,+|ml+1)=—in, n=123,-

K =Z/WV =iZ/n, (3.15)

and (3.12) becomes

( — 2mi)? 2 2

n,=0n=0

- Z (—n2_Z_2)“
nln)  4rk? k?

XMln +/2}m[ v (ZE_/n) WLm4{2|m[ +un2 (€, /n)

M|m+ (Imf +1)/2 (Z7 . /”)Wme(\m\ + 12 (Z7I> /n).

(3.16)

Application of (2.28) shows now that (3.16) exactly cancels
the sum over the discrete spectrum in (3.3). The Green’s

. Z 1 . . L Lo -
—2mi T o5 r (lrr1|_+_ W+, ) function is thus reduced to the contribution containing
ark?* 2Z ) _ . 2 L . . ) .
(3.13). Writing A in place of v, and reintroducing # in place
G1L2) 1 w om(® — 82
(1,2,k) = prcrl
e €. é.mom)”
x [T aa (M it (- ik W k)|
X [I‘( ;' M) nA —ikn . )W'"/z(—ikn>)]. 3.17)
This can also be expressed in the form
<meLL§eWWklﬂ'@§%w#me@, (3.18)
20 = 2mi) J- »
in which
8. (e, x'\ Z, 5) = (tkx) "2 (tkx'y'* I (E—;—I— — v 2)M,”V'/Z( —tkx YW —ikx,) (Z,, =kv,,). (3.19)

The convolution integral in (3.17) or (3.18) is standard for Green’s functions of separable operators. In the present case, a

contour can be closed by an infinite semicircle in the lower half-plane such as to enclose the poles of I ((m + 1)/2 —

exclude those of I' ((m + 1)/2 —
obtained after separation of variables, viz.,

d J k2x mz)
Z —_—X— !, 2Zy,) =
( 12+ax ax+ 4 4 g xx'\2y)

Slx — x').

iAd ) but

iv + il ). Equation (3.19) represents the Green’s function for the differential equation (2.7)

(3.20)

Note that Z, , rather than E now plays the role of eigenvalue. This formulation of the separated Schrodinger equation is
convenient for treatment of the Stark effect.'® Reduced Green’s functions derived from (3.19) can provide an elegant alterna-

tive for computation of Stark-effect perturbation energies.

Returning now to Eq. (3.17), Buchholz’s integral representation (2.29) can be applied to each factor 'MW giving, after

some rearr. angement:

ik
G (1,2,k) ==
( )= o
X Z e =g (k (£,6,)"* sinhs) J,, ( — k (19,17,)"/? sinht ).
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d/l j dS f dt e ik/2(8, + &) coshse — ik /2{n, + n,) cosht [COth(S/2)] 2iv — 2i4 [COth(l‘ /2)]2i/1
()] 0

(3.21)
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We have now been able to revert to the original parabolic
coordinates & ,77,,,,77,. In the sum over Bessel functions we
have noted thatJ _ ,(z2) =J,,( —2) = (—=)"J,.(2). The in-
tegral over A gives a delta function:

r dA [coth(s/2)] ~** [coth(t /2)]**

= 78{In coth(z /2} — In coth(s/2))
= 77 sinhs 8 {t — s). (3.22)

The integral over ¢ is thus immediate. The sum is in the form
of Graf’s addition theorem'”:

S TP gk,

m= — oo

r=(p"+4q" —2pgcosp)'’

where we identify
p=k(£&)!*sinhs,

g= —k(nm,)'*sinhs, $=¢,— ¢,
r=k[&& +nm,+ 2 £,:£:mm)" 7 cos(d, — ¢,)]'/* sinh 5.

Jolr) =

(3.23)

(3.24)
The Green’s function thus reduces to
G H(1,2,k) = —’k—j ds sinh 5 <o
4 Jo
X Jo(ku sinhs)[ coth (s/2)]%", (3.25)
where {cf. (2.1)]
v=4(E + S ) = =+ ),
u=[£:& + 1M, +2(£,E,mm2)" cos(d, — )]'7
= (2r; 1, +2r7,)" % = (xp)'?, (3.26)
in terms of the variables
X==F, 4+ 1+ Fy Y=+ — (3.27)

To complete the derivation, we make use of the identity

1. 9 uJ,(ku sinh s),
ku sinhs du

in conjunction with the integral representation (2.29) with
m = 1. We obtain thereby

Jolku sinh 5) = (3.28)

1 d
G P1,2k)= —— — (1 —ivM (- ik
( ) 4miku Jdu (=) »)
X W A — ikx). 3.29)

Noting, finally, that [cf. (3.26), (3.27)]
19 __ 2 (i_ i)
u du x—y \odx dy

- _ L(_a__ i), (3.30)

Fi2 \9x dy

we obtain Hostler’s expression for the Coulomb Green’s

function [2]
! (—‘9-_ i) ra-m
4mikr,, \Ox dy
XM YV — ikp)W 12— ikx). (3.31
The Green’s function (3.31) applies to both attractive
and repulsive Coulomb interactions. Most generally one can

G V(1,2k)= —
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redefine
=—ZZ'/k, (3.32)

in which Z and Z’ are the charges (in atomic units) of the
interacting particles. For an electron interacting with a nu-
cleus, the problem we have considered explicitly, Z' = — 1.

4. RUTHERFORD SCATTERING LIMIT

The continuum eigenfunction (2.19) with quantum
numbersm =0, v, = —i/2,v,=v+i/2(v= —ZZ'/k)
represents scattering of an incident plane wave by a nucleus
(Rutherford scattering). With use of (2.11) we obtain'8:

"Z,];UTH(I,) — eik§/2e — tkny/2 1F1(W;1Jk77)

= e"** \F\(iv;1;ikn) 4.1
normalized such that ¥(0) = 1. It is of interest to obtain this
Rutherford scattering limit in an alternative way, by reduc-
tion of the Coulomb Green’s function. G +(R,r,k ) can be
interpreted as the amplitude at point r for scattering of a
spherical wave originating at R by the nucleusatr = 0. AsR
is moved to infinity along the negative z axis, the spherical
wave approaches modified plane-wave behavior in the vicin-
ity of the origin. The Rutherford scattering wave function
(4.1) can thereby be represented as a limiting form of the
Green’s function as follows:

. GUORk)
UTH(p) = |im ————" 2
w0 = fim S R0
The denominator G ¢ * X(R,0,k ) is obtained readily from
(3.31) with x = 2R, y = 0. From the limiting forms of
M 1/ — iky) and its derivative'® we obtain

G UOROK) = — — (1 — i)W/~ 2ikR).
47R

(4.2)

4.3)

To evaluate the limiting form of G ¢ 7 (R,r,k ) we make use of
the integral formula (3.17) with the following specialization
of the parabolic coordinates:

§.=6=r+z=R—-—R=e>0,

7, =0, =r —2z =2R—>w,

£, =6=6 n.o=m=1. 4.4)
For the factor in (3.17) containing £ | = €'*:
lim e'2M 72, (— ike) = (— ik)'"26,,0, (4.5)

e—0
which eliminates all but the m = 0 term of the summation.
With use of (4.3)-(4.5), the wavefunction (4.2) reduces to

I B rE—iv+il)[G—id)
YO = lim o | A0,
M?A — ikn) W?vAiA(_ikg)
(— k' (—ikE)'”
o2 W?A(—zikR)] 46
x[(—zsz) Wo iy | 4.6)

From the asymptotic form of the W functions [cf. (2.27)], the
bracket in (4.6) can be reduced to

( —2ikR )l/Z—iv+i/1. (4.7)
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Note that (4.7) approaches zero as R— o for ImA > 0.
Thus the integral (4.6) can be evaluated by closing a contour
with a semicircle in the upper half of the complex A plane.
Theintegrand, specifically I" ( — iv + id ), possessespolesin
the upper half-plane at the points where

J—iv+id= —n, n=0,1.2,-. (4.8)
However, the limit of the factor (4.7) as R— oo will approach

zero unless n = 0. Thus (4.6) reduces to 27 times the residue
atd =v +i/2 (il = iv+ 1)), viz,

M _ — jkn) WO, (—ik&)
%UTH(r) = _1/2( 1,2 7 l_/_z ; l/f (49)
(— ikm) (— k&)
Now'®
WS (— k&) = (— k&)™ 72, (4.10)
while [cf. (2.11)]
M3, _ o — ikn) = (— iky)'/%e = %72 \F\(iv;Liikn), (4.11)

which results in the Rutherford eigenfunction (4.1).
The Rutherford scattering cross section follows from
the asymptotic form (2.14):

lﬁfUTH(r) = gkt /2 M?v —_in (—ikmn)

(= k)"
o= TV/2gikE N2 [ (kq) " o~ k72
r'(l—iv)
—1i Ml_ eikvﬂ]
r'@v)

_ e 2 [eikz — ivloglk(r — )}

r'd-—mw

. o ikr + ivlog[k (r — 2)]

_ird-me ] 4.12)

k (v (r—2
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This corresponds to a scattering amplitude
—ir(1 —iv)

8)= , 4.13
/6) kI (iv)(1 — cos@) (4.13)
which leads to the famous Rutherford formula
V2 Z3%Z"%* o
9 = 9 2 = = 4 -
7O =1/ON = 5oy 16EZ ¢ 7
“4.14)
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On the Abel summability of partial wave amplitudes for Coulomb-type

interactions
F. Gesztesy® and C. B. Lang

Institut fiir Theoretische Physik, Universitdt Graz, A-8010 Graz, Austria

(Received 19 November 1979; accepted for publication 7 December 1979)

We prove that the sum of partial wave amplitudes for Coulomb-type potentials [e.g., V' (#)

= y/r + O (r*)] is convergent in the Abel sense although it diverges in the ordinary sense. The
method of Abel summation is a generalization of the ordinary summation and allows one to sum
certain divergent series explicitly. It is closely connected with analytic continuation; with the help
of optimal conformal mappings the convergence of the Abel sum (for long- and short-range
interactions) can be improved substantially. This enables us to obtain values of the scattering
amplitude for each scattering angle (except forward direction). In particular, we show that the
screened scattering amplitude converges in the Abel sense up to a phase factor to the unscreened

one if the screening is removed.

PACS numbers: 03.65.Nk, 02.30.Lt

. MOTIVATION AND INTRODUCTION

The problem of whether a series obtained for a physical
quantity is summable in the ordinary sense is a notorious
one. The intention in all perturbative approaches is of course
to get rapidly converging expressions that allow the determi-
nation of the result to arbitrary accuracy. Increasing com-
plexity of the problems, however, often makes it hardly pos-
sible to make sure that the perturbative scheme applied is
actually adequate for the specific case and does lead to a
convergent series. A classical example for a divergent partial
wave expansion series is that of the nonrelativistic Coulomb
amplitude. The sum of the partial wave amplitudes, deter-
mined from the asymptotic phases of the partial waves, does
not converge to the full Coulomb scattering amplitude in the
ordinary sense. The partial sums diverge oscillatorily and
have no limit.

On the other hands, naively one should expect that on
the way to the series (i.e., by the manipulations required by
the formal expansion algorithm) no information should be
lost. That means that it should be possible to obtain the de-
sired results even from the divergent series.' It is well
known? by now” that there are techniques to obtain from
certain divergent series finite values.From the abstract point
of view this is quite clear since it is just a convention (i.e., a
definition) how to give an infinite series a value, as long as the
internal consistency of the postulates is guaranteed. The ba-
sic idea is to reconstruct from the series the value of a func-
tion that leads, when expanded, to the series in question. One
thereby assumes that the divergent series is just the result of
the polynomial expansion of a function with certain singu-
larity structure applied outside its region of convergence—
the result of a method of analytic continuation that is not
appropriate for the problem. For asymptotic series addition-
al assumptions on the function are necessary in order to
guarantee uniqueness. For less divergent series other resum-
mation (i.e., reconstruction) procedures are possible.

“Supported by Fonds zur Forderung der Wissenschaftlichen Forschung in
Osterreich.
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We discuss only the case of partial wave expansions of
nonrelativistic scattering amplitudes of long and short range
interactions. For Coulomb-type potentials [V (r) = y/r

+ O (r~%)] the sum

3 @41 ~1) P(x),

is divergent in the ordinary sense, the partial sums oscillate
and grow without limit, and converge only in a distributional
sense,” i.e., when first multiplied with a certain test function
inx = cos6 and integrated over x. For short-range potentials
[V (r) = O(r >~ ¢)as r -] the corresponding sum is even
absolutely convergent in the ordinary sense but not the sepa-
rate sums

S+ 1)e”*Px) and 3 (2] + 1)P,(x).

We show that all these sums do exist as Abel sums, i.e.,
sums in a modified sense. Abel summation®>* is a direct
generalization of ordinary summation and allows the sum-
mation of the above-mentioned partial wave amplitudes for
each xe [ — 1, 1]. For ordinary convergent series Abel sum-
mation reduces to the ordinary one. We therefore propose to
treat the sums of partial wave amplitudes as Abel sums.

The Abel sum can be considered as the Abel limit of the
partial sums. The Abel limit again is a generalization of the
ordinary limit and reduces to it when applied to quantities
limitable in the ordinary sense. This Abel limit will be useful
in demonstrating how the scattering amplitude for a
screened Coulomb potential is related to the normal Cou-
lomb amplitude.

In some respect Abel summability was already noted by
Mott’—although he was not aware of Abel’s work. For pure
Coulomb scattering he reconstructed the correct amplitude
from the divergent partial wave series in exactly the required
way of Abel summation. We show how to use Abel summa-
tion in practical cases where no closed form of the result is
accessible and where one accelerates convergence with con-
formal mapping techniques. In a certain sense the existence
of the Abel sum (which we prove for Coulomb-type interac-
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tions) justifies a posteriori other practical techniques to ob-
tain from the divergent series a convergent one, e.g., multi-
plying with a singularity reducing function in x which leads
to a resummation,® “punctual” Padé approximation,’ or the
Legendre Padé approximation.'®

Il. THE SCATTERING AMPLITUDE FOR COULOMB-
TYPE POTENTIALS

In this section let us briefly review what is known about
nonrelativistic scattering amplitudes for spherically sym-
metric Coulomb-type potentials. We discuss first the case of
pure Coulomb interactions and denote the potential by

Vi =v/r, 7R, 2.1
The first rigorous approach for this type of long-range po-
tentials within the framework of time-dependent scattering
theory was initiated by Dollard'’ and relied on an appropri-
ate modification of the free time evolution operator (cf. also
Ref. 12). It can be shown that Dollard’s scattering operator
actually coincides with the usual Coulomb § matrix.'* An
alternative description of the Coulomb scattering operator
S, based on an algebraic approach to scattering theory by
Combes'* and Lavine'” (cf. also Ref 16), has been adoped by
Grosse et al.'’, exploiting the SO(3,1) symmetry of the prob-
lem. As a result §€in the interaction picture can be
written'”:'8

e:h=2m=1.

rQ+@>+)2+ip2V —4)

rG+@*+Y2—iy2V —4)
where — A denotes the kinetic energy operator and L ? the
square of the angular momentum operator.

In momentum space S © acts on states @C '(R %)
AL*R %) as

S = , 2.2)

(S®)k) = lim —F LU+ 7/2lk])
0. 2milk | I'(1—iy/2|k])

x [ a8k - kP

X[ (k4l—k/lz,)2 ]17e+:y/2¢k|¢(k Y @3)
For @,(k)=Y7'(k/|k )¢ (% |), Eq. (2.3) implies
(S°P)(k) = exp(2i5;(|k )P, (k), 2.4
where 8;(| & |) are the usual Coulomb phase shifts
Si(|k |) =argl" (1 + 1 + iy/2|k |). 2.5)

Further on we abbreviate x = cos = k-k '/|k ||k '], where
denotes the scattering angle and, without loss of generality,
put the incident momentum |k | = 1/2.

The Coulomb scattering amplitude'® then reads

f = —p2rw LOEW e ey

(1 —1y)
2.6)
and Egs. (2.3)«2.5) imply
£ = — $ @1 ) Ao, @7)
/=0

in the sense of distributions*-?%-2!; this means that both sides
have to be integrated with a twice continuously differentia-
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ble test function ¥(x) vanishing at x = 1 in order to obtain
convergence of the sum over /. Considering /(x) as a mere
function the corresponding expansion into a Legendre series
is divergent for all x. This is of course common to amplitudes
with certain singularities at x = 1. A Legendre series for a
function converges pointwise in the interior of the largest
ellipse with foci + 1 where it is holomorphic, but is diver-
gent outside.”” On the boundary there may be regions of
conditional convergence depending on the order of the sin-
gularity. Since /(x) has a pole (and a branch point) atx = 1,
the sumin Eq. {2.7) diverges in the ordinary sense for all xeC.

However, one may expand f“(x) in a Taylor series at, for
example, x = 0 or x = —1 with radii of convergence 1 or 2,
respectively. Alternatively, introducing the conformal
variable

. 1_(1__x)1/2
1_+_(1__x)1/2 ’

which maps the x plane, cut from 1 to infinity, into the interi-
or of the unit circle in the w plane, produces an optimal
converging series in w ". (For a review on this type of tech-
niques see Ref. 23.)

Let us now discuss the general case of Coulomb-type
potentials

(2.8)

Vir)=Vr) + V@), 2.9)

where V* denotes the short range part of the potential and
fulfills

fm drrlV(r)| < .

If one decomposes the total phase shift §,, which is defined in
terms of the asymptotic form of the radial scattering wave
function, into

(2.10)

&, =87 +u, (2.11)
and assumes that
Vimy=0(r—"°), €>0 as roow, 2.12)

then a result by Semon and Taylor** can be stated as follows:
The sums in

fm=%§WHWmAmm

— Fex) + % @21 +1) %™ —1) P(x),

I=0

(2.13)

are both convergent in the sense of distributions. From Eq.
(2.12) one concludes®

e 1] =0(1~27¢), (2.14)

and thus the second sum in Eq. (2.13) is not only convergent
in the sense of distributions, but converges uniformly and
absolutely for all xe[ —1, 1].

Another result by Semon and Taylor®* concernes
screened Coulomb potentials. Let

VE@O =Vra® () + Vi),

where the screening function a #(#) obeys**

(2.15)
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r—»oc

O<a®(r<l1, for R fixed, a®(r) > O monotonically
R—w
like O(r—*~¢) for some €>0, for r fixed, a®(r) — 1,
(2.16)

and V*(r) obeys Eq. (2.12). Using the method of variable
phase?® the authors show that for large values of the screen-
ing radius R the phase shift 57 that corresponds to the short
range potential ¥ #(r) behaves like

R
5 —o(R) — &, .17

where

o(R)= —y| drr'a®(). (2.18)
1

Since w(R ) does not depend on /, this shows that f, (x), the

scattering amplitude corresponding to ¥ %(r), converges in

the distributional sense to f(x) up to a phase factor?*

expl —2i0(R) | fu(x) — f(x) (distributional).  (2.19)

Considered as a function, exp[ — 2iw(R )} f (x) does not con-
verge to f(x) in general.”’ For an alternative approach to
screening where the screened Méller operators converge to
the unscreened ones (up to R-dependent phase factors) if the
screening is removed see Ref, 28.

11l. ABEL SUMMABILITY OF SCATTERING
AMPLITUDES

In this section we first introduce the concept of Abel
summability and then we prove that the partial wave expan-
sion of the scattering amplitude for Coulomb-type poten-
tials, although divergent in the ordinary sense, has a well
defined Abel sum.

A sum over a sequence of complex numbers X~_ , ¢, is
called convergent in the ordinary sense (or short: conver-
gent) with sum C if and only if

lim |i ¢, —C|=0.

N v 20
Then we write 27_, ¢, = C.

Let us now introduce the more general concept of an
Abel summable series.”® Let {¢, ] *_, be a sequence of com-
plex numbers and suppose that the power series £7_, ¢,y "
is converging at least for | y| < 1 and define
f=27_,c,y.ThenX>_, c, is called Abel convergent
(Abel summable) with Abel sum C if and only if

lim |f(») —C|=0.

In this case we write A-2;_, ¢, = C. The Abel sum there-
fore is the value of a function which is known only from its
power series. This value can be obtained by analytic continu-
ation to y = 1 from the values of the function inside the unit
disc. Since the power series (the asymptotic behavior of the
¢, ) allows one to determine the position and type of the clos-
est singularities, the analytic continuation can be performed,
for example, by a change of variables through a conformal

mapping.

314 J. Math. Phys., Vol. 22, No. 2, February 1981

Abel’s limit point theorem® implies that the Abel sum-
mation fulfills the so-called consistency condition, i.e., if a
sum exists in the ordinary sense then the Abel sum exists
with the same value too:

i ¢, =C implies A- i ¢, =C.

n=0 n=0
Obviously, this generalized summation procedure is, similar
to other related ones like Padé or Borel summation, closely
linked to the problem of analytic continuation. Whereas /( y)
in the case of Abel summation should be holomorphic in the
unit disc, this is not necessary for Borel summation, which
applies to asymptotic series. There, however, certain supple-
mentary conditions need to be fulfilled in order to guarantee
uniqueness of the sum.?” We also note the great importance
of such generalized summations in the theory of Fourier se-
ries (Fejér’s theorem).®

Before we state our main result concerning Abel sum-
mability of the partial wave expansion of Coulomb-type scat-
tering amplitudes we introduce a somewhat more general
class of potentials including 1/#* potentials. Let

a—1/4

vin= L+ St VO,

r

yeR, a>0, 3.1

with

r dr V()| < . (.2)

)
The total phase shift®® corresponding to ¥ (r) is denoted by
8.
Then the scattering amplitude f(x) defined by the Abel
sum

@ =A-5 L@ - Px), —l<x<l, (3.3)
=o 1
exists. This means that, although the partial wave expansion
for Coulomb-type scattering amplitudes diverges when
summed in the ordinary sense, it is convergent when
summed as an Abel series.
To prove this we show that

o

foe) = 3~ @11 1) Px)y

I=0

= 5: ¢, (x), (3.4

=0
has at least radius of convergence one in the p plane and that
the limit lim, , f(x, y) exists for xe [ —1, 1).
We decompose

8, =0, +u, (3.5)
where
op=arg{r [} +(*+ 1+ a)"? +iy]}
U=+ I+ @) a/2, (3.6)
is the phase shift*® associated with the potential
Y pazlA R a0, 3.7
r IS

which of course reduces to the pure Coulomb potential for
a = 1/4. We have to study the asymptotic behavior of ¢, (x)
for |x| < 1. For this purpose we note>'
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Pi(x) =2Qml Y (1 — x
Xcos[(l + 4) arccosx — % ](l +0(d™h),

2)_ 1/4

x| <1, (3.8)
and
expRio) =1*"(1+0d™). 3.9
If V°(r) = O (r©) with B> 2 as r—>c0, then®*?*
expQin)=1+0("?), (3.10)
and finally we obtain asymptotically
¢;(x) = c(x)! 212 —1)
xexp( + il arccosx)(1 + O(I ™)), x| <,
G3.11)

where c(x) depends only on x.

From this asymptotic behavior one may determine type
and position of the nearest singularities. If one expands
(y 4+ a) ®'ina Taylor series

+a =3 dy
I=0
one gets asymptotically
d=@"re+))(—-a-1°0+0d™MH). (3.12)

By comparison of Egs. (3.11) and (3.12) we conclude that
f(x, ), |x] <1, has singularities in the y plane of the type

(y — exp( £ i arccosx)) 2727 | |x| <1. 3.13)
The same analysis performed for x = —1 shows that
f(—1, p) has a singularity of the type

(y+1) 2727, (3.14)

Note that only the kind but not the position of the singularity
in the y plane is affected by exp(2i8,). Its position
exp ( + i arccosx) is entirely determined by P,(x) [see also
Eq. (3.21)] and is not changed by higher order terms in
Eq. (3.8).*'
Equations (3.13) and (3.14) show that f (x, y) converges
1or |y| < 1 and can be analytically continued to y = 1 for
—1<x < 1. This proves the existence of the Abel sum of
partial wave amplitudes

fx)= lim f x.y)

wAz---(zlﬂ)(e’“‘*' - Px), —1<x<l

=0 1

(3.15)

FIG. 1. This figure exhibits the mapping y—z [Eq. (3.16)] for a special value
of p = 1/6. The points in the y plane denoted by capital letters are mapped
to the z plane points denoted by the corresponding smalt  letters. If the
singularities closest to the origin B are the points D and D, then an expan-
sion in polynomials in z will be convergent at the point ¢ in the z plane. This
practically allows the analytic continuation to y = 1 (point C) required in
the Abel summation.
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It remains to show how the continuation may be done in
order to obtain numerical results. We introduce a conformal
mapping y — z (cf. Fig. 1):

R W SRS
D -z ’

21/2p_1
( = ~1,0,1,0>2z= —1,0, ——————,1).
21/2p +1

This mapping maps the interior of the sector generated by
the points y = —1, y = exp( + { arccos x) with apex

y = —1in the y plane into the interior of the unit circle in
the z plane (the opening angle of the sector is 27p

= arccos X)-

(3.16)

Writing
fxy)= z aoy = 3 a2, 1yi<, (3.17)
one infers
o) = o) = — (& 1),

—v & & (Im =L =
dI(X) mgljgl kgl m! ( 2m —1 )(k)(~l) ‘

S R (e )
1# 1,2,3, . (3.18)

The conformal mapping was chosen in sucha way (i.e.,y = 0
mapped to z = 0) that each d, (x) can be evaluated from the
knowledge of ¢, (x), k<[, i.e., from the knowledge of ,,,...,5, .
Therefore it is now possible to determine the Abel sum
f(x,1) from Eq. (3.17) by evaluating the ordinary conver-
gent sum over datz(y=1),

1= 3 e =)

For numerical results compare Sec.IV.>?

(3.17")

Mapping techniques like the one discussed are neces-
sary for Abel summation of Coulomb-type partial wave am-
plitudes. For short-range potentials [V (r) = O (r —* 9,
€> 0, as ¥—» o0 ] where the partial wave expansion converges
already in the ordinary sense one may also use these confor-
mal mappings in order to accelerate the convergence. From
the consistency condition discussed before we conclude that
the natural way of summing partial wave expansions for
scattering amplitudes is to perform Abel summations. For
slowly convergent partial wave series it is possible to use
rational approximants’ to determine the value of the Abel
sum at y = 1. For functions with singularities at points
[y!1= 1 like the Coulomb partial waves sum it is not clear
whether analytic continuation with Pade approximants
(that approximate the cut structure by poles) is adequate.

Let us discuss two examples for which the Abel sum
may be evaluated in closed form. We start with

$ @+ Py,

=0
bl<l. (3.19)
with the help of the generating function of the Legendre

5(x.y) =

x[<1,
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polynomials
P -2y 41y 2= S PGW,
=0

xXl<1, i<l (3.20)

we obtain

Sxy) = z'[zy }y ( —2xp +1)12 4 (% —2xp +1)17

= i1 — N y* —2xy +1)72. (3:21)
Thus,
4- 3 Q@I4)PX)
I=0
. 0, 1,
= lim 8(xy) = [ ¥ (3.22)
p—1 w, x=1.

Remembering the closure relation for P,(x), i.e.,

S (+ PP PG = 8(x —x),

=0
in the sense of distributions, the result Eq. (3.22) looks famil-
iar [P,(1) = 1].

Equation (3.22) shows that one may use

2(x) = % @21 +1) &P, (x) (3.23)
instead of ¢,(x) in order to evaluate the Abel sum of the
scattering amplitude f(x) for x # 1. It also shows that for
ordinary convergent partial wave amplitudes the sum over
(21 +1)¢*®P,(x) can only be Abel convergent. For these the
reduction (3.23) is of course not advisable.

The second example concerns the pure Coulomb scat-
tering amplitude £(x); it has been evaluated by Mott’ who
apparently was unaware of Abel’s work. His procedure is
actually Abel summation of the Coulomb partial wave am-
plitudes but seems to have been overlooked in most publica-
tions on that subject. His method is based on the formula®'

reor(y)  —expl —imx +y)|
F'x+y» 4sin 7x sinmy

><§ dtt*'(1—1t)*"', x,ynotinteger.
r
(3.24)

He. .ue closed path I starts from a point on the real ¢ axis
between 0 and 1, encircles f = 1 in the positive sense (coun-
terclockwise), ¢ = 0 in the positive sense, then ¢ = 1 in the
negative sense, and ¢ = 0 in the negative sense, before it re-
turns to the starting points. Thus,

~

S, )
ton e
= IZ,O% (21 + 1)[I"( — 2iy)1 — exp(47y))
X (1 — exp(—2my))] "
><§ drt' "1 — )= =P (x)
= — [rI“( — 2iy)(1 — exp(4my))(1 — exp( — 2my))] '
xidtt“y(l—t)—”*‘a(x,yt), |x|<1, |yl <1, (3.25)

P,(x)y’

-~

1
8 oMs
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and

ril+1+iy) P.(x)
ri+l—iy '

= [I"(— 2iy)(1 — exp{dmy))(1 — exp( — 27p)] "

X§dtt'7(l — )7 Sx,e), x#L
r

rim=a-% Loy
=0 1!

(3.26)

The last integral can be evaluated explicitly,” yielding exact-
ly the result (2.6)

Finally, let us turn to screened Coulomb potentials and
prove that the screened Coulomb-type scattering amplitudes
converge to the unscreened ones (up to certain phase factors).
We first introduce the concept of an Abel limit.>®

A sequence of complex numbers {d,, }=_ , is called con-
vergent in the Abel sense with Abel limit D if and only if the
sum £=_, d,y" (for any m>0) converges for at least |y| < 1
and

lim(1—y) 3 d,y"=D.
y}{rll(l y > dy'=D

n=m

(3.27)

Then we write A-lim,, , d, = D. Itis obvious that a se-
quence limitable in the ordinary sense is also Abel limitable
to the same limit. It can be easily shown that the Abel sum is
just the Abel limit of the partial sums

N o
A-lim ¥ ¢, =A-Y c,. (3.28)
Ny Z0 n=0
Let
v =L+ a—ri/“ + V"), veR, a>0,
r

and let Egs. (2.12) and (3.2) be valid for V*(r). We then
introduce the screened potential

o= (L 2
r r

)a"(r) V),

n=1,23,,
where a "(r) fulfills Egs. (2.16).
If £(x) and £, (x) denote the scattering amplitudes for
V (r)and V "(r), respectively, then we can prove the following
analog to Eq. (2.19). Up to a factor of modulus one, the Abel
limit of £, (x) as n tends to infinity equals f(x):

(3.29)

A-lim exp[ —2io(n) 1 /,(x) =f(x), x#1, (3.30)

L

where w(n) is defined in Eq. (2.18).
Before proving this let us discuss the special situation of
a sharp cutoff function

a"(r) = 9(” - r)v n= 1)2’3""- (331)

This case was analyzed by Semon and Taylor®’ using Born
and Eikonal approximations for the pure Coulomb potential
(a = 1/4, V* = 0). In the Born approximation f“(x) and
f¢(x) are given by

FEG) = 1—27—
—x

75969 = 2 {1+ coslnl(l = /2211, (3.32)
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and obviously £%%(x) does not approach £ #(x) in the ordi-
nary sense as n— oo . The same holds in the Eikonal approxi-
mation.”’ It is clear from the Riemann-Lebesgue Lemma®*
that, when smeared with test functions, the screened ampli-
tudes converge to the unscreened ones, i.e., distributional
convergence*?* holds. The same is however true if we take
the Abel limit instead of an ordinary limit. In fact,

A-lim cos(nz) = hm 1-y z y'cos(nz)

n—»cc n=0
_11m (1 _y)__.____&si__ =0,
1 -2y cosz + )*
forz;é2k77, =0, +1, +2,.., (3.33)

and thus the screened amplitude converges in this example
in the Abel sense to the unscreened one.
To prove the general case in Eq. (3.30) we write

—2iw(n) 1 £,(x)

PRI

= 11m (1-—y» i e~

n=1

A-lim exp|

>0

=lim (1 —y)
y—1.

% lim i 2 QL +1)( &% —1) P(x)2!

-+ T0 1

= lim llm a-y z e et

y—1_2z—1 ne1

XS — 2 +1) %P (x)Z
1;0 - ( ) 1(x)

—lim lim 2 2/ +1) P, ()7
1

y—1lz—1. /=0

X(1 —y) 2 exp[2i(8] — w(n) — 8)]y" x#1.
" (3.34)

Here we interchanged X, andlim, ; with the help of bound
(2.14) and Weierstrass criterion. For x # 1 the Abel sum
(3.19) vanishes and therefore the contribution from the

( —1) in the sum over / can be dropped. We subsequently
interchanged 2, and 3, since |y| < 1 and |z| < 1. From**

lim (87 — w(n)) = &,

n— o0

and therefore

3.35)

A-lim exp[2i(5] — w(n) — 5,)]

n-—»o0

= hm (1—yp Z yexp[2i(8] — w(n) —8,)] =1,

n=1

(3.36)
we finally obtain the desired result
A-}im exp( — 2iow(n)) £, (x)

= lim 20 -:— @I +1) PP (x)z'

a3 li QI+1) PP() =f(x), x£l.  (337)

This means that the specific form of the screening function
a "(r)is irrelevant for the differential cross section if the Abel
limit n— o is applied.
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IV. NUMERICAL ILLUSTRATIONS AND CONCLUSION

Having proved that Abel summation is appropriate for
the partial wave expansions of scattering amplitudes for
long- and short-range interactions, we now discuss a few

numerical examples. For all our examples we choose a typi-
cal value of the Coulomb parameter y = 0.1. In the figures

we plot only the real parts of the quantities for convenience.

In Fig. 2 we compare the partial sums of the diverging
partial wave summation for pure Coulomb scattering
(a=1/Handx = —1

FRe= 1)
1 rasisim |y

=T &Y Ty Y
@.1)

with the partial sums of the converging Abel summation in
Eq. 3.17):
ffxe=—ly=1)= Z d(x= —1) (= D),

1=0
4.2)
which converge for K— o to the Abel sum of the partial
wave amplitudes. Forx = —1 we havep = 1 and
2(y=1)=(2-1)/(vZ+1) =0.171573 for the map-
ping (3.16). The correct value of the Coulomb scattering
amplitude (2.6) at x = —1is ( —0.099344 +0.011439 /)
which is obtained with four digit. accuracy from the 10th
partial sum onwards (six digits for the 15th partial sum).
An equivalent figure can be drawn for the case of V' (r)
= y/r + (@ — 1)/r°, where the phase shifts are explicitly
known from Eq. (3.6); the convergence properties are very
similar.
The rate of convergence is satisfactory for x S 0 but gets
worse as x approaches one. In Fig. 3 we give the partial sum

K

FIG. 2. We compare the difference between the correct value of the real part
of the Coulomb amplitude and the partial sums for the ordinary partial
wave summation [denoted by 3=f*(x = — 1) — f(x = — 1), cf. Eq. (4.1)]
and the partial Abel sums [denoted by A-E=f*(x = — 1,

y=1)—fix = — 1),cf. Eq.(4.2)]. The normal partial sums diverge oscilla-
torily and are therefore scaled down by a factor of 20; the partial Abel sums
converge quickly and are correct to four decimals for K> 10.

F. Gesztesy and C.B. Lang 317



K

FIG. 3. For x = 0.5 the convergence of the Abel sum is slow; the difference
between the correct value and the divergent ordinary partial sums is denot-
ed by T=f*(x = 0.5) — fx = 0.5) and is scaled down by a factor of 10 in
the figure. The difference between the correct value and the partial Abel
sums is denoted by A-Z==f*(x = 0.5,y = 1) — f(x = 0.5). The convergence
of the sum can be improved substantially if one sums the series in x ' {Eq.
(4.3)}, where the expansion coefficients a, are themselves obtained from
Abel sums. The difference between the correct value f“(x = 0.5) and the
partial sums in x ' is denoted by 3, and vanishes quickly. Even faster con-
vergence is achieved if one sums the corresponding series in w{x)’, the opti-
mal conformal variable. The expansion coeflicients 3, can be computed
from the a,. The difference between the correct value and the partial sums is
denoted by 3. At K = 7 the partial sum in w’ is already correct for six
digits. (Only the real parts are plotted.)

(4.1) and the partial Abel sum (4.2) for pure Coulomb scat-
tering at x = 0.5; the corresponding values for p and z are

= 1/6 and z = 7/9. The correct value of the scattering am-
plitude is ( —~0.399885 —0.009592 /) and the deviation of
the 20th partial Abel sum is still about 5%.

A way out of the convergence problems for x ® 0 is of-
fered by the expansion in x ‘ or even (w(x)) / [cf. Eq. (2.8)]
rather than P;(x). Although this is a technical detail, let us
discuss this approach since it is helpful in practical summa-
tions. For simplicity we treat only the pure Coulomb poten-
tial, but the formulas derived may be easily generalized.

For this purpose we expand f“(x, y} [cf. Eq. (3.23)] by
expanding the Legendre polynomials®' into a series in x .

re & 1 FA+1+i) pogy

fley)= 3, < @+ 1) F T Py
=S a i, —1<x<l, <),

ap=y) = — 2L 2 (— 1<(dk + 21 + 1)

T+ 1(172) =
Tk+1+1 +ty)F(k +I+1/2) 4
TRk +1+1— i) {k+ 1)

Ei azvt, v <1 (4.3)
k=0

The coefficients a,( y = 1) are again given by Abel summa-
ble series; the limit lim, , ,(v) exists since the large k be-
havior implies a singularity of the type

(l) +l) —3/2 2iy -1
for a,(v) (the factor y ' may be omitted since y—1). In order
to determine a, (1) we apply the technique discussed in Sec.
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TABLE L The values of the first seven coefficients &, [Eq. (4.6)] and 5,
[determined from the &, with Eq. (4.9)] for the expansion of the Coulomb
amplitude in x ' [Eq. (4.3)] and in w(x)' [Eq. (4.8)].

1 Rea, Ima, Relél Imﬂ-z

0 — 0.199795 0.009063 —0.199795 0.009063

1 —0.200701 —0.010916 — 0.802804 — 0.043664
2 - 0.200155 — 0.020951 — 1.596872 — 0.247888
3 — 0.199457 —0.027623 —2.363740 — 0.558000
4 —0.198766 —0.032610 — 3.106192 —0.918432
5 —0.198114 — 0.036585 — 3.830596 —1.317072
6 —0.197504 — 0.039887 — 4.532568 — 1.750256

IIT with the mapping v—z [Eq. (3.16) and p = 1], i.e.,
a,(v) = 2 a, vt = 2 N2’
k=0 k=0

where the 57, are determined from the a,, like the d 's from
the ¢’s in Eq. (3.18).

In the special case of the Coulomb potential we can
determine the correct values of ¢, by expanding f(x) in a
binomial series

C, 1+1yr(1+17)
f@= - g

‘449

)vl—iy

= i ax, |x|<1,
1=0
1)1+1 2[+xy r(1+17/)
ra—iy’

1
“’z( ! y)(
=012, 4.5)

The partial Abel sums [cf. Eq. (4.4)] forv =1 are rapidly
approaching these correct values. In Table I we give the val-
ues of the first seven coefficients as obtained from the30th
partial Abel sum

a= i_(i N (2@ = 1))k’

which are correct for all six decimals. For positive x the rate
of convergence is still improved if one introduces the confor-
mal mapping

(4.6)

1 -1 —x) _ 4w
I A +wp’ 4.7)
x= —w, -1,0, l 5w= -1,
(1 ~v2/1+v?2),0,1).
Then
f (x.p) = z a,(y)x Z Bl(}’)wl, 4.8)
Ik g rd+k)
ﬁ/()’)‘”kgo( D TaOrd—k+1) a (y). (4.9

In Table I we give B, (y = 1) that are determined from
the &; (¥ = 1). In Fig. 3 we also exhibit the partial sums of (4.8)
for the expansion in x (2,) and in w(Z;) at x = 0.5; the
comparison with the slowly convergent Abel sum (A-2)
clearly demonstrates the strongly improved rate of conver-
gence. Note however that polynomial expansions have sta-
bility problems; small errors in the coefficients may produce
large deviations in the results. For the related questions of
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stability of analytic continuations we refer to Ciulli ez al.?

Concluding, we have shown that partial wave expan-
sions of scattering amplitudes for Coulomb-type potentials,
although divergent when summed in the ordinary sense,
converge when treated as Abel sums. Thus, from the theo-
retical point of view Abel’s summation procedure is well
suited to sum partial wave expansions of scattering ampli-
tudes for long-range as well as short-range interactions. We
have also demonstrated that physical quantities for screened
Coulomb-like potentials are in the Abel limit independent of
the specific form of screening. Finally, we have shown how
to obtain numerical results with the help of conformal map-
ping techniques and the construction of optimal converging
series.

' Abel, although contributing fundamental theorems and thus preparing
the basis of nowadays limitation theory, condemns divergent series in his
letter to Holmboe (1826): “Les séries divergentes sont, en général, quelque
chose de bien fatal, et c’est une honte qu’on ose y fonder aucune démon-
stration” [Hardy’s translation: “‘Divergent series are the invention of the
devil and it is shameful to base on them any demonstration whatsoever”)!
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It is shown that the multipole expansion of electrostatic energy can be expressed in the form of
energy specification S { W, ] = ([P],,V’¢ ), where V"’ is a differential operator, whereas ¢ and
[P], represent an arbitrary test potential and equivalent reduced volume multfpole density,
respectively. Two electrostatic sources are /-equivalent if their energy specifications are identical.
The formalism by means of which electrostatic multipole sources can be effectively handled is

developed.
PACS numbers: 41.10.Dq

I. INTRODUCTION

On reviewing problems regarding the foundation of
macroscopic electrodynamics, it appears that certain of
these demand further elaboration. One of these problems is
concerned with the energy of an electrostatic system, and
this may be analyzed with emphasis on two particular as-
pects. First, the procedure of integration by parts commonly
employed in energy-integrals becomes progressively awk-
ward as multipoles of higher order are considered. The sec-
ond aspect is the physical basis of the macroscopic electrody-
namics. It may happen that, due to the mathematical
idealization involved, calculations including self-energy give
rise toill-defined results. This is an extremely serious issue to
be settled in elementary-particles physics. In macroscopic
electrodynamics, however, it may be reasonable to avoid the
self-energy of charged particles completely in energy calcu-
lation, maintaining that the interaction energy of the system
is fundamental to the entire theory. In other words, it is
conjectured that any part of macroscopic electrodynamics
may be developed by starting with the interaction energy of
the source distribution of a system and arbitrary external
field.

It is the purpose of this paper to develop a formalism
that refines and generalizes the concept of a potential equiv-
alence' of electrostatic sources along the lines discussed
above. This formalism will allow multiple densities of an
arbitrary high order to be included explicitly in the course of
the analysis. Needless to say, the multipole properties of
atoms and molecules are well defined and therefore it is very
natural and important to consider an equivalency relation of
sources including their arbitrary polarities. In the following,
any source of electromagnetic field will be placed in a family
of potential fields produced by external agents. Further-
more, besides the field itself, the field gradient and its tensor-
ial generalizations of higher orders are considered to be sig-
nificant probing agents that test the characteristics of a given
source distribution.

The main result established in this paper is the formal-
ism for handling a multipole of arbitrarily high order, based
on the concept of a source body as defined in Def. 1 and its
application to the multipole expansion of electrostatic ener-
gy. Subsequently, it will be shown that multipole densities

“0n leave of absence from the Technical University of Wroclaw, Poland.
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may always be considered equivalent to appropriate densi-
ties of lower orders. Both the aforementioned formalism and
the concept of equivalency are based on the interaction be-
tween a given source body [P] and an externally applied
field. To develop a consistent formalism that conforms with
these objectives, the concept of energy specification” is made
precise by defining it as a set of all possible values of the
functional {[P],L¢ ), where L is alinear differential operator
and ¢ is an arbitrary test potential. In view of this, the theory
of generalized functions appears to be a desirable framework
with which to work. The merit of the distributional formal-
ism is clearly presented when one deals with discontinuities
and other singularities of physical quantities. Thus a consid-
erable amount of applications of the generalized functions to
macroscopic electrodynamics have been given by now. In
particular, the description of electromagnetic sources has
been discussed in this context. Mazur® and de Groot and his
school* have developed the generalized description of the
multipole electric and magnetic sources with polarity of an
arbitrary high order by employing the Taylor series-type ex-
pansion of the § function. The generalized formulation of
Maxwell’s equations has been studied by several authors.>*”’
Some applications of the vector generalized functions are
also discussed by Gagnon.® In the present paper, the merit of
the distributional formalism will be emphasized in a broader
sense in that, by its virtue, the field-gradient qualities of an
external field may be related straightforwardly with the
boundary effects that appear upon forcing the support of a
source density to vanish outside a finite space.

In Sec. II a notation will be introduced in which various
tensor operations are incorporated with the distributional
formalism. In particular, the formula that generalizes a clas-
sical identity V-(¢a) = Vé-a + ¢V-a is of special interest. In
Sec. II1 the concepts of the source body and the energy speci-
fication of order / are defined. It is shown in Sec. IV how to
transform an energy integral of a system into another one
which is more readily ameanable to physical interpretation
by systematically using the procedure

([P1,., Lo ) =(V" = "'[P],,,V")
= ([P,.,,V"'8), (1)

where the original differential operator L is factored like

L =V Yy ® while [P],, and [P],,, are a given multi-
pole source body of the order m and reduced multipole
source body of order /, respectively. Furthermore, the above
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procedure yields an additive version of the multipole expan-
sion of interaction energy. Finally, in Sec. V the importance
of the formalism and the consequences for its application are
pointed out.

Il. DIVERGENCE ITERATIONS OF CONTRACTION

Let R * beareal three-dimensional Euclidean space with
afixedbaseandletF=(F, ;| ={F, },a={qa,.,; }
= {a L. }, respectively, denote sufficiently smooth tensor
functions defined on R 3. The k-element (m-element) set of
indices, ( i5)is denoted by J, (1,,,). The sth tensorial contrac-
tion of F and a is defined as

C¥[F,a) = {zF,k La,, ] —{F, ya, 3 @
J,

where the contraction in the second member is performed
over arbitrary s-element subset J, chosen as common subset
fromJ, and /,,. Itis assumed in the following that a contrac-
tion involved in (2) starts with the last available index of F
and the first available index of a, whereupon the available
pair of indices will be subsequently contracted; such a proce-
dure continues s times. The / th iterations of gradient and
divergence are defined, respectively, by

VOF =D, D, F, ,,

3

VO.F =Dy D, F 4>
where D, denotes a partial derivative with respect to the
variable x,,. By direct computation one verifies that for
m >k = 5s>0 (Appendix A),

V-[C"(F,a)] = C** '(VF,a) + C(F,V-a). (4)

One can generalize the above formula to obtain the (m — s)th
divergence iteration. In fact, a remarkably useful formula,

v =9 [C¥(F,a)] =

t=m
t

if :C(:+ ”(V(”F,V‘m -5 — t).a),
=0

(3)
may be proved by introducing for each ¢
C(s +t )(Vqt ]F,V(m —s5s—1) _a)
= z DyF,Dy . a,gu, . . (6)
A,

The summation in (6) is performed on all z-elements sets H,
that are possible under the condition H, C CI,, where CI, is
understood as a complement of /, with respect to theset 7,,,.
The detailed calculations necessary to prove Eq. (5) are pre-
sented in Appendix A.

For a scalar test function ¢, the derivative of a general-
ized scalar function p is defined by®

(p'd)=—(psd’). (7)
For a generalized vector function p, the following, formula
will be useful

(VP’¢> :(Dipi7¢>= (p,‘,‘_Di¢> =<P,—V¢ )9 (8)
where { p,¢) ==, (p;,4,) = { p;,9,) is understood. In or-
der to generalize the above procedure, the generalized sth
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contraction C®(F,b) of a generalized tensor function F will
be introduced. Let F be a tensor generalized function of or-
der k and let ¢ be a tensor test function of the order m in the
sense that all components of ¢ belong to the Schwartz space
2. For 0<s<min(k,m) a generalized function C is defined
by

CP(&) =CF.b) =(F, .8, ) €))

where a contraction is carried out with respect to the “inner”
set of indices, J,, as explained at the beginning of this section,
Eq. (12).

lll. ENERGY SPECIFICATIONS OF ORDER/

Let £2 and S,, denote, respectively, a simply connected
region in the three-dimensional space and the surface bound-
ing the region. A characteristic function 6 (2 ) is defined, as
usual, by

l’ S.!l (x)>0!
5(‘0) = W[Sn(x)] = {0, Sn(x)<o, »

where x is an arbitrary point in the space and S, (x) =0
defines the surface S. The sources to be considered in the
present paper may have an arbitrary support. Furthermore,
we make it a rule to employ an integral extended over the
entire space. Hence, a source density is given in the whole
space even if the distribution in individual cases extends over
a finite space only.'® A generalized function corresponding
to a source distribution in this sense may be denoted by [P]
and the physical objects that embody such a source distribu-
tion will be called the physical or source bodies. In order to
deal with multipole densities of arbitrarily high order a sys-
tem of notations must be developed which is capable enough
to present the symbol’s meaning clearly and consistently in
any situation of application. Definite forward steps to
achieve our goal will be made by introducing two definitions.

Definition 1: An electrostatic multipole source body of
order r is a generalized function

[PC], = CO" = P[VC ~78(2),P]. (1
The list of the quantities on the right-hand side reads

(10)

| Tensor source density, sufficiently regular
and determined in the whole space R °,
Characteristic function of the source support,
The (m — r)th tensorial contraction

defined by (2).

The quantity that appears for m = r, [P“]_ = [P],,, will
be called an elementary source body or elementary volume
source density. For m > , a source body {P"], will be
called a physical surface or simply a layer. Occasionally it is
convenient to use a traditional notation that is applicable
when m = 0. For example, [P], = [ p] is a source body asso-
ciated with a volume charge density.

In the present analysis of the interaction energy be-
tween an arbitrary source body [P] and a test field ¢, the
quality of a source body will be categorized by applying the
multipole expansion as defined by (11), while the energy in-
tegral will be subject to its own multipole expansion. In such
an expansion of energy integrals, integrals of the type

5(02)
C(m —n
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{{P],L¢ ) will be used. A suitably chosen set of such integrals
is the basis of the formalism to be developed. The class of
operators L may be generalized, but for the purpose of laying
a foundation for the macroscopic electrostatics, we limit it to
linear differential operators L = V"~ V) required for the
multipole expansion of energy (Appendix B). With the
above remarks in mind, the following definition is
introduced.

Definition 2: An electrostatic energy specification of the
order / of a multipole source body [P],, isasetS { W,} of
functionals, where an individual functional W, is the energy

W, =C"X[P],,, V"~ "(V"¢)), (12)
evaluated for a particular test potential of the family &'. The
factorization V" ~ "V indicates explicitly that V¢, the
! th tensorial derivative of test field, is being investigated in
the specification.

As is the case with a test function f(x) discussed in the
standard reference on the macroscopic averaging process,’’
the test potential here introduced does not need to be speci-
fied in detail. All that is required is that it is sufficiently
smooth and it vanishes outside bounded regions. Two source
bodies [P,],, [P,], are said to be equivalent if, and only if,
for some (), ( = 0,1,2,--),

([P, ¢ ) = ([P,],, ). (13)

IV. REDUCED MULTIPOLE DENSITIES

In this section it is shown that a distribution of multi-
pole densities of order m>/ contained in a region 2 can be
effectively replaced by equivalent volume multipole densi-
ties of order /. This result leads naturally to the additive form
of the multipole expansion of energy. First consider a single
elementary multipole source body {P],,. In view of Eq. (5)
and Def. 2, [P],, is equivalent to the sum of the bodies of
order /, i.e.,

m—1
S )P ~(— 1! > c

t=0
X [VW8(2), vim — - 0.pim], (14)
Indeed, using a definition of the generalized derivative
C(m)<5(0 )P(’"), V(m — /)(V(1)¢ )
=C(-1"" IDi/ D,
X [5(0 )'Pi‘...i,u-i,,, ]7 Dh,"'Dh[ ¢ )
= COY~ )"V D(E@IP™), TOB),  (15)

and it is sufficient to apply Eq. (5) in order to obtain the
decomposition (14). Suppose that a region {2 contains multi-
pole moment densities of orders m for every m from [ to
M,I<m<M. From Eq. (5) one obtains

M
Z ( _ l)m — Iv(m — 1)_[P(m)]
m o=

Ji

Mk

m—1
S (=D ICOVOS@), VP,

lt=0
(16)

and after changing the order of summation in (16), the ener-
gy specification S { W, ] of order / for the source body

[;

"

It
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M (P],, = 8(2){P" + ...P™} becomes
M
S{W.}= 2 CN{§(02 )P, Vim - 1)(V(l|¢ 1
H

m

(= 1" CTm P, V1)

!

|
M=

m

— o & i
= D (=D
0

m=11t=

X(V8(02),9 ~ 1~ DP™), Vg >
Mo
_.:C(I)< C(z)(v(z)&(ﬂ)’
%

M
X E z (_l)m—lv(mﬁlft)_P(m))’ V(1)¢>

I, m=1+1

M1
- < 2 C(’)(V(”(S(.Q ),P‘,‘_’,), yu )¢>

=0

M1
=C‘”( 2 [P:L,V‘“¢>. (17)
=0
Multipole densities
M
P./\‘/{ — 2 z (_l)mflv(m-lft)_P(m) (18)

H m=I[l+1
of the source bodies [P, ]; will be referred to as the reduced
volume source densities of order /. Note here that t = O cor-
responds to the interior of a region {2 and /> | represent
supports of source distributions at the boundary. Assuming
P} =P} and P})I = €}, (1>1), Eq. (17) can be presented in
the more explicit form

siw=c” (Prl+ S [SELV06).  49)

Since Eq. (19) remains valid for an arbitrary M, the foliow-
ing property has been proved: An elementary source body
[Z,, P“”] containing volume multipole moment densities of
an arbitrary high order is equivalent, in the sense of the ener-
gy specification of order / to source bodies with reduced mul-
tipole densities

P,‘, — z i ( _ 1)m — Iv(m —1 ”-P(m). (20)
H, m=1+1
In view of the classical expression for the energy of a con-
tinuous charge distribution in an external field

W, = fp(T)¢(T)dﬂ7- —([pl), @1)

the case / = 0 is of particular importance. Indeed, reduced
multipole densities become simply the volume charge densi-
ties and consequently the multipole expansion of the energy
can be written in the “additive” form. Furthermore, the last
formula establishes an equivalency relation between a multi-
pole density distribution and an equivalent volume charge
distribution.

V. CONCLUDING REMARKS

Evidently the energy specification formalism developed
in the present paper deals with multipole distributions of
higher order consistently. The basic physical ideas underly-
ing the formalism are commonly accepted ones, and a con-
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cept of the generalized derivative has been extensively ap-
plied. The multipole expansion of electrostatic energy is a
crucial preliminary step that must be taken before dealing
with a bulk material based on the macroscopic distribution
of molecular species. On realizing this circumstance, it has
been shown that the generalized derivative effectively han-
dles an arbitrary source and family of external fields. The
interpretation of the intermediate and final results in terms
of familiar physical images is naturally accomplished by
adopting procedures similar to procedures in conventional
electrodynamics. Thus, interaction between a source p and
an external potential ¢, W, = (p@dd, has been handled
along the line discussed above The subsequent step of devel-
opment was to transform the terms of the form P™.9""¢
into the formp,, ¢, wherep,, represents an equivalent charge
density. When this is accomplished, the resultant additive
character of equivalent charge densities is apparent, as may
be schematically shown by

3 PV (z pm) 4, 1=0. 2)

It is interesting to note that the basic formula (20) deter-
mines an equivalent volume multipole source density of the
order /, if one wishes to stop a “reduction” process at the
level /. Moreover, Eq. (20) includes the boundary effects that
result from forcing all the sources to vanish outside the
source body. It can be easily seen that for / = 0 the volume
moment density becomes simply the volume charge density.
Furthermore, a classical Lorentz’s “dipole approximation”

requires a test field to be in the form E, = — V¢ and conse-
quently Eq. (20) yields, inside a region (¢ = 0),
Po=p= T (=7 V7P, 23)

and at its boundary,

—eo,tzpz: ZZ (—

H om=1

1)y = 0.pom, (24)

For t = 1 one obtains the more general case of a known for-
mula according to which a volume multipole distribution
inside a region is equivalent to the sum of the volume charge
density (23) and volume charge density?

Ci=3 T (=D"VDPp, (25)

H,om=1
which corresponds to a surface charge at the boundary. An
additive version of the multipole expansion will prove to be a
convenient setting in which the notions of polarization
charges and currents have the more rigorous meaning. This
is, however, the subject of a separate paper.
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APPENDIX A

In this Appendix, Eq. (5) is derived. Let F and a denote,
respectively, tensorial functions of order s and m (m > 5). In
the following, summation is understood for all repeated indi-
ces. Using a definition of the tensorial contraction one
obtains

VO OCFa) = VO E, 8 ,)
=D, D, (F G Djii | i,
=Dtm'“ (D, F,.
Xaj‘.‘.,l,«”,...,- +F . D G, i)

= D"H ln-D"m z(Dir». 1DimF_‘f|’“j\
Xji, iy T D E D 4
+D;, F, .D a

bm 1% de Jrdiri,
+F,.,D; D a, ety i)
—Dim--D F G Bjeiii, | i,
+D;, D, F, . Dia.
+---D. D F D ”aj i i,
+ - +F D D, D, a;_;
= 2 ED F,Dy,  aum, .,

= s+ ')(V(l )F yim— t)a)’ (Al)

where H, denote all possible t-element (0<t<m — s) subsets
of theset {i, -, }. Form —s=1, (A1) yields
V.CY(F,a) = C“* "(VF,a) + C°(F,V-a) (A2)
and, for example, for s = 1, m = 2, one obtained directly
V-C(F,a) = V-(F.a;) = D;(F,a;) = D,F,a; + F,D;a,
= C?(D,F,,a;) + C(F, ,D,a;)

= C?(VF,a) + C(F,V-a). (A3)

APPENDIX B

Let I1,P = Rand I1)J1 = Edenotethe points Pand /],

respectively. In addition, let us definer = 7P =R — . Us-
ing the Taylor expansion a potential ¢ can be written'2

sP)= $ (—1"@P™V(1/R) = f (o/ndd,  (BI)
where
= 3 —(=D"EM TR (B2)
and
1
P — — [ 4 pg (B3)

denotes a multipole moment density of order m with respect
to I, of a volume source density p. A mutual energy between
a source distribution and test field then, can be expressed by

w. =fdz9p¢ =(p, ¢), (B4)

where ¢ is an arbitrary test potential. Expanding ¢ in the
vicinity of /7, one obtains
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W, = f dd, pUT)$ (IT) = f di, pUT)$ (M + &)

= [am S V)" )

m =

$ @®@pv 6. (B5)

m=20
Eq. (B5) determines the type of differential operators L to be
used in the formalism.
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In the abstract of this paper, the term “equivalent reduced volume densi-
ty,” in its full form, has been used. As a result of using the generalized
function formalism, any density in the present formalism means a volume
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density in physical interpretation. Hereafter we abbreviate it as the vol-
ume density, retaining the italic form to emphasize the point of view of the
present formalism.
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The energy specification S { W,} = ([P],_,, ¢ ) of electrostatic sources introduced in the
preceding paper is further developed. The electrostatic potential @ due to a source distribution is
defined as a generalized function satisfying the energy specification equation S { W, } = ( — £,V
V"', @ ), where n denotes the order of a multipole approximation is reviewed. Specifically, the
generalized function of an equivalent field corresponding to a classical field intensity E is
introduced in terms of a given energy specification S [ W, }. Besides the equivalent field, a family
of generalized functions D, referred to as the characteristic fields is introduced to deal with the
displacement vector D. A formal description of the so-called polarization charges comes out of an
analysis of an equivalent field. Equivalent fields of magnetostatic problems are discussed on the
basis of the magnetostatic energy specification S {W,, .

PACS numbers: 41.10.Dq

I. INTRODUCTION

In this paper the electrostatic energy specification will
be further developed as a continuation of the previous work.'
For all practical purposes, the energy specification of order
! = 0is of particular interest. In this case, all macroscopic
multipole moment densities will be reduced to equivalent
volume charge densities.” For example, the commonly
known procedure to handle a volume dipole moment density
P represents an important case of such a situation. Indeed,
from a macroscopic point of view, if there are no higher
multipole moment densities within a given bounded region
{2 the potential @ at a point x outside {2 is given by

o= [ dx (p&)
£
|Xx —X'| + PEME - X)/|X —X'|),
where P is a macroscopic volume dipole density and p is a

volume charge density located within the region. Using a
well-known procedure,® the potential can be written

= J- d’x [pxY|x—x'| + PX)»V'(1/|x—x'|)]

:Jd**x’[p(x’)/lx—x'l + [V(Pl/|x —Xx])
12
—1/|x - x'|V"P]]
= fd’x’p(x’)/|x—x'| + fd3x(—V-P/|x——x’|)
§2 2
+ f dsPn/|x —x'| .
So

In view of the above formula, one usually considers that the
combination of the volume charge density — V-P and sur-
face charge density P-n is equivalent, as far as the resultant
potential is concerned, to the volume dipole moment density
P. Recently, Bleinstein et a/.* have mentioned that this po-
tential equivalency can be used to demonstrate the existence
as well as nonuniqueness of nonradiating sources in station-

“On leave of absence from the Technical University of Wroclaw, Poland.
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ary fields. To quote Ref. 4, *“...one can use Green’s theorem
to replace a source distribution in a domain by a monopole-
dipole distribution over any surface bounding that domain
such that each yields the same field outside the bounding
surface. The difference of these source distributions then
yields zero field outside the bounding surface.”

In this paper, a more general and rigorous analysis will
be worked out on the same problem. Using the formalism
developed in the previous paper, the energy W, of a given
source distribution will be systematically replaced by the
standardized form of the energy specification S { W, |

= {[p),# ), where [p] = [P],_, is areduced volume charge
density and ¢ is an arbitrary test potential of the external
field. Furthermore, by virtue of the requirement that the
energy specification S { W, | be kept invariant, the general-
ized function of an electrostatic potential @ will be defined
uniquely once the order of multipole approximation is speci-
fied. The classical Lorentz dipole approximation appears to
be the lowest order case of the so-defined multipole expan-
sion formalism. It will be shown how to work out a formal
description of polarization sources up to an arbitrary order
of multipole expansion. One advantage of the present for-
malism is that, due to the mathematical streamlining, so to
speak, a more adequate interpretation and definite meaning
is assigned to the so-called true and bound charge-currents
that otherwise must be presented in terms of figurative com-
parisons and arguments of a highly speculative nature (*‘po-
larization charge,” “cutting of dipoles™ etc.). [t becomes evi-
dent, also, the such expressions as ** the same field outside a
domain” and “difference between sources” acquire quite
definite and precise meaning when considered in the here
proposed scheme of energy specification. The formalism de-
veloped in the previous paper provides all formulas needed
in this systematic reduction of energy specification to the
standardized form.

lil. EQUIVALENT AND CHARACTERISTIC FIELDS

In this section the nature of the polarization charge is
discussed by means of energy specification of order / = 0. It
is shown that a formal description of polarization sources
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can be given in terms of characteristic and equivalent sources
by transforming the so-called energy specification equation.
To begin with, a simple case of energy specification S { W, ]
will be discussed. Let the point charges ¢,,...,¢,, be placed at
the points T3,...,T,. Let a test potential ¢ be a sufficiently
smooth scalar function vanishing outside the bounded re-
gion. The energy of the system consisting of the point
charges {g,....¢, } and an external field represented by the
test potential ¢ is given by

W.= 3 ad(T). M

By definition, W, is always finite and, in view of discussion
given at the beginning of the previous paper, it is assumed to
be the only meaningful energy-characterization of electro-
magnetic sources. In other words, the interaction energy be-
tween a given charge distribution and an external source is
considered a crucial entity to be produced by a macroscopic
experiment. Its fundamental significance arises from the fact
that it remains invariant throughout the application of the
present formalism. The set of numbers obtained from Eq. (1)
for all elements ¢ of a given space & of test potentials repre-
sents a linear functional defined on &. This functional will
be referred to as the energy specification S { W, } of the point
charge system. Similarly, for a volume charge density p lo-
calized in a region 2 and arbitrary test potential ¢, one can
define an integral

W, = f AT @

representing the electric field energy of the system.

The energy specification S { W, } represents a set of en-
ergies associated with a given set up of sources and family of
external test fields. Note that such energies are functionals of
the source distribution and are invariant under coordinate
transformations. A specific analytical form of W, can be
deduced from the multipole expansion of energy. Indeed,
this expansion defines the characteristic way in which var-
ious source multipoles interact with an external field. Elec-
tric charges interact with an external potential, dipoles with
an electric field, quadrupoles with a field gradient, and so
forth. For example, for a given test potential, a distribution
of dipoles localized at the points T,...,T, has the energy
given by

W,= 3 pY8)s, , 3)

k=1
where p, is a dipole moment at the point 7. Similarly, for a
volume dipole moment density P one obtains

W, = f P-V¢ did, )]

and for a volume quadrupole moment density P,

e [ (57 25)ee

It is the goal of the present scheme to exploit the wealth
of forms that are obtained by transforming the functional
sets (3)-(5) as exhaustively and properly as possible to cover
various aspects of electromagnetism. Such transformations
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are dictated by the basic principle that an energy is a scalar.
Probably, it is not improper to explain the goal of the present
scheme more colloquially by comparison with the advantage
of variational formalism.® There is a stationarity require-
ment imposed on a functional derived from a scalar Lagran-
gian function serves in compact form as a representative for
the wealth of field equations. In other words, one starts with
acompact functional form and obtains a variety of equations
and their consequences upon developing the formalism. One
may describe that situation by stating that the variational
formula is the “‘pre-generating functional form” of the field
equations. The purpose of the present paper is to work on the
simplest version of the energy specification S { W, }, a func-
tional set written in shorthand, and to assert that it is possi-
ble to transform S { W, } from its “pre-generating functional
form” to a standardized form S {{[ p],¢ ); #c &} useful in
electrostatics. In other words, one can always, at least for-
mally, relate an appropriate energy specification with a type
of potential that represents the laboratory sitiuation in
which actual measurements are to be performed. Therefore
it is essential that in the standardized form the energy is
always expressed in terms of a test potential itself rather than
in terms of its derivatives as may happen for “pre-generating
functional forms.”

It is proposed that one work according to the conceptu-
al deduction scheme

W.=(lpld),
where the deduction is based on the invariance of energy
S{W.l=S{([pld)gec D}, 6

[ p] represents a volume source density of the equivalent
field. For simplicity of notation, the energy specification
S {{[pl¢ );pe &} will be designated as {[ pl,¢ ), where ¢
should be considered an arbitrary element of a given space
4 of test potentials. An observation of fundamental impor-
tance is that the version of the multipole expansion devel-
oped in Ref. 1 (Eq. 22) makes it possible to express, for / = 0,
an arbitrary source body as the combination of energy-
equivalent volume charge densities.”

For example, employing the definition of generalized
derivative the expression (4) can be transformed as

W, = L P-V4 dzbffs(n \P-Vd

— (8(2)P,V¢) = ( — V482 )P),$ )
= (—52)V-P - V52)P$) = ([ p},8)

= S {We } *
Q)
where a volume charge density [ p] of the equivalent field is
[p]=58(2)(— V-P) — V6 (2 )P. ®)

The last formula corresponds to a well-known property that
a volume dipole moment density distribution is equivalent to
the volume charge density p = — V-P within the region 2

and the surface charge density on the boundary. Althoughin
classical formulation one usually restricts oneself to presen-
tation of the above property for volume-type distributions, it
is quite legitimite to apply, formally, the same procedure to
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other source distributions. Thus, for a dipole curve with a
linear density P, (T, ), one obtains

W, = f P (T.)Vé), dt

N j 5.(T— TP, (T, »(V4)dé

= {5, (T —-T,)P, Vo Y= (—=V[6.(T—T,P, 1.¢)
=([plg)=S{W.}, &)
where

[p] =8.(T— T, X~ VP,)— V5, P, . (10)

Similarly, for formula (3) one obtains

W, = z (V)= z (T — T, )pr(Ve ) dd

= k=1

= 2 (8T —T,)pi, V9 )

k=

= Z (= V(T — T )p )8 )

k=1

3

|

X

={[pld)=S{W,}, (11)
where
(p1= % 87— T~ Vm)— 3 VAT~ Tpne,
- - (12)
and, using (5),
2) {2) vr(2)
f( Pos > aﬂ)dﬂ:m‘ (B2 )P, 7% )

=C(— V (8(2)P?.V4 )
=C(—62)V-P? —V5(2)P? Ve )
= (Vo[ — 8(2)V-P? — V502 P?],4 )
=8 (02 )(VPP?) 4 2V5 (02 )(V-P?)
+ V(2)5 ({2 )(2),Pl2),¢ )
=([pld)=S{W}; (13)
[ p] = 6(2)VPP? 4 V5 (2)[2V-P?] 4 VP62 2-P?.(14)

Formulas (8), (10), (12), and {14) indicate a general character
of the formalism and reveal existing regularities. The first
terms in these formulas represent the interior of supports
and associated volume charge densities, whereas the follow-
ing terms represent volume charge densities that are equiv-
alent to surface distributions at the boundary. Equation {14)
appears to be particularly relevant to the philosophy used
here. In that case the second term represents an equivalent
dipole density 2V-P ? localized on the boundary V5 (2 ). the
product V& (12 }2V-P?, however, should be interpreted as a
volume charge density resulting from a nonuniform dipole
distribution 2V-P?. The third term represents an equivalent
volume charge density due to a quadrupole distribution as-
sociated with a “dipole” surface V2§ (12 ). It is interesting to
note that all terms in the above equations are meaningful
since source densities P are functions defined in the whole
space. This remark is methodically important since usually
the first term in Eq. (12), for example, is assumed to be zero.
The energy specification formalism directly relates bound-
ary effects with analytical properties of test potentials. In-
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deed, the nature of boundary effects depends upon what dif-
ferential aspects of external potentials are taken into account
(slope, curvature, and so on). In other words, one may main-
tain that the boundary effects included in [ p] and analytical
properties of external feilds are, in a sense, “dual”
phenomena.

The merits of the formalism may become more evident
when a multipole of higher order is handled. Taking into
account the structure of Eqs. (8)~(14), one easily finds thata
general form of an equivalent volume charge density is now
given by

[pl= S 68T — Tolay +84(T— T,)T)
+8,(T— T,)o(T) + 62 )p,
- V-{ S 8T~ Tu)p +6.Py +6,P, +52)P

- v-[( 3 8T = TP + =450 )paﬁ) + ” (15)

Assigning the symbols ") for elementary source bodies of
order /, Eq. (15) can be written

[P] = PO _ V,{g}(l) — V«(.@Q) — }
= PO _y.20 L g2, _
= Iio [p"], (16)

where [ p”] represents an equivalent source body of order 0
corresponding to a given multipole source body of order /.
Now, using the concept of energy specification of order 0,
one can define the electrostatic potential @ and, in turn, fam-
ilies of so-called characteristic and equivalent fields satisfy-
ing the multipole version of Maxwell’s equation
D= Z#9,

Suppose that the electric potential @ is a generalized

function satisfying the energy specification equation

(— VIV o) =S (W] ={[pld). an

Equation (17) has the same form as Poisson’s equation ex-
cept for the fact that additional iterations of the operator
div(grad) are considered. Defining the generalized vector
function E by E = — V@, Eq. (17) can be written

V-V PE = [ p], (18)
and, using (18) and (16), one obtains
{(,VO.V"~DES )
= (PO VPV 4 (="
JPW v P+ L))
= (V(")-[EOV(" -UE 4+ (—1n+! 174%
+(— 1)n+2v.@(n+l) + §,¢ )

— ('@(0) —g@h + +(__ l)n—lv(n—l).g(n—l),‘» )’
or
VL[,V ~VE 4 ( — 1)1+ 12 ]

= PO _ V.o + 4 ( _ l)n— Igin—1, gpin— 1)

(19)
Equation (19) clearly displays the nature of a “multipole
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approximation” of order n and demonstrates how to apply
the energy specification equation (17) to each specific elec-
trostatic problem. Hence, a formal separation between the
so-called true and bounded sources is a direct consequence of
the energy specification equation (17). Indeed, assuming

n = 1, one obtains the classical Lorentz dipole approxima-
tion. Equation (17) becomes the Poisson equation

(—6dPd) =S{W.}=([pld). (20)
Equation (20) can also be written as
S{W. 1 =([plg) =(ZC —VPD + ...4)
={(—€d4P¢) = (6,VP,V4)
=(—eEVd)=(V-ES) @hH
or
V(E) =2 - V.2V 4 ... (22)
On the other hand, for » = 1, Eq. (19) becomes
V(EE+ 2" - V.2 4 .)y=22" 23
or
vV.D =29, (24)

where D is a generalized displacement vector. To describe
approximations of higher orders, it is convenient to intro-
duce the family D, satisfying

V'""Dn = PO _yg.5pWM 4o ( _ l)na H,gpin-1
(25)

It is seen that in the “quadrupole approximation™ the dis-
placement vector D, is defined by charge distributions 2
and equivalent dipole distributions ", Similarly, for

n =3, Eq. (25) becomes

VOL.D, = PO _ 7.0 4 y2.2 (26)

and (18) becomes
€V'V-VPE = [pl. 27

It is interesting to note that for every # all sources are neces-
sary to determine the vectorE. Since [ p] is a sum of all equiv-
alent source bodies of the system, the field E can be interpret-
ed as an equivalent field that is generated by all sources for
any multipole approximation. At this point a certain clarifi-
cation seems to be proper. The field E in Eq. (22) is a general-
ized function and thereby it depends upon a given family of
external fields. This dependence on the auxiliary fields is
crucial to recognize the structure of the formalism. Using an
analogy with quantum theory one may assert that each indi-
vidual distribution of external sources determines the experi-
mental arrangements that can be set up for the system, just as
the wavefunction in quantum mechanics determines the
state of a system. A measurement made on the system yields
a real number which can be interpreted as the interaction
energy between a given source distribution [P] and an auxil-
iary testing source. The results of independently performed
experiments obtained for all possible auxiliary fields within a
given family define the energy specification S { W, }. Subse-
quently, the equivalent field E due to [P] is determined in
terms of the energy specification S { W, } rather than directly
by means of sources as is the case in traditional field theory.
Similar remarks apply to vectors D, .
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A different structure shown in Eq. (25) indicates, how-
ever, that vectors D, depend explicitly on the order n of the
multipole approximations. Indeed, it can be seen that they
are determined by the energy specification of all multipole
densities of orders less than the order of a given approxima-
tion. In this sense, the vectors D,, represent the characteristic
fields of the multipole approximation. These results offer a
simple and consistent interpretation of so-called bound or
polarization charges. In view of Egs. (18) and (25), polariza-
tion sources can be defined as a difference between equiv-
alent and characteristic sources. As is shown above, the
character of polarization sources depends upon the order of
the multipole approximation. Specifically, in the classical
dipole approximation free charges are the sources of the
characteristic field D and polarization charges are the
sources that should be added to free charges in order to ob-
tain sources of the equivalent field E.

lil. ARBITRARY CURRENT DISTRIBUTION AS A
VOLUME CURRENT DENSITY

Infinite values of energies for idealized sources in a
magnetostatic field can be avoided by the introduction of
appropriate magnetic energy specifications S { W, }.® Con-
sider a current loop localized in an external magnetic flux
¥, . The classical expression for the magnetic energy is given
by
W, =iy, = z§ dio

m

(28)

where .7 is a corresponding vecotr test potential. In the
analogous way, for an arbitrary volume current density j(7°)
one can assign a real number

W, = [ KTy yav,
12

which corresponds to the magnetic energy of a current loop
in an external field. The set of all numbers obtained through
(28) or (29) for a given family of vector test potentials defines
the linear functional S { W,, }. It will be referred to, in the
following, as the magnetic energy specification. Two mag-
netic sources are considered to be equivalent if their magnet-
ic energy specifications are identical. It can be shown that
the concept of generalized derivative makes it possible to
transform the functional set.S | W,, } of a system to the stan-
dardized from ([j],.« ). In fact, the scheme of conceptual
deduction W, ={([j],.« ) based on the invariancy condition

S{w, | =S{(lil.&); eP) (30)
may be applied where, as previously, the symbol ([j},.«)

will be understood as S { {[j], ),/ €& }. For example, Egs.
(28) and (29) become

(29)

f36 dlos =i J 8, dI=>(. i, )

= ([§l,. ) =S{W,. ], 3D
fj.lq/ dd = Jé(.())j-d do = ([jl.Z) =S {W,]. (32)

The energy specification of a magnetic dipole can be ob-
tained directly from Eq. (28). Indeed, using Stoke’s theorem
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one obtains

(8,6, ) = (VX i, ) = (8,i,VX.A). 33
Let S—0and i— o in Eq. (33) so that the product iS remains
constant. In such a case the loop becomes a magnetic dipole
having the moment m =e,, (limiS), where e,, is the unit
vector normal to S and §_i—9,, . Hence the energy specifica-
tion S { W, } of magnetic dipoles localized at the points
T,,...,T, and having magnetic moment M = Z6(T — T, )m,
is given by

Wm:>< S 8- Tkmk,de>
k=1

—(vx( $ 80— Tom).o) = (Gl), (9

k=1

where the volume current density of the equivalent field is

Bl= 3 VX(&T—Tom,)

k=1
- kil ST — T )VXm,) + é‘n V6 xm, . (35)

Similarly, for a volume magnetic moment density distribut-
ed within a bounded region £2 the energy specification takes
the form

W, == (8(2)M,VX.Z) = (VX (6(2)M),o)

=(lil. &) =S{W,},

where

] =8(2)VXM + V&(£2) X M. (36)
In a similar fashion one finds, for a surface magnetic dipole
moment density
W=V X (T - T)OM,),) = ([jl.«) =S {W,},
where

[l1=06,VXM, + V5T —T,)xM, . (37)

The first term in Eq. (37) represents a surface current density
and the second term corresponds to the linear current densi-
ty on the boundary a of the surface S. Suppose that the gen-
eralized function of a vector potential A and a generalized
magnetic field vector B are defined by the energy specifica-
tion equation

Vo (VX(VXA)) =S {W, | = ([jl.o) (38)
and assume that
B =V xA. (39)

Equations (34)—(37) indicate that an equivalent current den-
sity [j] can be written in the form

U] = 0T+ 6" =1 + Vx#
= "1+ x| S 87— Tom, +8,7~ TM,

+6.M, +8(2 M, ] (40)

Substituting Egs. (39) and (40) into (38) yields
V/podVXB,&) = ([j9] + VXA, ) = ([jl.Z)  (4])
or

VplVX (B —p. M),y = ([j9),), (42)
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where B — p,# = 7 is referred to as the magnetic field
intensity.

This demonstrates that the vectors B and 7% represent,
respectively, an equivalent and characteristic field with re-
spect to the energy specification Eq. (30).

IV. CONCLUSIONS REMARKS

The formalism developed in this paper makes it possible
to (a) express an arbitrary source in the form of an equivalent
volume source density, (b) achieve a significant simplifica-
tion and uniformity of traditional formulas, and (c) provide
opportunities for new interesting physical interpretations.
For example, in a time-variant case the electric test field in
Lorentz’s approximation assumes the form E,

= — V¢ — 3.9/ /(3t). A total polarization charge-current

can be found directly from the energy specification S { W, |

+ S {W,}. Indeed, for a volume dipole moment density P
one obtains

(5(2)P,E,) = (5(2)P, — Vé — 3 /Ot )
— (5(2)V-P + V8P, ) + (5 (2)3P/dt,4)
=<[p]’¢>+<[1]’d)=S{We} +S[Wm}’

where [ p] and [j] denote, respectively, equivalent charges
and currents. The result is consistent with classical theory,
as it should be. It is hardly surprising that classical integral
formulas are phrased succintly in terms of the energy specifi-
cationS { W,} and S [ W, |. As a matter of fact, the distribu-
tional approach simplifies an integration by parts and this is
the property that makes the generalized derivative a very
convenient tool with which to deal. In particular, the rigor-
ous description of the so-called polarization charge-cur-
rents, in view of the “‘additive” version of the multipole ex-
pansion, seems to be expected. After all, polarization sources
are a part of the physical description of a problem. However,
if one examines the mathematical structure of the energy
specification formalism, a desired linkage between between
the physical and mathematical aspects is now available in
rigorous analytical form.

It should be emphasized that the formulas representing
energy integrals can be viewed as a bilinear form-type for-
malism in which both topological properties of sources and
analytical characterization of probing agents are considered
simultaneously. It is believed that such an approach within
classical electrodynamics is conceptually closer to formal-
isms used in quantum theory and abstract field theory.
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The good cut equation for a specific asymptotic shear is solved and the metric of the associated
J# -space is obtained. The % -space is found to be type &, asymptotically flat and positive

frequency.

PACS numbers: 04.20.Cv

Since 5 -space was introduced by Newman,' the sub-
ject has been developed in a series of papers.”** However
one stumbling block up to now has been the absence of any
specific nontrivial examples of 2 -spaces. It is our purpose
here to describe such an example which leads to a left-flat
space of some interest in its own right, and which provides an
arena for the testing of future developments in the subject.

An 7 -space is defined as the space of asymptotically
shear-free cuts (good cuts) of the complexified future null
infinity C .# * of an asymptotically flat space-time .#.’
Equivalently, the 7#°-space of .# is the space of solutions of
the good cut equation,’

FZG5)=0%Z58), (1.1)
which are regular on the entire Riemann sphere of § when
£ = £ Here o %(u,£,£ ) is the asymptotic shear of an outgoing
Bondi family of null hypersurfaces in .# (see Refs. 1, 2 for
definitions).

This solution space is known to be four-dimensional® so
that ##”-space is a four-dimensional complex manifold. In
terms of the solution of (1.1) there is a natural definition of a
quadratic metric on the #”-space which automatically gives
rise to a self-dual curvature tensor.

No solutions of (1.1) for nonzero o ® have hitherto been
found, except for the essentially trivial case when o ® is linear
in u. In this paper we solve (1.1) and obtain the metric of -
space in the particular case

o, l) = A /P(1 + EE). (12)

Here A is a parameter for bookkeeping purposes and will
turn out to measure the “strength” of the curvature.

While o ° given by (1.2) is singular at zero u (so that a
space-time whose asymptotic shear was this would have a
singularity in its radiation field) this singularity is easily re-
moved by a complex translation in «. We shall return to this
point, but for ease of calculation we work with (1.2).

The good cut equation becomes

FZ=((1+5YZ,) =A/[Z° A+ EEP]. (1.3)

This may be directly integrated, the constants of integration
being fixed by the regularity requirement, but it is easier to
make the ansatz (with hindsight)

(Z (Za’gyf))z =7 + /132,
zZ= Zala (g’f)’

“Work supported in part by NSF grant.
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s=50,&5), (1.4)
= uX,Y),

1 -~ o~
l,= —1—+—§§ (1,§,6,68)-

The z° are the four parameters on which the solution de-

pends (and thus are coordinates on 5 -space) and the good

cut equation (1.3) serves to fix the four s* in terms of the z%,
Substituting (1.4) into (1.3) leads to

28s — 58z = 1/(1 + ££), (1.5)

which gives three conditions on the s°. To fix s* uniquely, we
recall that

770bla Ib = 0’
where 1% is the Minkowski metric in null coordinates:
0 0 0 1

w 0 0 —1 0)_
7 0 -1 0 0 = Nap-
1 0 0 O

Thus in (1.4) the trace
nab(zazb + A’sasb)’

is undetermined and we may choose s* such that

N 5°s" = 0. (1.6)
Then (1.6) and (1.5) lead to
1
§s'= ———(¥,0,0,0), 1.7
” —XY( ) (1.7

and (1.7) with (1.4) provide the full solution of the good cut
equation.

The general methods of Refs. 2 or 3 may be used to
obtain the metric from Z (z°,£,€ ) but it is quicker to use the
methods of the Penrose Twistor Theory.® To define the con-
formal metric first, suppose two infinitesimally separated
points of #”-space to have coordinates z° and z° + dz“ with
corresponding good cuts

u=Z@"58),
utdu=Z@68)+dZ (@ 40),
where
dZ = dz°Z,,,
then the condition that dz “ be a null displacement® is that

du vanish along a curve of constant £,i.e., that one can find a
value &, of £ such that
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du=dz'Z ,(2",£,60) = 0, (1.8)
for all £. From (1.4) with an obvious notation this means
zdz+ Asds =0. (1.9)

The left-hand side of (1.9) is quadratic in £, giving three
conditions involving 2%, dz° and &,. The object now is to
eliminate £, and obtain a quadratic relation among the dz°.
This calculation is greatly facilitated by the Penrose “blob”
notation® with the result

24

2dudv—2dXdY — ———
(uv — XY

(Ydv—vdY) =0,
(1.10)

as the condition for dz” to be null. We now observe that the
metric

24

ds’=2dudy —2dXdY - ————
(wv — XY)?

(Ydv—vdY),
(1.11)

has Plebariski’s second form for the general left-flat metric’
if one makes the identifications

P=1v, 9=Y, X = u,

1 1
Auw—XY)  2Apx—gy)
Further, O satisfies Plebanski’s second “heavenly” equation

e, —-06,-(0,06,—©,))=0.

Thus (1.11) is already a left-flat metric and the 77-space
metric which we are seeking can differ from (1.11) by at most
a constant conformal factor. Twistor methods may again be
used to find that this constant is unity, so that (1.11) is the
# -space metric arising from the shear (1.2).

Since (1.11) is in Kerr-Schild form, the curvature must
be algebraically special. The simplest way to calculate the
curvature is to use the results of Plebanski’ and one then
finds that the J# -space is type N. Further the curvature is
nonsingular everywhere except on the surface

uv — XY =0. (1.13)

Again, since (1.11) is in Kerr-Schild form, there is a canoni-
cal Minkowski background in which to discuss properties of
the metric. Regarded as an “already linearized” solution on
this background, the solution is one of Penrose’s elementary
states® and is singular on the light-cone of the origin (1.13). It
is possible to deal with this singularity and the singularity in
o % simultaneously. If in (1.2) we make a translation

u sy — it°l (&,€), (1.14)
where [, is as in (1.4) and 7 “ is timelike and future-pointing
with respect to 7, then o © becomes holomorphic in the
lower half of the complex u-plane, i.e., positive frequency.
With

o A
(w —it°,)’(1 + &)

y=2Xx

(1.12)
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we transform the Z of (1.5) by
ZZ it (&8), (1.15)

to obtain a solution of the new good cut equation. With
(1.15), the limit Z, of Z for zero A is

Zy=( + it (&E),

S0 it is natural to transform to new coordinates on the -
space given by

2=z 419
so that
Z,=2"L, (L)

This is just a translation of the background Minkowski
space, with the result that the curvature is nonsingular away
from the (background) light-cone of the point

Z9=1it".

In particular, this means that the curvature is nonsingular in
the (background) past-tube in primed coordinates and we
may take this as a definition of positive frequency for the
Weyl tensor in this case. There is as yet no definition of posi-
tive frequency in a general curved space but any definition
will presumably reduce to this one in this case. This leads to
the conjecture that a positive frequency o ° gives rise to a
positive frequency # -space.

With the identification of (1.11) as an elementary state,
we see that it is asymptotically flat. (At least on the real
section in the primed coordinates, where the usual definition
of asymptotic simplicity is applicable. The question of
whether this solution is asymptotically flat according to the
general definition of Ref. 4 is currently under investigation.)
We are thus led to conjecture in general that asymptotic
flatness of the J7°-space arises from appropriate large u be-
havior of o °, specifically that

o%~u3, large |ul,

for asymptotic flatness.

We conclude by remarking that a number of generaliza-
tions of the solution presented here are possible, giving solu-
tions of the good cut equation for other shears and #°-spaces
of other algebraic types.
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Introducing the notions of vector and bivector differentiation into the Dirac algebra, considered
as a Clifford algebra, makes possible an extremely concise and geometrically transparent
treatment of the curvature tensor and its properties, and of related topics such as Lorentz
invariants, characteristic equations, Petrov types, and principal null directions by explicit

construction.

PACS numbers: 04.20.Cv, 02.40,Ky, 02.40.Re

INTRODUCTION

The Riemann curvature tensor is the crucial geometric
ingredient in the study of general relativity. It is for this
reason that the curvature tensor and its properties and invar-
iants have attracted wide attention. The original classifica-
tion of the curvature tensor for empty space was carried out
by Petrov' using matrix methods. Subsequently, a number of
different methods and refinements have been introduced.
Noteworthy of mention is the spinor approach used by Wit-
ten,? and later refined by Penrose? in his systematic study of
the coincidence patterns of the four principal null directions.
But, as anyone who is familiar with calculations with spinors
knows, these methods are only adapted to certain kinds of
problems. Classical tensor methods have also been used with
some success, for example,” but the computational aspects of
this approach are formidable. Thorpe® notes that computa-
tions are considerably simplified by using the Hodge star
operator to make the space of bivectors into a complex Eu-
clidean space, but he ignores the possibility of utilizing the
underlyng Lie algebra of bivectors. Stehney® modifies
Thorpe’s approach to the requirements of matrix methods
and produces a classification scheme based on the minimal
polynomial of a complex 3 X 3 matrix, but her methods lack
conceptual clarity, and her algorithm works only for repeat-
ed principal null directions.

The purpose of the present work is to cover much the
same ground as the above authors, but in a coordinate-free
formalism whose power, simplicity, and geometric transpar-
ency have yet to be recognized; a formalism which has all the
advantages of each of the above mentioned approaches, and
the defects of none.

In Sec. 1, following Hestenes,”® we introduce the 16-
dimensional Clifford algebra called the Dirac algebra of
space-time in agreement with the name given its matrix re-
presentation. (Clifford algebra of 2 "-dimensions has been ex-
tensively developed in the book, Clifford Algebras and
Geometric Calculus: A Unified Language for Mathematics
and Physics,® using an abstract approach,'® rather than a
matrix representation such as is used by Cartan,!! and oth-
ers). The even subalgebra, consisting of scalars, bivectors,
and pseudoscalars of the Dirac algebra, make up the Pauli
algebra of space. The Pauli algebra can be fruitfully com-

“Research supported by NSF grant ¢ GF41959 through an exchange pro-
gram with State University of New York at Stony Brook.
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pared to the popular Gibbs-Heaviside vector algebra, be-
cause many identities of the former are the “complexified”
versions of the latter. A discussion of bivectors and null bi-
vectors is given, and a multiplication table of basis elements

is included.
In Sec. 2 we complement the algebraic machinery intro-

duced in Sec. 1 by introducing the operations of vector and
bivector differentiation. These operations simplify and gen-
eralize the operation of contraction in tensor algerbra. They
were originally developed as a coordinate-free tool for the
study of linear transformations in Ref. 12.

In Sec. 3 we study general properties of linear operators
on the space of bivectors by decomposing it into the sum of
dual and antidual operator parts. A dual operator is equiv-
alent to a general linear operator on a complex three-dimen-
sional Euclidean space. Using the new method of bivector
derivatives, the determinant, characteristic polynomial and
Cayley~Hamilton theorem are derived for dual operators. In
our approach it is unnecessary to introduce the Hodge-star
operator, because in the Dirac algebra duality is simply ex-
pressed by multiplication by the unit pseudoscalar element.
Finally, we show that an antidual bivector operator can be
expressed entirely in terms of two symmetric trace-free vec-
tor operators. In another paper'® we show how the problem
of the classification of these symmetric vector operators is
directly correlated to the Petrov classification.

In Sec. 4 we give a complete classification of dual opera-
tors based on explicit construction of their principal null
bivectors. The classification of a dual skew-symmetric oper-
ator is equivalent to the classification of an electromagnetic
field by its principal null directions. A dual symmetric oper-
ator with vanishing trace is equivalent to the conformal cur-
vature tensor. The Petrov—-Penrose classification of dual
symmetric operators is carried out by construction of its four
principal null bivectors, based on a new canonical form in-
volving a complex scalar, a bivector, and a null eigenbivec-
tor. This new canonical form provides a simple geometric
criterion for the various coincidence patterns of the four
principal nuil directions. In addition, it makes it trivial to
give simple examples of conformal curvature tensors of any
desired type.

In Sec. 5, curvature invariants, which are complex sca-
lars, are defined in terms of the bivector derivative, and it is
shown that a curvature operator has nine complex scalars,
three of which are real. When the extra Bianchi identity is
imposed, these 15 real scalars reduce down to the well
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known 14 real invariants of the Riemann curvature tensor.
Various well known properties and identities of Riemann
curvature are then derived in the spacetime algebra (STA):
formalism. In each case the simplicity and geometric trans-
parency of our methods are apparent. A table is included
comparing the appearance of well known formulas in the
tensor, STA, and spinor formalism. We believe a close ex-
amination of this table and the methods of this paper will
show the judgment of Misner, Thorne, Wheeler'* (p. 1165)
that “the spinor formalism is a more powerful method than
any other for deriving the Petrov—-Pirani algebraic classifica-
tion of the conformal curvature tensor, and for proving theo-
rems about algebraic properties of curvature tensors,” needs
reexamination. See also Ref. 13.

1. SPACE-TIME ALGEBRA

Let x be a generic point in spacetime. Following Hes-
tenes,’ we select a set of orthonormal vectors e, e,, ,, €3
tangent to the point x, and subject them to the rules:

ed=1Le=e=e= -1, (1.1)
for uwy=0,1,2,3 and uv. (1.2)

The orthonormal vectors | e, }, under the rules for geometric
multiplication (1.1) and (1.2) generate a real Clifford Algebra
of 2* =16 dimensions called the Dirac Algebra & in agree-
ment with the name given its matrix representation. Symbol-
lically we write & = Do+ D+ D+ D+ D4, to €x-
press the Dirac algebra Z as the sum of linear subspaces of
scalars, vectors, bivectors, trivectors, and pseudoscalars, re-
spectively.

For purposes of orientation and fixing the notation that
will be used here, let us review some of the basic operations
and identities in Z. Let a, b be vectorsin & ,,

3
a=a'e,=Y a'e,, b= B,
u=0

e, = —e.e,

then
a-b~=_§(ab+ba)=a°,3°—a‘ﬁ'—0'232~61333§g(a,b)
(1.3)
and
a Ab=l{ab — ba)
2,0
'Blﬂo ey Aey+ B8° e;Neg
3 .0 3.2
+ BB° esNeg + BB2 esNe;
a] 3 aZ 1
+ g g e Ney + Bzﬁlez/\e,. (1.4)
From the definitions (1.3) and (1.4), it is clear that
ab = l(ab + ba) + Y(ab — ba) =a-b+aAb,  (1.5)

i.e., the geometric product of two vectors can be decomposed

into the sum of an inner product or (real) scalar part, and an

outer product or bivector part. The metric tensor g(a, &) of

spacetime is determined by the inner product and is, of

course, invariant under local Lorentz transformations.
Define the bivectors

E =eNeg=e, E,=e,Ne,, E;=e;Ne, (1.6)
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E,=e3N\e,=eye;,, Es=e e,

The unit pseudoscalar 7, defined by

E,=¢)\e,.
I=eyNe Ne,Ne; = epe,e,e; = E\E,E;, (%))
has the property 72 = —1, and assigns a unique orientation
to the Dirac algebra & . The duality of the bivectors E,, E,,
E, and E,, E;, Eg has the simple algebraic expression

E,=IE, =FEl E,=IE, E,=IE, (1.8)
Note that the bivectors E,, E,, E; satisfy the following rules
of multiplication:

El=E}=E}=1 (E}=Ei=Eil= —1), (1.9

EE = —EE, for i=j=123 and i#j, (1.10)
and generate a 2° = 8 dimensional Clifford algebra called

the Pauli albegra &, which is the even subalgebra of &
consisting of the scalars, bivectors, and pseudoscalars.

Operations similar to (1.3) and (1.4) can be defined in
the Pauli algebra &. Thus, let 4, B be bivectors in & ,, then

3
A=adE=Y a'E, B=B'E,
i=1
where @’ and ' are “complex” scalars of the form
ai=a¢i+aui1 and ﬂi:BIi+6niI
and / is the unit pseudoscalar defined in (1.7). Now define:

A°B=YAB + B4A)=a'B' + &’B* + a’B>
=G (4,B) (1.11)
and
(12 3
AXB=LAB — BA) = s ﬁ3IE, 3ﬁ1lIE2
2
aa g (1.12)

From (1.11) and (1.12) it follows that

=B + BA) + J(AB — BA) = 4°B + AXB,
(1.13)

i.e., the geometric product of bivectors can be decomposed
into the sum of a symmetric product, or complex scalar part,
and a Lie product, or bivector part. The metric tensor
G (A,B) defined by the symmetric product (1.11) turns the
space of bivectors &, into a complex Euclidean space, as is
noted by Thorpe,® and like g(a, b ) is Lorentz invariant.
The operations A°B and 4 X B in the Pauli algebra can
be expressed entirely in terms of the operations {1.3) and (1.4
in the Dirac algebra. Thus, let 4 = e Aband B = c Ad, then

A°B = A4-B + A A B = scalar + pseudoscalar  (1.14)
where
AB=(aAb)(cAd) = (a-d)(b-c) — (a-c)(b-d),
a’ a' & &
/J)O ﬁ 1 B 2 ﬂ‘s
AANB=aAbAcAd= 1,
s
P L Rl
and
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AXB=(aAb)X(cAd)
=aA(b(cAd)) + (a(cAd)Ab
= (bc)aNd — (b-d)aNc
+ (@c)d Ab — (a-d)c\b.

Note also the duality relations

I(A-BY={A)AB and I(AAB)=(A4)B (1.16)

between A-B and 4 A B.

There are two triple products in the Pauli algebra &
built up from the symmetric and Lie products. They are giv-
en by

(1.15)

al & o

(A4 XB)eC= |B! B* B3|I=Ao(B XC) (1.17)
Yy
and
A X(B XC) = (4°B)C — (4°C)B. (1.18)

From (1.17), it follows that three bivectors 4, B, C are linear-
ly independent over the complex scalars iff their triple prod-
uct (1.17)is nonvanishing. The identities (1.11), (1.12), (1.17),
and (1.18) of the Pauli algebra obviously parallel their
Gibbs-Heaviside vector algebra counterparts, and this sug-
gests that the former are in some sense the “complexified”
version of the latter.

We conclude this section with a discussion and classifi-
cation of bivectors.!! A bivector B is said to
be simple if

B?’=B.-B+BAB=B-B, (1.19)
i.e., B? is a (real) scalar. The bivector B is said to be null if

B?=0and B#0. (1.20)

A simple bivector can always be factored into the prod-
uct of two anticommuting (orthogonal) Dirac vectors, i.e.,
B =ab = — ba. A non-null bivector C 0 can always be
uniquely expressed in the form

C=pe™A, for p>0,0<f<2m and 4% =1, (1.21)

and a null bivector N can always be uniquely expressed in the
form

N=p(l +A4,)4,, p>0,and

At} =A}=1, and 4,4, = —A4,4,. (1.22)
To prove (1.21), note that we can define p’e*’°=C?5£0, and
A = p~—'e°C, from which the required properties easily
follow. For the case of the null bivector NV, there exists an
orthonormal basis a, related to the orthonormal basis e,
of (1.1) by a proper Lorentz transformation, which satisfies:

N = pan = pa,(a, + a,) = paapaya, + a,)
— pAs(1 — ) = pl1 + 4,4,

(1.23)

where n = g, + a, is a null vector, 4, = a, Ag, = a,a,, and
A, =a,Nay = aya,.

The following is a multiplication table for 4,, A,, 4 12
=A,A,, and a null bivector N = (1 + 4,)4,:
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A, A, A, N

A, [ 1 4, A, N

A, | -4, 1 — A4, 1—4, .(1.24)
A, | —4, 4, -1 — 144,

N | =N 1+4, —1-4, 0

2. VECTOR AND BIVECTOR DIFFERENTIATION

Two notions of differentiation are fundamental to the
methods of this work, the vector derivative d,, defined for
differentiable & -valued functions of a vector variable
[D ,—, and the bivector derivative 3, defined for differ-
entiable functions of a bivector variable F:% ,—< . The vec-
tor derivative is characterized by two properties:

Jdp behaves algebraically like a vectorin & | . 2.3)
a-df =a-0,f(v)=(d /dt)f (v + ta)|, _,. (2.2)

The bivector derivative is characterized by two similar prop-
erties:

Jp behaves algebraically like a vector in & ,. 2.3)
AOF =A4-9, F(B)=(d /dt)F(B+tA4)|, _,. 2.4)

We shall not be precise in specifying conditions for vector
and bivector differentiability, because we shall be concerned
here only with derivatives of linear functions, which always
exist.

Because of property (2.1), d, can be expressed in terms
of the orthonormal basis {e, } by

0=d, = epeyd, —e,e,-9, — €,¢,.9, — ese5d,.  (2.5)
Simple but important formulas for the vector derivative are
a-dv=a = dva, 2.6)
=4dv=4 and IAv=0, (2.7)
aAdv=3a=26vAaq, (2.8)
I, N, uhNv=12=4,d,ulv, 2.9)

which can be easily derived from (2.1), (2.2), (2.5) and alge-
braic identities from Sec. 1. For example, to prove (2.6), note
that

a-d,v=(d /dt)v + ta)|,_, = a.
Identity (2.7) follows by using (2.5) and (2.6) to get

3,V = eyeyd, v — €,6,-9,V — €,6,:0,v — e3e5:9,v

=e) —e] —e2 —e2 =4

Identity (2.8) then follows by using (1.5), (2.1), (2.7), and
(2.6) to get

alNodv=adv—a-dv=4a —a=3a.

Because of its property (2.3), the bivector derivative 3,

can be expressed in terms of the orthonormal timelike bivec-
tor basis [ £, } by

d=0dy =E\E,°0dg + E,E, 209y + E;E,°3,. (2.10)

Simple, but important, formulas for the bivector derivative
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are

AIdB=A=0BA, (2.11)
ANIB= —I(IA)6B=A=3BAA, (2.12)
A°3B = A-dB + ANIB = 24 = 3BoA (2.13)
OB=6&doB=6and dXB=0, (2.14)
A XJIB=44=0B XA, (2.15)
dp X3 A XB=24=73,0,4 XB, 2.16)
dc 035 X34 XBoC =48 217

=3.d5d,4 XBoC,
and these formulas can be derived from (2.3), (2.4), (2.10)
and the algebraic identities in Sec. 1. For example, to prove
the left-hand side of (2.11), use definition (2.4) to get
AIB=d/dtYB+1t4)|,_o =A|,_, =A4.
The left-hand side of (2.12) is a consequence of (2.11) and
(1.16). To prove the right-hand side of (2.11), we use (2.10),
(1.14), and what we have just proved, to get
dB-A = E\E,©°9B-A + E,E,odB-A + E,E,°3B-A
= E|(E,-d — I{IE,)-0)B-A + -
=E(E;A—IT(IE)A)+ -
= E\E\°A + E,E,cA + E,E.;04 = A.
The right-hand side of (2.12) now easily follows from the
right-hand sides of {2.11} and (1.16). Finally, to see that (2.16)
is a consequence of (2.14) and {2.13), first use (2.3) and (1.14)
and write
A XIB = A0B — A°JB = 64 — 24 = 44.
There is a close relationship between the vector and
bivector derivatives of a linear function F(B). It is given by
dgF(B)=20,Nd,F{B)=13, N3, F{ulv), (2.18)
where B = u A v. This relationship is checked for the identi-
ty F(B) = B by comparing (2.9) and (2.14). The vector and
bivector derivatives, and their natural generalization to 2 -
dimensional Clifford algebra were originally developed as
coordinate-free tools for use in linear algebra and differen-
tial geometry in Ref. 12, and since have been extensively
used in Ref. 9.

3. BIVECTOR OPERATORS

By a bivector operator F (B ) we mean a linear bivector-
valued function of the bivector variable B. If in addition F
satisfies

F{B)=IF(B), (3.1
we say that Fis dual. If instead F satisfies
F{IB\= —IF(B), {3.2)

we say that Fis antidual. A bivector operator can always be
split into the sum of dual and antidual parts, as is evident in

F(B)=5(B)+T(B), (3.3)
where
S(B)=\[F(B)— IF(IB)),

and
T(B)=\[F(B)+ IF(IB]].

Using formulas (2.11), (2.12), and (2.13), we calculate
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derivatives of F (B ), finding

AOOF = A09S + A°dT =25 (4 ), (3.4)
since

A0dS = S(4°0B)=2S(A) (3.5)
and

AodT =T(4-dB)— T(A\IB) (3.6)

=TA4)—-T(4)=0.
From (3.4) and (2.13) it follows that
OF = 1d,A°9F = 35 = 3°§5 + d X §, (3.7
which shows that the bivector derivative of F is completely

determined by the bivector derivative of its dual part. As a
consequence of this, it follows that

T =0, (3.8)
i.e., the derivative of an antidual operator vanishes.

Anoperator F (B )is said tobesymmetric {with respect to
the metric g) if

F(A)B=A-FB)>F(A)=F'A)=3,F(B)A

(3.9)

and skew-symmetric (w.r.t.g) if

F{A)B= —AF(B)=>Fd)= —F'4). (3.10)
Differentiating the first expressions in (3.9) and (3.10) by
d,38; gives, with the help of (2.11),

OXF = Y0F —F3)=0
and

3oF = dF + Fd) =0, (3.12)
respectively, where J differentiates to the left. Thus, sym-
metric operators have vanishing cur/, whereas skew-sym-
metric operators have vanishing trace. Symmetric bivector

operators are known in the literature as curvature operators,
and will be studied in Sec. 5.

An operator is said to be dual symmetricifit is both dual
and symmetric, and dual skew-symmetric if it is both dual
and skew-symmetric. An operator is dual symmetric iff

F{A)oB = A°F(B), (3.13)
i.e., F is symmetric w.r.t. the metric G, or equivalently, iff

ACJF = 2F (A ) = 3F°A. (3.14)
To establish (3.13), note by using (1.16) that

F(A)AB= —I{IF(4)}-B= — IF(IA)-B
= —I{IA)F{B)=ANF(B)

and combine this result with (3.9). Property (3.14) follows
directly from (3.13) and (2.13). An operator is dual skew-
symmetric iff

F{4)oB= — AoF(B), (3.15)
i.e., Fis skew-symmetric w.r.t. the metric G, or, equivalent-
ly, iff

F(B)=1B X{dXF) (3.16)

The proof of (3.15) is similar to that of (3.13). The proof of
{3.16) follows by using (1.18), (3.15), and (2.13) to get

B X(9X F) = BodF — JFoB = 4F (B).

(3.11)
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There is an important identity satisfied by dual opera-
tors F(B). It is given by
FAXC)+FA)XC+A4XF(C)

=10oFA X C + §{4 XC)X(IXF). (3.17)

In the special case that F'is also symmetric, (3.17) reduces to

FAXC)+ F(A)XC+ AXF(C)=1do FAXC.
(3.18)
In the special case that F is dual skew-symmetric, (3.17) re-
duces to (3.16). Identity (3.18) follows by equating the right
sides of the identitites
A X(C X)F — C X{4 XIF
=goFAXC—2F(4XC)
and
A X(C XIF — C X(4 XIF
= doF AoC — 2CF (4 ) — doF CA +24F(C)
= —2C XF(4)—-2F(C)XA4,
and the general identity (3.17) follows by combining (3.18)
and (3.16).
We will now find the determinant, the characteristic
equation, and the Cayley—Hamilton theorem for a dual oper-
ator F(B). Define

det(F) = (1/48)3.°3, X3, F({A)XF(B)oF(C). (3.19)
In terms of the orthonormal basis { E; }, with the help of
(1.17) and (2.10), it is not difficult to check that

det(F) = — IF (E\)X F (E,)°F (Es) = |F (E,)°E; . (3.20)
For F(B) = B, from (2.17) or (1.7) it can be seen that
det(F) = 1, as would be expected. Carrying out the indicated
differentiation in (3.19) gives

det(F) = 1/48[83oF > — 6JoF JoF? + (3°F)?], (3.21)

which expresses the det(F) in terms of the complex scalars
JoF, 3oF 7, and doF *. Note the these three complex scalars
correspond to six real scalars, and are Lorentz invariant;
more about them later. In the case that F is dual skew-sym-
metric, det(F) = 0, since doF = 0= goF>.

To obtain the characteristic polynomial for F, define

F'=F _A=F(B)— AB. (3.22)
Then #(4 ) is given by
YA )=det(F')=det(F—A4). (3.23)

Using (3.23), and (3.19) or (3.21), we compute
PA)=A> — |GoFA? — J[9oF > — Y3°F A

— 1/48[830F ® — 63°FFoF? + (3oF ).
(3.24)

In the case that Fis dual skew-symmetric, {4 ) simplifies to
YA ) = A[A + Y3°oF ) ?][A — §(@oF?)'?].

The Cayley—Hamilton for F says simply that

YF)=0, (3.26)
i.e., F satisfies its characteristic equation. The method of
proofof (3.26}is to decompose det(F )4, which is the last term

in ¥{F'), into the sum of the other terms. This is accomplished
in the following steps:

337 J. Math. Phys., Vol. 22, No. 2, February 1981

484 det(F) = 43509, X 3, F, X F,°F,
= 63,X3, FyXFyoF (4)
= 69, X3, FyXF,F(A) — 63,X8,(F,X Fy) X F(A)
= [6(3oF )* — 1290F 2] F (A4 ) — 243°F F¥(4)
1+ 48F3(4).

This formulation and proof of the Cayley-Hamilton theo-
rem was first found for linear transformations in Ref. 12.
We will now show thatan antidual operator 7 (B8 )canbe
expressed entirely in terms of two symmetric trace-free vec-
tor operators. First consider the identity
T(B)=4B3,)d,TuNv)
=1B3,8,T(uNv) — B X3,T(4)
=1B.9,8,T (uAv).
3.27)
The last equality is a consequence of (3.6) and (3.8}, since
B xd,T(A4)=B3,T(A)— Bod,T(4)=0.
Now define the vector operators
t()=3d,-TwAv) and t{v)=3,-TmAvI) (3.28)

An easy consequence of (3.8) is that ¢ (v) and t (v) satisfy
3,1(v) =0=24,1 ),

which means (v) and 7 (v) are symmetric trace-free operators.

We can now express (3.27) in the form

T|B)=1B3,[8, TuAv)+3d, TuhvI)] (3.29)
=E(B)+ D(B),
where
E(B)=1Bd,t(v) = E'(B) (3.30)
is an antidual symmetric bivector operator, and
D (B)=iBd,tw= —D(B) (3.31)

is an antidual skew-symmetric bivector operator. The sym-
metry of E (B ) follows from the steps
EY(B)
=3,E(4)B=13,[49,t(t)]-B = 13,4-[3,t(v)}-B ]
= J[SB:d:]t (v)-B = E(B),
and the skew-symmetry of D (B } can be similarly established.

Wehave the followingimportant propertiesof £ (B Yand
D(B):

I, NE*(uNAv)y=0, for k=12, (3.32)
and
3, AD*uAvy=0=9,-D* '(uAv), for k=12,
(3.33)

which can be proved by using induction on k and the symme-
try of ¢ (v) and 1 (v).

Combining the results of (3.3), (3.13), (3.16), and
(3.29), we find that a general bivector operator can always be
decomposed into

FB)=[HB)+EB)+/(B)+D[B), (334

where H (B ) is dual symmetric, E (B ) is antidual symmetric,
J (B) is dual skew-symmetric, and D (B ) is antidual skew-
symmetric. The classification of trace-free symmetric vector
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operator is carried out in Ref. 13 by reducing the problem to
the Petrov classification of a correlated Weyl tensor.

4. CLASSIFICATION OF DUAL OPERATORS

Let Fbe a dual operator, i.e., one satisfying (3.1). The F
has the characteristic polynomial (1 ) given by (3.24), and
setting

YA)=0 @1

gives the characteristic equation for F. The solutions 4, 4,,
A, are the eigenvalues of F. Writing

YA ) =G4 -4 —1)4 - 1y), 4.2)
we find, on expanding the right-hand side of (4.2) and equat-
ing the coefficients of A with those in (3.24), that

JgoF =A% + A5+ A5 for k=123 (4.3)

The characteristic roots of (4.1) have multiplicity 1, 2,
or 3 according to whether

A #A,#A, for multiplicity 1, (4.4)
A#A, =A; for multiplicity 2, (4.5)
A, =A,=A2, for multiplicity 3, (4.6)

Conditions for (4.4), (4.5), (4.6) can be given in terms of JoF,
8°F2, aOFS, 13,15

We see from (3.23) and (3.20) that, for each eigenvalue
/{k ’
[F(E\) — AcE )X [F(Es) — A B, ]0[FEs) — A E3] =0,
which implies, because of (1.17), that there exist eigenbivec-
tors satisfying

F(C)=1,C, for k=123 (4.7)

We will consider the classification of dual symmetric and
dual skew-symmetric operators separately. This is justified
by the fact that we can always decompose F into

F(B)=H(B)+J(B),
where
H(B)=\F(B)+ F'(B)] =1d,F (B)-B
is dual symmetric, and
J(B)=\[F(B)—F'(B)] =}B X(0XF)

is dual skew-symmetric.
Let J (B) be a dual skew-symmetric operator. Then by
(3.16), J {B) can be writtern in the form

(4.8)

J(B)=B xQ, (4.9)
where Q = 13 X J. From (4.9) we calculate

J}B)=(B XQ)XQ=BQ°Q—BoQQ (4.10)
and

JB)=BxQQ? (4.11)
from which is follows that J* = 4Q*, which implies

doJ=0, doJ?=4Q?% doJ*=0. 4.12)

The characteristic polynomial (3.25) of J (B ) can be written
in terms of Q %, getting

PA) =21+ (@) — (@) (4.13)
From (4.13) it is clear that the key to the classification of
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F (B)isthebivector Q. The canonical forms (1.21) and (1.22)
for a bivector tell us that
0=0 or Q=pe’, or
The case Q = 0 is trivial.

For the case Q = pe °4,, we construct the null bivec-
tors N = (1 4+ 4,)4,,and M = (1 — 4,)4,, and note, with the
help of table (1.23), that

Q=p(1 + A,

A =INXM, NoM=2 A°N=0=A4,°M. (4.14)
It then follows, using (1.18), that
J(B) =B XQ = Jpe”B X(N XM)
= lpe'(BoN M — BoM N).
(4.15)

From the canonical form (4.15) of J (B ), with the help of
(4.14), we can read off the eigenbivectors and eigenvalues of
J. Thus,
J(A)=04,, J(N)= —peN, J(M) = pe'’M.
(4.16)
For the case @ = pN, where N = (1 + 4,)4,, 0? =0,

J(B)=pB XN =p{BoA N — BoNA,) (4.17)
is the desired canonical form. We calculate

J(N)=0, Jidp)=pd, Jd,)=pN,

Jd,)= —pA,, (4.18)

from which it follows that N is the only eigenbivector of J (B ).
The above cases can be summarized in the following table
enumerating the number of null eigenbivectors of J (B ):
11 Q°#0

@ #0) —@=0 @’=0.
Of course it closely parallels that given by Penrose,” in his
spinor classification of an electromagnetic field. The bivec-
tor Q represents an electromagnetic field at a point in space-
time.

We will now carry out the classification of a dual sym-
metric operator H (B) into the so-called Petrov types. Be-
cause of (4.7), H has eigenbivectors and values satisfying

H(C,)=A,C,, for k=123 (4.20)

That orthogonal bivectors correspond to distinct eigenval-
ues follows from the standard argument:

(A; —4,)C;oC;, = H(C;)°C; — C; ¢ H(C;) = 0. (4.21)
Furthermore, because of the bivector classifications (1.21)
and (1.22), and the fact that H is dual, each eigenbivector C of
H can be replaced by a time-like eigenbivector 4, with
A% =1, or by a null bivector N = {1 4 4,)4,, having the
same eigenvalue as C. We will always assume that the eigen-
bivectors C, of H have been so normalized. The operator
H (B) is said to be of Petrov

Type Lif {C, ] spans a three-dim. space,

Type IL:if { C, | spans a two-dim. space,

Type IIL:if { C, | spans one-dim. space.

(4.19)

Suppose H is Type L. If the eigenvalues A, are distinct, then
by (4.21) the C,’s are orthogonal. This excludes the possibil-
ity that one or more of the eigenbivectors are null, because
inspection of table (1.23) shows that if an eigenbivector Cis
orthogonal to a null eigenbivector N = (1 4 4,)4,, then C
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must be of the form C = 4, + alV, so that the eigenbivectors
C, could span at most a two-dim. space. If the eigenvalues
are not distinct, simple orthonormal space-like bivectors can
still be choosen with the same multiplicity as the repeated
roots.

Suppose H is type II. Then the eigenvalues of H cannot
all be distinct, for othewise, because of (4.21), H would be
Type L. Also, H cannot have two orthonormal time-like ei-
genbivectors 4, 4,, forin this case, letting 45 = 14, X 4,, we
find by using (3.18] that

H (A, XAp) + H(A,)X4; + 4, X H (4,) = }0°HA; X 45,
or
H(A4;) = (J0°H — A, — A4,
so that 4, would be an eigenbivector also, contradicting the
assumption that H is Type II. Thus, H must have a null

eigenbivector N = (1 4 A4,)4, satisfying
H(N)=AuN, {(4.22)

and a time-like bivector of the form C, = A4, + aN, satisfy-
ing

H(C)=A4,C,. (4.23)
Equations (4.22), (4.23) imply
H{A)=A4,4,+ BN, {4.24)

where
Bi=4,°H(4;) = A,°H (4,) = ald, —~ Ay).
In the degenerate case when A, = 4, (4.24) reduces to
HA4,)=A4,4,, and B,=0. (4.25)
Finally, note that 4, XN = ¥, and using this in identity
(3.18), together with (4.24) and (4.22), shows that
IgoH = A, + 24,,

for Type II.
Suppose H is Type I11. Then H has one eigenbivector, a
null bivector N, satisfying

H(N)=AyN,

(4.26)

(4.27)
and
13°H = 3A,,. (4.28)

The above classification scheme can be refined by intro-
ducing the notion of principal null directions of H. These are
null bivectors M which satisfy

HM}oM=0 and M*=0, (4.29)

and were used by Penrose® in his refinement of the Petrov
classification of the conformal curvature tensor using spin-
ors. The condition (4.29) was first noted in a remark by
Thorpe.® The principal null bevectors of H are explicitly cal-
culated below, and their coincidence patterns are specified
by new and simple conditions.

ForthecasethattheA, ’saredistinct, H (B ) has abasis of
orthonormal time-like eigenbivectors 4,, A,, A;. In terms of
this basis we can write

H(B)= BoA,\ A, + BoAyird, + BoAA A,
(4.30)

Imposing the condition (4.29) leads to the equations
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MoM=a>+adl +al=0, or a}= —(a} +a3),
and
H{M)oM = A,a% + 4,05 — A3la; + a3} =0,

where M = a4, + a4, + a,4,, which has solutions
a1=i\//12“/13’ az':i\/'{s*/l:,
= A — 4, @31)

which correspond to four distinct principal null directions.
For all other cases there will be a null eigenbivector
N = (1 + 4,4, for which H (N ) = Ay N. In these cases, we
expand H (B )inthebasis4,,4,,4,, = A, 4,,finding, with the
help of (1.23) and (3.18),
H(B)= (Bod\A, + BN BA, + BoH A,
+ (BoH, —~AyBoN)A,,,
where £,=A,9H (A.), Hy=H (4,), and A ,=ldoH — 24,
Ay=NoH,
Notethat H (B )is defined entirely in terms of the independent
quartities
H,, N, J3°H, (4.33)

where H, is an arbitrary bivector (six parameters), ¥ is an
arbitrary null bivector (four parameters), and }d°H is an ar-
bitrary complex scalar (two parameters), making up 12 inde-
pendent parameters in all.

(4.32)

We are now ready to solve for principal null bivectors
by imposing (4.29) on the expansion (4.32). This is done in
the steps below:

M=ad, +ax, + ad,;,, M°M =a} +a; —a3 =0,
H{M)=[Aa, +(a,—a;) B4, + Mo HA,
+ [MoH, — Ay, — a;)l4,,
=[ha, — y B, + [Bia, + Aya, — By,
+IBia, + Ay ~ By +Aya,J4,,
and

H(M)M= ﬂzyz + (6x — 2a, B)) y

in terms of the new variables:

(4.34)
X=03+0, Yy=0;—0a,,
B\ =A4,°H,, [,=A4,,°H,.
Thus the equation
CHM)PM=00xy + B,y = 2Ba,y,
and for y#03 f,, we find
a, =172 3)6x + [, ).
Squaring the equation in (4.35) leads to the equation
V[(6x+ B,y —4 Bixp]=0. (4.36)

Analysis of equation (4.36) together with (4.35) leads to the
following classification scheme of the principal null direc-
tions of H (B ):

5=A’l '_‘iN,

(4.35)

1111(£4,s)

2L(BTI#6B) 22(B1=8B)  6#0
3(B#A0) By =0#B) —(B=0=p) =0
11 I I 437
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As an example of the kind of analysis involved in the
above classification, we will carry it to completion in the
more involved case 3,7%0+# 3, and § #0. In this case, set
x = 1 in (4.36), and factor the resulting quadratic equation
in y, getting

b (5 5 ) b (5 -

-0, | (4.38)

This equation reduces to

BiY
y (y— ——) =0, when 88,= B2.
B3
We see that for €40 (or § 8,# B?), Eq. (4.38) has double
solution for y = 0, and two single solutions corresponding to
the zeros of the other factors. The corresponding principal
null bivectors can be exhibited explicitly by going back to the
original variables. Similarly, (4.39) gives two double princi-
pal null bivectors for each of the roots of its repeated factors,

whend 8, = 81).

Inthecasethat JdoH = A, + 4, + 4, = 0, the three Pe-
trov types can be efficiently characterized by the canonical
forms

H(B) =24, + A,)BoA,A, + (24, + 4,)BoA A,

(4.39)

for type I,
H(B)=AyB — 31yBoC,C, + uBoNN,
where
Ci,=A4,+aN ]
=B, + 34 ya® (4.41)

for type I1, and

H{B)=BoNC"' = BoCN,
where

Cl :BlAl + %ﬂzNy {442)

for type I11. The canonical form (4.40) can be derived imme-
diately from (4.30) and the fact that B = 2 BoA4,4,.To

derive (4.41), we use the properties (4. 22) (4 26) together
with (1.18) and (1.23) and the fact that C, XN =N, to
calculate

H(BYXN = H{(B)X(C,XN)=H{(B)°C,N — H(B)°NC,
= Ay(B XN — 3BoC\N),

which implies that
[H(B)—AyB + 34yB°C,C,] XN =0 for all B.

Applying 4,x to this last identity, and again utilizing (1.18)
and (1.23), yields

H(B)— AyB + 31yBoC,C,
= A,0[H (B}-AyB + 34,BoC,C,IN
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=Bo[H (4,) — AyA, + 3AyaC|]N.

Applying (4.43) with B = A, gives
H(A) —AnAy + 34y + C, = [4,0H, — Ay + 3Aya® N
=N,

(4.43)

(4.44)

where u==f, + 34 ya’. Then(4.41) now follows trivially from
(4.43)and (4.44). Finally, to derive (4.42), we note from (4.32)
that for type III, H (B} reduces to the form

H (B) = BoNpB,A, + BoH (4,)N, (4.45)
from which it follows that
H{4,))=p4, + B,N. (4.46)

Together, {4.45) and (4.46) imply (4.42), where
CIEHIA 1 -+ '%BzN.

5. RIEMANN CURVATURE: INVARIANTS AND
PROPERTIES

Recall that a curvature operator R (B )isabivector oper-
ator satlsfymg (3.9). From (3.34) it follows tht R (B } can be

written in the form

R(B)=H(B)+E(B)=R"B), (5.1)
where

H(B)={[R - I(RI))(B) = H(B)
is a dual symmetric bivector operator, and

E(B)=\[R +I(RI)|B)=E'(B)

is an antidual symmetric bivector operator. We shall now
study the Lorentz invariants of R in terms of complex scalars
of R. By complex scalars of R we mean all possible rational
linear combinations of complex scalar derivatives of R * and
its duat (R7)*, for k = 1, 2,---. Thus,

3R + IJoR * + 33o(RI > — 29o(RI )* (5.2)

is a complex scalar of R. Note that (5.2) is also a Lorentz
invariant of R; we will show that all Lorentz invariants of R
can be so expressed.

Squaring both sides of (5.1}, considered as an operator
equation, leads to

R¥B)=[H*+E’|(B)+ [HE + EH](B), (5.3)
where

H*B)=}[R*>—IRI)(B)—J[(RI} — I(RIVI)B)
and

E*B)=\R>—IR?I)(B)+ }[(RI) — I(RI))(B)
are dual symmetric operators, and

(HE + EH)B)=\[R*>+ IR*I}B)

is antidual. Since H ? and E ? are symmetric, it follows by
(3.11) that

IXH?=0=3xE? (5.4)

Because of (3.8), derivatives of R %(B ) can be entirely ex-
pressed in terms of H 2 and E 2, getting

OR?*=0H? + dE* = 3°H? 4 3°E*. (5.5
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Now defining K =F 2, note that

doHK = KH (d3)°B = d°KH, (5.6)
JoFEHE = dz°[E(B)ed,EH(A)] = E(d,)°EH (4)
=3d-E*H—-3NE*H =0KH — dNKH,
and more generally,
JoE ‘HE’
0 ifi+jis odd
£51.05m = {( — IYAAK VI H 4 KN +IH (5.7)

if i 4/ is even.

From the above remarks it follows that the complex
scalars of R can be expressed entirely in terms of complex
scalars of the form doH ‘K. But the characteristic equations
of H, K and HK are all of the third order; with the help of the
Cayley—Hamilton theorem (3.26), and (3.32), it follows that
all complex scalars of R can be expressed in terms of rational
polynomials in

doH, doH?, doH? JK, dK? dK3

JoHK, do(HK ), do(HK )’
and their complex conjugates. Thus, R has a total of
3% 6 —3 = 15 independent invariants, and, as we shall
shortly see, the added symmetry of the Riemann curvature
tensor reduces this number to the well known 14, (If the same
analysis of invariants is carried out for a general bivector
operator given by (3.34), in addition to the 15 invariants
found in (5.8), there are 15 more given by
doJ?% L, dL? 3L> 3°(HL), do (HLY,

do(HL); doHJ? 3o H?J wherel =D * makingupa
total of 30 independent scalar invariants.)

For the remainder of this section, let R (B ) be a bivector
operator with the property

d,AR{@Nb)=0. (5.9)
An operator with the property (5.9) is called Riemann cur-

vature, because it is equivalent to the usual Riemann curva-
ture tensor R, by way of the identification

RijkIER (e; /\ej)'(ek Aep),

(5.8)

(5.10)

the same as is made by Thorpe in Ref. 5. The identities
@Ab)[F,NI.AR(cA\d)]
=[@Nnb)d,)-[0. \R{cNd)]
—R@Ab)Y+RaNb)
and
@AbAC){d, AR(wAd))=R(cAd)(@hb)+ R(@aNd)
(bAc)+ R(bAd)(cNa),
together with (5.9), show that
R@Nb)(cANd)=(@Nb)R(cNd)
and
R@ANb)(cAd)+RbBAc)@aNd)+R(cha)bAd)
=0. _ (5.12)

Identity (5.11) say that R (B} is a symmetric operator, and
(5.12) is the famous Bianchi identity. (The other Bianchi
identity in this formalism has the form VA R = 0, and can be
found in (9); this paper is exclusively concerned with local

(5.11)
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properties of operators at a point x in curved spacetime.)
Thus, (5.9) is equivalent to the two well known conditions
{5.11) and (5.12).

Now let S (B )=R (B )-B be the sectional curvature de-
fined by R (). The sectional curvature satisfies the impor-
tant identity ,

3, N3 SWAV, —av—b =20, N[0-R@AD)]|,_,

=6R(aNb). (5.13)
A well-known consequence of this identity is that
S (u Av)=0iff R (1 N\ v)=0, for all u, ve7,.

From the curvature operator R (B) we construct the

Ricci operator by contraction:

R@)=d, R@aANb). (5.14)
The Ricci tensor is identified by
R;=R (¢;)e;, (5.15)

and the property that the Ricci tensor is symmetric is equiv-
alent to

I XR(B)=19,N[3,-R(aNb)] =13, AR(b)=0.
(5.16)
Scalar curvature is constructed by contracting (5.14), get-
ting
R=0,.R(b)=R', =2d,-R(B). 5.17)

Notice that we use only the domain to distinguish between
Riemann, Ricci, and scalar curvature.

We now decompose R (B), as is done in Refs. 15 and 4,
by writing

RBY=CB)+EB)+G(B),

where
CB)=R(B)—-1B3d,[R{v)— (1/6)vR],
E(B)=1B4,[R () — (1/4wR],

and
G(B)=(/12)BR.

The conformal curvature operator C (B) has the properties
3,ClaNb)=0=9,C(B) and CUB)=IC(B).

(5.18)

(5.19)
The Einstein operator E (B ) has the properties
EB)=1Bd,EW)=LE@ANb+aANE®)] and
E(B)= —IE(B), (5.20)

where E (v}=d,-E(@a/Nb)= R (v) — lvRandd, E (b) = 0. An
important consequence of the fact that £ (B} is completely

determined by the symmetric vector operator E (v}, as given
in (5.20), is that

sE*(B)=3d,-E*(B), for k= 12,3, (5.21)

[Recall (3.32)]. The operator G (B) satisfies
d,G@Nb)=1bR, 3,G(B)=1R, G(IB)=IG(B).
(5.22)

A comparison of the decompositions (5.1) and (5.18),
together with the properties of C, E, and G given above,
shows that
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H(B)=C(B)+G(B) (5.23)

and that E (B ) has been correctly identified. Because of prop-
erties (5.19), (5.22), and (5.23), d, H(B) = d5-H (B) and
therefore the 15 real invariants determined by (5.8) reduce to
the well known 15 —1 = 14 for Riemann curvature.
If spacetime is not empty but is filled with sourceless
electromagnetic fields, the Ricci operator (5.14) satisfies
R@)= — QQ, (5.24)
where Qisthe electromagnetic bivector defining J (B )in (4.9).
It is easy to check that in this case the scalar curvature
R =d,-R (v) = 0, as is well known. From this it follows that
E (v)=R (v}, and from (5.20) we calculate

EB)=BQQ-BAQQ=(BQ—-BAQIQ. (525

Equation (5.25) shows that the Einstein operator determines
Q uniquely up to a phase e ?. Further discussion of these
problems in the language of spinors can be found in (2), {3),
and (15]. There is a discussion of Maxwell’s equation and

properties of electromagnetic fields in the STA formalism in
Ref. 7.
To demonstrate the geometric transparency of the spa-

cetime algebra (STA) formalism, we give a new geometric
argument for the well known numbers of independent pa-
rameters (IP) of the Riemann, Conformal Weyl, and Ein-
stein tensors. Let F (B ) be a general bivector operator. Then
F(B)has 66 = 361IP, since both the domain and range of ¥
are the six-dim. bivector space & ,. Taking the contraction
and curl of F(B) defines the operators

f(b)=4ad,-F(aNb) (5.26)
and

T(b)=d, NF(aNb). (5.27)J
TENSOR STA
F,=—F,=(,Ne)Q Q
Fl, = YeunF" 1Q

R =(es NeJR (e, Ney)
Ryurs + Rpps + Rypis =0
2
E,, E" ,CP"E, ™E,,"

[ +E%,,E®, C*"™E,™E,, ]

uyrs

3, AR(@Ab)=0

uvrs rsuv

3,0E*C(B)
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R(B)=C(B)+E(B)+ G(B)

The operator 7' (b ) determines 4 X4 = 16 IP of F (B), since
the domain and range of T are the four-dim. spaces &, and
4 . A similar argument shows that f(b ) also determines
4% 4 = 16 IP of F(B); but these degrees of freedom are not
completely independent of those determined by T' (b ), since it
is easy to show that

3, T(b)=3, \f(b). (5.28)
Therelation (5.28) shows that f (b yand 7 (b Y have six param-
eters in common, i.e., they determine a common bivector.
The proof that (5.28) is an integrability condition which

guarantees the existence of an operator F (B ) satisfying (5.26)
and (5.27) will be given elsewhere.
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ishes leaving 36 — 16 = 20 IP. For conformal curvature,
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(5.28), this leaves 36 — 16 — 16 + 6 = 10 IP. For Einstein
curvature, since it is completely determined by (5.26), and
(5.28) vanishes, taking into account that d,-E (b) = 0, gives
16—6—-1=9IP.

To bring out the advantages of the STA formalism over
the tensor and spinor formalisms, we present the following
table of how basic quantities and relationships find expres-
sion in each.
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¢ af

—ipP

'paﬂys 7¢aBﬂ1'/ ,A

{ Vsl =" |

Wayv — ¢#VGB,¢ aBuv _ ¢uv'aa

¢ o B¢p0¢i B IVU K,{¢Kﬂ.;l\"¢‘y§ v

(5.29)
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Linearization stability of Einstein equations coupled with self-gravitating

scalar fields
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In this paper, we extend the work of Fischer~Marsden and Moncrief on the linearization stability
of vacuum spacetimes to the case of vacuum Einstein equations coupled with self-gravitating
scalar fields. We prove that the coupled system is linearization stable under some suitable
conditions. We also prove the relation between linearization stability and the condition that
spacetime admits Killing fields analogous to the work of Moncrief.

PACS numbers: 04.40. 4 ¢

In this paper, we extend the work of Fischer—-Marsden'
and Moncrief? on linearization stability of vacuum space-
times to the case of gravity coupled with self-gravitating sca-
lar fields. Such a system is considered by Francaviglia®
where he proved the “existence” results following Fisher—
Marsden.* We refer to Francaviglia® for details regarding
Lagrangian and Hamiltonian formulations of the system.
The sign conventions we follow are those of Ref. 1.

The configuration space for the system is .# X .
where .# is the space of Riemannian metrics on M, and % is
the space of C = functions on M, M being a three-dimension-
al compact orientable Riemannian manifold without
boundary.

The Einstein equation is

G, =xT,

#® uv?
is the classical Einstein tensor and T is the stress-energy ten-
sor. In our problem, the scalar field is described by

T, = —-pQ24,.¢.-8.6,9°+m’$?),
m?, Bbeing two positive constants related respectively to the
mass of the field and to the choice of units. As remarked in
Ref. 3, this case applies to 7° mesons (m 7#0) and to the
Brans—Dicke field. If Bis allowed to take negative values, the
validity of the results can be extended to the C field proposed
by Hoyle—Narlikar, which is related to the so-called ““steady-
state universe.”

In our system, the evolution equations can be derived
from the variational principle

where G,, =R,, —1Rg,.,

I= J [7%3g,;/3t) + o /3t) ~ N-¥r — X- 7 ;] dt,

where 7 is the momentum density conjugate to g,

o = - 4Byu, being scalar density conjugate to 4. 7, o are to
be obtained by using the so-called Christodoulou-DeWitt
metric defined in Ref. 3. We refer to it for details. 12, denotes
the volume element corresponding to g. 5%~ is the total Ha-
miltonian defined by

K= + 0k,
where

He =u'w — Ntrz')* — R (g), ¢))
and

Hp = =28 (7’2+A(¢))ﬂg-
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The expression for 75 follows from the stress-energy
tensor (cf., Ref. 3, p. 512). Here 7 = 7’ ® z, and
A@)=¢,0"+ m’p> Lastly # , is the moments
constraint,

/T’_‘/G +/1~‘!
where

F o= —U8m=2r/|,, 2
and

S r=—0p,.

The signs here follow the sign convention of the shift
vector field in Ref. 1.

The constraint equations are

%’T_—_O and /T::O.
The evolution equations derived from the variational princi-
ple can be written in a compact form as
g
¢
T

3/t =Jo DP*N,X), 3)

(24

where @ = (#", # 1) and J being the antisymmetric
matrix

(-7 o)

N is the lapse function and X is the shift vector field. * de-
notes the adjoint operator.

DO *(NX)=D#%N+Df%X.
We obtain
Dx¥%-N
= [ — NS (m7) + (N Eing-Hess N — gdN)¥p,
+ BN (24 — g4 ($ ), — BNYgu,,
—48N (Ap + m*$) u, +4B8(YN-V ¢ *),,
2N (7' — (trm)g).(— o'N /4B). C))

See Ref. 1 for notations. In addition,

¢S, (M), by =0, hi=123 o=0ceu,.
To find D #*%-X, we proceed as in Ref. 1 for the term oV ¢,
and get
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Dt X=(Lym, —Lyg, + Lyo, — Lyo).
Here ¢/, = ¢ 1(g.¢.7,0). We write
D %X = (LymLyo, — Lyg, — Lyd),

changing the order for consistency of notation. Thus evo
tion equations are obtained as

dg/dt = 2N (7' — Y(trm')g) — Lyg,
dm/dt = NS, (ir,m) — [N Eing-Hess N — gdN |¥p,

%)

lu-

(6)

+BNYgu, — BN (24 — g4 8y, — Lym,  (7)
96 /3t = — o’'N /4B — L., (8)

30/3t = 48N (A¢ + m’$ s, —4B (VN-V ¢ #)u, — L 0.
)

The negative signs of Lie derivatives in Eqgs. (6)~(9) are due
to the sign of the shift vector field in Ref. 1. We now derive

conservation laws analogous to Refs. 1 and 3.
We have, for diffeomorphism 7 on M,

Hntg, n*m, n*, n*o) = n*H(gmd.0),
and
A g, n*m, n*é, n*o) = n* f(g,m$,0).
Thus, if 77, is a curve in (M) with 5, = id and
(d/dtyn, |, .o =X,
then
DI(g,m$,0) L& Lym, Ly, Lyo) = Ly \g,m$,0),
D/(g,ﬁ,¢,a)~(LXg, Lym, LX¢’ Lyo)= LX/(gs7T9¢’a)'
Hence
DO (g,7,4,0)\Lx8, Lym, Ly$, Lyo) =Ly P (g,m¢,0).
We now consider
a7\g,¢,m,0)
or
= D3 \g,¢,m0)-[(3g/3t),(08 /3t ),(@m/dt )00/t )]

= D%’-JO[D@D *@]

(Change of order of variables is for convenience)
= DHJoDI” g, b,ma)*N + D J (v,¢,mo)*X ]
= DI JoDF#*.N + D7 — Lyg, — Lyd,
~Lym, — Lyo)
= D JoDH#*.N + D7 — Lyg, — Lx¢,
— Lym, — Lyo).
Then

E"{;ﬁ — DIJDI*N — Ly (g,6,7,0).
t

We now compute DF7"-JoDJ¢*-N, as in Ref. 1:
D37 JoDF*.N
= DA (g, m,0) (D, *N, — D, F* N,
D, *N, - D, *.N)
=D, (D, *N)—D K (D,H*N)
+ D5 (D,5%*N)—~ D, % (D, 7*N),
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where ¥ = 3 + 7.
Out of these,
D, 7% N=0=D,#%N,
D,7¢; =0, D, 7 =0,
D J¥N=0, D #r=0, D, 7 #0.
Thus
D7 JoDIF*-N
=D, AD, %-N) + D, 5 D, 5-N)
~ [D,5 D, %N + D, ;-D, 5N ]
+ D¢%F'(Da%;'N] - DGWF-(D.ﬁW*p-N),

Now

D, wh= —By’gh + B4 —gA(8))h,
therefore

D, D, HEN)

=D, p{N3,7 ;) (cf. Ref.1)
=D, | —2k-Ny= —2ND,H -k
) (10)
= —2N[—Brgk+B(2¢—gA($))k]
=2NB[V’gk — 28k + A()gk].
D 2w =0, ¢0= —2ko,

therefore
D, (D, N )

= —2k-[ — By*Ngu, + BN (26 — g4 (9, ]
(11)

ANB(YPgk — 29k + A ($ gk u,.
So that
D, 5 D, N~ D, 7D, FN=0, (12)
Dy b= — 2B (2m*py + 2V *.Vy)
= —4B(m*p-y + V¢ *.Vy).
D, 7N . No’
R T
(D, € = — 4By-€u, = 0-€).
Therefore
D, D, ¥-N = (m*¢Na' + V¢ #.V(Na')), (13)
D, 58N = — 48N (A + m’$) + 4B (VN-V ¥).
Therefore

D, #%N=

— D, Dy ¥-N)

= — No'ld¢ + m*’¢) + o{(VN-Vé #), (14)
Hence
D, AD, 5 2-N) — D, 3¢ D, H 4N

= Vé #(VN)o + Vé *-N(Vo)

_ NoAd + oVN-Vg *

— — No-Ad + NV$ #.Vo + 20-YN-Vg *. (15)

If we calculate 8 (N2 # ), we get
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8(N20Vp #) = —(N?ad")|, .
Hence
SIN*F )= +2NVN-od "' + N?og"),
— INVN-0V$ # + N2[ — oA + V¢ *Va]
= N [2VN-oV¢ # — Nodg + NV #-Vol.

Therefore
ng%F'(Dam'N) _Dd%F'(D:ﬁm'N)
=(I/N)S(N> 7 f)

= —(I/N)iviN2 £ f). (16)

Thus combining Egs. (12) and (16) and using results of Ref. 1
for the remaining terms in D57.JoD77*.N, we get

D JoDF*-N
= — (1/N)div(N2 7 ) — (1/N)div(N 2 7 ;),
and hence
(07#°/at)
= —(1/N)div(N2 7 ;) — (1/N)div(IN 2 F ;) — L, 57,
or
(@7#°/3t) + (1/N)div(N2 ) + Ly 5 = 0. (CI)

For the evolution equation for #, we write, for vector field
Y, independent of ¢,

d
“ f (Y, £ gm0
= f (Y,(d /dt)/f (g,¢,m0))

- f (Y.D,7-[(3/3¢ (08 /1 )0/t )(30/dt)])

= [(rorsepo-()))
J- (Dtl)-J*OD/‘-Y,(IZ))
- f <D¢-J°D/*-T,(:)> J*= —J)

- J' (DPLyg, Ly, Ly, Lya)(N.X))

il

i

— JY(dN)ﬁ/’~ f(Y,LX/> (cf. Ref. 1).
Thus we get

% +Lyf +(dN)F =0,
This is the required evolution equation for ,# . From (CI)and
(CII) we get analogue of Theorem 3.1, Ref. 1.

We now prove the linearization stability of the
equations:

Theorem: A solution (“g,é ) of the coupled system is
linearization stable if the following conditions are satisfied:

(CII)

(i) trrr is a constant multiple of the volume element on
M;

(ii) One of g, @, 7, o is nontrivial or g is not flat;

(iii) There are no simultaneuous symmetries of g, @, 7, ¢
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onM,ie., ifLyg=0,Ly¢ =0,L,m=0andL,o=0,then
X=0

Proof: As argued in Ref. 1, it is enough to show that
D * is injective and has injective symbol. Symbol of D® *:

s V)=(—Ee&+ 1 £ 8y s + (£,7'6L + £mY5,
- §k77'ij)Vk~§® Vé)s #g’(gik gj + & §i)VkrO)~

Thus if Z;(s,V’) = 0, then third component zero gives
V = 0. Then from the first component, we get s = 0. Thus
the symbol is injective.

Wenowshow that D@ *isinjective. Let D@ *(N,.X') = 0.
To show N = 0 and X = 0, D® *(N,X ) = 0 is equivalent to
the following four equations:

— NS, (m,m) + (N Eing-Hess N-gAN )*p,

+BN(24 —gA($) — V'8, +LyT =0, (17)
48BN (A¢ + m’$) — 4BVN.V$ # + Ly0 =0, (18)
2N (7' — §trr')g) — Lyg =0, (19)
(0’'N/4B)+ Ly¢ =0. (20)

Taking tr of Eq. (17) we get,
(N/2)% 6+ [— 24N+ BN (26,4 — 34 ($))
— 3NV, + trLym = 0.
But
FKp =K+ He
=0=F 6 = ~ Hp =2+ AP,
Therefore
(N/2)# g =NB (¥’ +A4(8)u,.
So the above equation becomes,

[NBY? + NBA($) —24N +28N $,4 —3NBA (¢)
—3NBY* lu, + trLym =0.
Using 4 ($) = ,¢" + m>¢ %, we get
—2BNy* —2NBm*¢* —2(4AN)u, + trtLym =0,
ie.,
(AN, + BN (m*¢* + ) — L trLy7 = 0. @1
Taking tr of Eq. (19) gives
—Ntrr' +26,X =0,

or

divk = — INtr7, (22)
tr{iLy7) = Xd trm — m-Ly g + (divX ){tr#)
= —-Lyg — AN (trr')?,

from (22) and using tr = constant. Hence (21) becomes
AN + NB(Y* + m*$?) + {(Lxg)m’ + N (trm'}’ = 0.
From (19),

WLxg)r' = im' 2N (7' — J(trr')g)

= N(r'-nw’ — Jtrr’)?).
Hence
WLxgym + N (ter'y> = N (7'’ — J(trm')?)
= N(7' — Ytrr')g)-(=' — Y(trm')g).
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Thus we get finally
AN (7' — Yjirm'ig) (' — S{trm'ig) + B{y* + m$ HIN =0.
Now, since f is positive, the coefficient of NV is positive defi-
nite and we get NV is constant. Then we get N = 0 if one of 7,
o, ¢ is nonzero.

If 7, 0, ¢ are all identically zero, then 5% = O gives
R =0 and (17) gives (since N is constant)

NR Y — INg".R = 0=NR ¥ = 0.

Then (g is not flat—=R Y£0)—=N = 0.
Thus condition (ii) forces N to be zero. Now, N =0
gives using Eqgs. (17)~(20),

LX']T:O, LXO'ZO, LXg"_—O’ LX¢=O

Then condition (iii) and above equations imply that X = 0.
D@ * is thus injective. Linearization stability is thus proved.

Moncrief’s Condition: We now wish to prove the follow-
ing theorem:

Theorem: (Analogue of Th. 5.5, Ref. 1): Let (‘g4 ) bea
solution to the field equations Ein(‘*’g) = T. Let 3, = iy(M)
be a compact Cauchy hypersurface with induced metric g,
scalar function @, and canonical conjugate quantities 7, o,.
b, = i*¢). ThenKerD® (g,, by, 7o, 0,)* isisomorphicto the
space of simultaneous Killing vector fields of ‘*’g and 4.

Infact(Y,, — Y)e KerD®P (g;, ¢y, 7¢, 0p)* iff there ex-
ists a simultaneous Killing vector field ‘“*'Y of (‘*'g,¢ ) whose
normal and tangential components to 2, are Y, and Y.

¢ is a function on V, appearingin T, .

Proof (analogous to that in Ref. 1): Necessary condi-
tion: Let F, be the flow of ‘Y. For ¢ in a neighbourhood of 0,
i, = F, o [, is a well-defined one-parameter family of space-
like embeddings with generator ‘Y, = ‘Y oi . Let (Y, (¢),
Y, (¢)) be the normal and tangential components of * Y, Let
(g(2),7(),4 (¢ ),0(t)) bethe usual quantities with their conju-
gates induced on X, by (‘“’g,8 ). For a family of embeddings
given by i, = F, oi,, this will be the same as metrics, scalar
functions and their conjugates induced on X, by F**’gand
F*é.

Since ‘“*'Y is a Killing vector field of ‘g and ¢, F**g
— “gand F*§ =§,50g(t) = go m(t) = 70y (¢) = $pand
o(t) = o, Vt. Hence by the adjoint form of the evolution
equations,

dg/dt
0— amr/dt

b /3t

do /ot
=Jo ¢(<g(z)7r(z)¢(z)a(r»*( no )
=JoD y s R —Y“(t) .

Evaluating at # = 0, we get (Y|, — Y} )e KerD® *. Sufficient
condition: For sufficiency, we require the following ana-
logue of Proposition 4.7, Ref. 1, whose proof can be easily
extended in our case:

Proposition: Let ‘Y be a vector field on V, with flow F,
andleti, = F,%ip. LetWh = L, “goandy = L, ¢.Letg(t),
m(t), ¢ (t), oft) be the usual quantities on 2, = i,(M)
andlet(h (¢),w(t ),¥(t ), 7(t })betheinfinitesimal deformationsof
(g,7,8,0) induced on 3, by “# and ¢.

346 J. Math. Phys., Vol. 22, No. 2, February 1981

Then

h(t)
w(t)
W)

()
Y() )
= Jo ¥
JoDP (g(t),m(t).¢ (¢),0(1)) ( Y]

Proof of sufficiency: Let(Y,, — Y, ) KerD& *. We wish
to extend (Y, — Y} ) to a simultaneous Killing field Y.
Choose a slicing i, and let N,, X, be its lapse and shift. To
define Y, and Y, take the perp—perp and perp—parallel pro-
jections of Killing equations L, “/g =0Oandlet ¥, and ¥,
be subjected to the condition

LvI (4)z¢~= LT,- ) ‘5 ,
ie.,
Ly ¢=0.
This gives
@Y, /3,y + LY + Ly N=0,
— (@Y, /0t) —LyY, + NgradY, — Y, gradV =0,

subjected to L, ¢ = 0. For given N (t,x), X {t,x) and initial
conditions (Y, ¥} together with the additional constraint,

these equations define a unique Y, ¥, on V, with the given
initial conditions. Thus we get a vector field “'Y on ¥, with
these normal and tangential components on each hypersur-
face and satisfying L[qu; =0 = ¢ (say). Let

(A (2)0(t), e ),(2),U(t),V(t)) be the induced deformations

of (g,m,¢,0,N,X ). By construction, (4}, =0, {4}, =0.
Hence
U)=IN@)"h, () =0,

and

V(t)=N(@)*h, () =0.
Thus (% (2 ), ), (1 ),7(¢)) satisfies the linear system
h h

o)

Hence, by the above proposition, on X,

(3/0t)

T

h (0)

(0) ( Y, (0) )
=JoDp* =

¥(0) Y,(0)

(0)

Thus (& (¢),w(t),(¢),7(1)) = (0,0,0,0)¥z. Hence, since
h(t)=0,h, (t)=0,andh, (t)=0,""=0,and =0, by
construction. Thus “*’Y is a simultaneous Killing field as
required.

It also follows that the dimension of KerD® * is equal to
the number of linearly independent nontrivial simultaneous
Killing fields of ‘*’g and &.

Remarks: (1) Since our evolution equations are in the
adjoint form, we can prove Moncrief’s splitting® as given in
Ref. 1, Theorem 6.1, in our case also.
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(2) We hope that the results regarding linearization sta- *M. Francaviglia, ““On the symplectic formulation of the Einstein system of

1 : The pr evolution in presence of a self-gravitating scalar field,” Springer Lecture
bility can be proved in the noncompact case. The procedure notes in Mathematics, No, 570, p. 498.

to be followed may be similar to that in Ref. 6 due to some SA.E. Fischer and J.E. Marsden, J. Math. Phys. 13, 546 (1972).

technical difficulties as explained there. 5V. Moncrief, J. Math. Phys. 16, 1556 (1975).
®Y. Choquet-Bruhat, A.E. Fischer, and J.E. Marsden, Nuovo Cimento
'A.E. Fischer and J.E. Marsden, Nuovo Cimento (1978). (1978).

V. Moncrief, J. Math. Phys. 16, 493 (1975).
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Statistical mechanics and the gravothermal catastrophe
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Jensen’s inequality is applied to the canonical partition function of a self-gravitating system to
determine the best independent particle potential. The inequality allows the stability to be
analyzed very easily. We recover the results of Lynden-Bell and Wood for the onset of an
instability in an isothermal sphere in a heat bath. Our eigenvalue analysis leads to results very
similar to those of Horwitz and Katz, but we differ in the description of the / == 1 perturbation.

PACS numbers: 05.20. — y, 04.20. — q

I. INTRODUCTION

In aseries of papers Horwitz and Katz'~* have analyzed
the statistical mechanics of a self-gravitating system by ap-
proximately evaluating the various partition functions.
Their procedure involves replacing the Boltzmann factor by
its representation as a functional integral. They evaluate the
resulting multiple integral by a saddle point method. The
necessary condition for the stationary point is that the parti-
cles move independently in the mean field. The requirement
that the stationary point gives a maximum can be made the
basis of a stability analysis. In this way they recovered and
extended the results of Lynden-Bell and Wood.*

We show, in this paper, that the results found by Hor-
witz and Katz for the canonical partition function can be
obtained very easily by applying Jensen’s inequality’ to the
configurational integral.

1. A VARIATIONAL METHOD

We work with the canonical partition function Z and
assume that the potential is of such a form that Z exists. A
discussion of these assumptions is given by Ipser® and by
Horwitz and Katz>. Z is defined for N equal particles by

_ ] —BE -

Z= N Je an, p T (§))]
where quantum factors have been omitted because they are
unimportant for the systems we consider. Performing the
integration over momenta, and defining d{2; to be the spatial

part of the phase space volume element, we find
Z=QmmkTY""?Q, Q)

where the mass of each particle is m and @, the configura-
tional integral, is defined by

Ll
Q=mfe v an, 3

and Vis the potential energy. In practice, V is usually too
complicated to allow Q to be evaluated. To estimate Q we
suppose that we have a reference system of N particles with
the same mass as before, but with a potential energy U which
allows the configurational integral to be evaluated. Now
write Eq. (3) as

0= gy e s aa, @

348 J. Math. Phys. 22 (2), February 1981

0022-2488/81/020348-04$1.00

and regard Eq. (4) as defining, apart from a constant multi-
plier, the average of exp[ — B (V — U] with a probability
density exp{ — BU). Since the exponential is a convex func-
tion, Jensen’s inequality can be applied, and we find

>I= FVITf‘*"’”dﬂs-exp(—mV— Uy, o)

where ( ) denotes an average using the probability density
exp( — BU ). Denoting the Helmholtz free energy calculated
using the potential U by 4 (U}, Eq. (5) is equivalent to

AV)KA(U)+(V-U).

If we choose the functional form of U with arbitrary
parameters, these parameters can be chosen by adjusting
them to make the right hand side of Eq. (5) a maximum’. A
better procedure is to use Eq. (5) to choose the functional
form. In particular, if U is a sum of independent particle
potentials, then the stationary point of the functional 7
should give the best potential provided that I is then a maxi-
mum. Ifitis not a maximum, then in the neighborhood of the
independent particle potential another potential exists
which will give a better estimate of Q and a lower free energy.
The system will then move away from the configuration de-
fined by the stationary point of 1.

The exact Hamiltonian of the system is

Hzéj‘ 241 5 S Fn D, (6)

i=1j=
IES]

where F is a long range pair interaction. In order for Z to be
well defined we assume, with Horwitz and Katz, that the
system is enclosed within a sphere and the singularity at
short range is smoothed out. Because F is long range we
expect that the time averaged dynamics of a given particle is
very closely approximated by its motion in a mean field. We
therefore approximate H by

f_ N i N . .
" j;l 2m * j;|¢ (rj) ’ ( )

so that
U= Y4 ®)

j=1

To find the stationary value of 7 we replace U by
U + 8Uand expand to first order. The first order change in 7
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is given by
GS1/1= BJe”BU(SU[(V— Uy—(-milde,. O

The necessary condition for / to be a maximum is that 67 = 0
for arbitrary §U. It is convenient to set

U= 2545 @), (10)

J=1
where 8¢ is arbitrary. Substituting Eq. (10) into Eq. (9) we
find that 6/ = 0 implies

J.e*ﬂ"’(S(bI“dT:O, (1)
where dr is the ordinary volume element,
=
NEN [<V— vy =1 fexm—ﬂys')ﬂlr—r'ndr
‘N"”N 2 ffexp[ B+ NF(x — ) drar’
L0+ ——E—Ilf¢exp(~ﬂ¢)dr'],
(12)
and

_&;‘r_fe“ﬁ"5 dr, ¢ =¢(r), and ¢ '=¢(r"). (13)

Since 8¢ is arbitrary, the variational principle requires
I’ = 0. This equation is satisfied by choosing

4(r) = %‘-‘—fe-w"'wth';)df’. (14)

Equation (14) for ¢ (r) is the canonical average of the pair
interaction at r due to the other (¥ —1) particies. For a pure
gravitational interaction Eq. (14) is equivalent to

V2 = 4nGm* (N —~1) e~ P* /¢ . 15)
If we anticipate that the number density #(r) is

nry=Ne #/¢, (16)
we find

Vg = 4rG Q’—;Q mn() . a7

Apart from the factor (¥ —1)/N which is very close to
1 for the systems we consider, Eq. (17) shows that ¢ /m is the
Emden potential. The variational principle therefore estab-
lishes that the Emden potential is the best independent parti-
cle potential (in the thermodynamic sense) for a self-gravi-
tating system.

Hl. STABILITY

The stability of the system is determined by the second
order variation of 7, which is easily shown to be

1 B%exp(— BV~ UNCV(SU ) — ((BUY) + 8
X{@UPYV=U) —(@UPF-UN}}.  (18)

The multiplying factor is always positive so the sign of the
second variation is determined by
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= (U —((BU) + BHEBU ¥V =-U)
—{BUV ~ U))} (19)
As before we take U = X, 5¢ (r;) and the averages in Eq.

(19) reduce to integrations over ordinary volume. The resuit-
ing algebra can be reduced by expressing integrals as deriva-
tives according to

(@UY(V - U)) = -2 (20)
and noting that if
fl@) = ( fe ~ o - add dT)N o))
then
fO=¢", fO=—-N"{5¢),
and
F O =5 IN{(66)) + N(N —1)(6¢ )7] . (22)
The final expression for Eq. (19) can be written
T = (89)" ~ (80 1) ~ B L(59) (89’
—2(6¢) (#6¢ ) + (N — 1){645¢ 'F,, )], 3
2

where ( ) now denotes an average over the ordinary volume

where ( ) now denotes an average over the ordinary volume
with probability density «exp( — B¢ ) and

<6¢5¢'F,ﬂ>—f j 8685 (|t — ¥ dr dr'/E? . (24)

Finally we note that if

qg=35¢~(5¢), (25)
then Eq. (23} can be written
(L/N)= —{(¢") —B(N — 1){¢¢'F,,), (26)

using Eq. (14).

If L <0, Iis amaximum and the system will be stable. If
L >0, the system will be unstable. In order to establish the
point of instability it is convenient to turn to the associated
eigenvalue problem.

IV. THE EIGENVALUE PROBLEM FOR SPHERICAL
VARIATIONS

The right-hand side of Eq. (26} when written in full for
gravitational interaction becomes
r)dr ] dr.

e~tiqfa— Lt ot (e
@7

We now specialize to purely spherical variations so that
q is a function of r alone. Equation (27) suggests that we
consider the eigenvalue problem:

Gm? e P q.(r)dr

¢

lr—rl

gl —B(N-1) -
A Bg’ ()d lrﬁr'
_ A e T alrdr
47 r—r| Ce (28)
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where A, is an eigenvalue and C, is a constant which can be
chosen to allow us to satisfy one of the conditions on ¢g. The
integral equation (28) is equivalent to

47 BN —1)Gm?
&

which is the differential equation examined by Horwitz and
Katz', and applied by them to the Grand canonical ensemble
using different boundary conditions. The equation Horwitz
and Katz? use to determine the stability of the canonical
ensemble is a different, more complicated equation; the
equation we use is simpler because we work with

Vg, + [ + Ak]e*%k ~0, (29

q=>5¢—~(5¢).
We wish to expand ¢ according to
= Zaqu("), (30)
k=1
but since {g) = O we require (g, ) = 0. From Eq. (29) we

find
@) = %jr%(r) dr

47 (dq; )
A 2, 1
Ak ( dr B P (3 )

where r,, is the outer boundary of the sphere containing the
particles and

A, =47 BN -1)Gm* + A, ¢ . (32)
We therefore require (dg, /dr) = 0. In order for Eq. (28) to
be consistent with this result we require C,
= [d (rq,)/dr]z, as may be easily seen by evaluating the
integrals for = ry. It is convenient to work in terms of
X, = rg, so that the eigenvalue equation (29) becomes

2 2
Z—Xk " [ 47 B(N —1)Gm ¥ A, }e‘B¢Xk =0,
ar &
(€X)
with boundary conditions
q,.(0) finite =X, (0)=0,
(34)

qu) (ka)
(dr , ==\ ), T K

The boundary condition on g, at r = r, has the further sig-
nificance that since mass is conserved a spherically symmet-
ric perturbation cannot change the external potential gradi-
ent. Therefore, at the boundary, the gradient of g must
vanish and this is just the second of Egs. (34).

Expanding g as in Eq. (30), substituting into Eq. (27),
and using Eq. (28), we find Eq. (27) becomes

B Be’
- —ZZ a2k ffi——ik—ql—e————-drdr'; (35)
47 ’

the constant C, gives no contribution because {(g) =
From Eq. (28) and the equivalent integral equation with k
replaced by / we deduce

— B¢ — Bo’
f f We g =18, (36)

r—r
which may easily be shown to be equivalent to the orthogon-
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ality condition deduced from Eq. (29). Using Eqs. (32) and
(35) the expression for L in Sec. ITI becomes

L
5= 47T§ —— SA k. (37)

Since /, and @} are both positive, L > 0 only occurs when an
eigenvalue becomes negative. Because of the form of Eq. (33)
the eigenvalues are discrete and they can be ordered. The
first to change sign is the lowest. Transforming to Emden
variables we find A, changes sign when the density contrast
between center and boundary is 32.12. This is the now classi-
cal instability associated with a self-gravitating system in a
heat bath. It is equivalent to C, changing sign through infin-
ity. The second eigenvalue changes sign at a density contrast
of 5221.5 where C, again changes sign through infinity and
so on for the other eigenvalues.

V. THE EIGENVALUE PROBLEM FOR NONSPHERICAL
VARIATIONS

When the variation is not spherically symmetric we ex-
pand in eigenfunctions

G =G, = (1/7Y1s(NY,,(0,8), (38}

where Y,,, is a spherical harmonic. If /> 1, then the condition
{qum » = 0 is automatically satisfied. The eigenvalue equa-
tion (29) becomes

— 1\Gm*

d: o (1+ 1) 47 B(N
27 i) S + R

Xe~ ﬂ”’fk, =0. {39)
The boundary conditions are that ¢, isbounded at» = 0, and
matches a solution of Laplaces equation at r = r, which

vanishes as »— o0, and has the same angular dependence as
¢, . These conditions are equivalent to

ful0) and 4L = _

dry rp

+ Ay

at r=rg, I>»1. {40)

If I>2, it can be shown from the solution to the Emden equa-
tion that

1(+1)
2

>A47BIN — 1)\Gm?e =5 /¢ . (41)

Equation (39) can then be written (we omit the subscripts for

convenience)
d APf=0 4)
L _w =0,
e f+APS (

where Wand Pare > 0for [>2. Multiplying Eq. (42) by f, and
integrating over 7, shows that

| [ [ o)/
J; Pfdr. (43)

The boundary condition {40) now allows us to conclude from
Eq. (43) that
Ay >0 for I52. (44)

The integral equation from which Eq. (39) has been deduced
is Eq. (28) with C, = 0. Substitution into Eq. (27) shows that
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FL\; = 2_ klakli‘kllkl , (45)
where
o= [ faone) SELL drar 46)

The system is therefore stable to any nonspherical perturba-
tion with />2, This result agrees with that found by Horwitz
and Katz?. For the case / = 1 numerical solution of the ei-
genvalue problem shows that the system is stable. This result
may in fact be established directly by observing that, with an
appropriate coefficient of proportionality, the boundary
condition at » = 0 and Eq. (39) with 4 = 0 are satisfied by

ficrdg/dr.

The outer boundary condition is never satisfied for a finite
density ratio and we conclude that there is no solution with
A = 0. Since for density ratios close to 1 the system is stable,
it remains stable. This result disagrees with that of Horwitz
and Katz, because they use a boundary condition which we
believe to be incorrect and find that the / = 1 mode is unsta-
ble. Since this mode is equivalent to the displacement of the
center of mass, Horwitz and Katz remove the instability by
fixing the center of mass. Our result shows that this device is
unnecessary.

VI. RELATIONSHIP TO THE HELMHOLTZ FREE
ENERGY

The canonical partition function is intimately related to
the Helmholtz free energy because it represents a system of
fixed volume in a heat bath. For such systems, if fluctuations
about the temperature T, of the heat bath are considered, the
stability of the system is determined by whether or not the
activity

A=U—_T,S, (47)

is a minimum. In Eq. (47), U is the internal energy and S the
entropy of the system of interest evaluated at the tempera-
ture 7 of the system. When T = T, the activity is just the
Helmholtz free energy. The change of 4 with time for a vis-
cous fluid with coefficient of thermal conductivity « is

a a7 P G () - )
+ o [purar— ””(')P(r)d dr } (48)

[r—r'|
where F’ denotes the perturbation to the zero order quantity
F, Pis the pressure, p the density, G is the gravitational con-
stant, ¥ the adiabatic index, u the velocity, and the integra-
tions are over volume. We can therefore identify the qua-
dratic terms in 4 produced by a perturbation away from

equilibrium as being
"\2 \2
G Gl

54 =ifp[__
2

_%JJ’p(r)P(r)d dr' + — JP“ dr. (49)

|r—r|
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Assume now that we make a static perturbation with 7" con-
stant. In Eq. (49) we set 7’ = 0 = u. Noting that

U (N=1) e 5
pr)=M—- e ar (50)
so that
900 _ _ps— (88, (51)
we find
8%4=—L/2, (52)

where L is defined by Eq. (26). The stability condition deter-
mined from the variational principle is therefore equivalent
to requiring that the activity is a minimum. The statistical
mechanical criteria is therefore identical to the thermody-
namic criteria. If we construct the Lynden-Bell and Wood*
activity for T = T, (so that 4 ==Helmholtz free energy) and
perturb it, we find, as expected, that it is equal to — L /2.

VII. DISCUSSION AND CONCLUSIONS

A full account of the instabilities in a self-gravitating
system placed in a heat bath is contained in the analysis of
Lynden-Bell and Wood* and Horwitz and Katz.? Our re-
sults show that the description of the canonical ensemble
from the statistical mechanical point of view does not require
the complicated procedure used by Horwitz and Katz. Their
analysis resembles ours in that it involves a search for a maxi-
mum of an integral. It differs from ours because they first
make a transformation to a functional integral which greatly
complicates the analysis of the canonical ensemble.

It is not clear why Horwitz and Katz do not use the
boundary conditions (40) for the nonspherical perturba-
tions. All potential perturbations are obliged to match a so-
lution of the Laplace equation which vanishes at infinity.
For the modes />>2 the Horwitz—Katz boundary condition
does not affect the result. However, for the / = 1 mode they
predict an instability when the density ratio is 32.1, whereas
we find the system is unconditionally stable for this
perturbation.

The advantage of the procedure used by Horwitz and
Katz is that it is general, and can therefore be used for all the
common ensembles. Jensen’s inequality can only be used
when the probability density is convex and this excludes its
use in the physically important microcanonical ensemble.
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bridge U. P., Cambridge, England, 1959).

°J. Ipser, Astrophys. J. 193, 463 (1974).
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We investigate conditions for the existence of a decomposition of a Hermitian projector p into two
Hermitian and time-reversal invariant operators p, and y under the form p = e pge = .
Sufficient conditions are given and an explicit construction of a decomposition is performed when
they are fulfilled. A stronger theorem of existence and uniqueness is studied.

PACS numbers: 05.30.Ch, 02.30.Tb

INTRODUCTION

The purpose of this paper is to study the following prob-
lem: Given a Hermitian projector p defined on a Hilbert
space of quantal states, under which conditions (necessary or
sufficient) there do exist two Hermitian and time-reversal
invariant operators p, and y such that

p=e¥pye x. (1)

Such a decomposition was first introduced by Baranger
and Vénéroni' and in the formulation of these authors it
constitutes the starting point of the “adiabatic time-depen-
dent Hartree—Fock approximation” (ATDHF). In the
framework of this formalism, the projector p is the reduced
single-particle density operator of a system of independent
spn-1/2 particles. In the adiabatic limit, the decomposition
(1) seems to be crucial to provide a relation between the time-
dependent Hartree-Fock approximation and phenomeno-
logical descriptions of collective motion such as the Copen-
hagen model.?

To our knowledge, the decomposition (1) has been used
up to now only for single-particle density operators of nu-
clei.®* The first studies of its validity>° have also been re-
stricted to this particular case. The proof of existence given
here is valid for p-body reduced density matrices of a quan-
tum system, provided they are projectors and they satisfy
some conditions specified in Sec. 2. Conditions for the exis-
tence of the decomposition (1) are investigated in some de-
tails: Their study has been partly neglected in the preceding
works. Indeed, they were focused on the ATDHF approxi-
mation, where the assumed smallness of y makes the discus-
sion much simpler.

For the sake of simplicity, the proofs given below are
limited to a finite N-dimensional Hermitian space ##°. How-
ever, most of the results can be extended to infinite-dimen-
sional Hilbert spaces in the case where p has a finite trace. All
the operators involved are linear operators defined on 77,
except the antilinear time-reversal operator 7.

Section 1 is devoted to the study of some results con-
cerning quantum time-reversal which are used in Secs. 2 and
3. Section 2 is the central part of this work. There the decom-
position theorem is demonstrated for the most general densi-
ty projection operator satisfying some sufficient conditions.

“Laboratoire associé au C.N.RS.
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Finally, we investigate in Sec. 3 some special conditions for
the existence of the decomposition (1) for the reduced single-
particle density operator of a system of fermions.

1. SOME USEFUL PROPERTIES OF QUANTUM TIME-
REVERSAL

In this preliminary section we present some theorems
which are essential for the demonstration of the existence
theorem of Sec. 2. These results can be easily obtained from
elementary properties of the time-reversal operator T (see,
e.g., Ref. 7).

In the following, the time-reversed of any linear opera-
tor 4 will be denoted by A : 4, = T " AT, and the time-
reversed of any vector |u) by |u) : @) = T |u).

Asis well known, the operator T'is antiunitary (i.e., T'is
antilinear,and 7+ T =TT * = 1) and satisfies:

T?= +1.

In the latter equation, the plus sign applies to any system of
bosons, or to systems containing an even number of fer-
mions, the minus sign applies to an odd system of fermions.

The first results, stated in Theorems 1a and 1b, provide
criteria to identify a time-even Hermitian operator by its
spectral representation, respectively in the cases 72 = 1 and
T?= —1.

Theorem 1: (a) (T = 1) A Hermitian operator is time-
even iff it is diagonalizable in a real orthogonal basis.

(b){T* = — 1) A Hermitian operator 4 is time-even iffit
is diagonalizabie in an orthogonal basis of the type {le,),
le; y; i=1,...,N /2} with the same eigenvalue associated to
le;) and |e;):

A=

"Cadle) el + 1) @), 4 eR. 2)

=

Notice from Eq. (2) that the multiplicity of any eigen-
value of a time-even Hermitian operator A is an even number
when Tsatisfies T2 = — 1. When 4 is the Hamiltonian of an
odd system of fermions, this property is known as Kramers
degeneracy. If A is a projector, Eq. (2) implies that its trace is
an even number.

From Theorem 1, one gets readily the following proper-
ties of commuting Hermitian time-even operators:

Theorem 2:(a) (T2 = 1) Two Hermitian time-even oper-
ators which commute have a common complete orthogonal
set of real eigenvectors.
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(b) (T? = — 1) Two Hermitian time-even operators 4
and B which commute can be simultaneously diagonalized
in an orthogonal basis of the type { |e;),||&;) ;i = 1,...N /2},
such that

a="1 Alle) (el + ) @]}, AR,
B="{ e (e] +12) @] meR

i=1
Theorems 2(a) and 2(b) permit us to obtain the following
result, valid in both cases T>=1land T2 = —1:
Theorem 3: (T? = + 1) Let U be a unitary operator.
(i) A necessary and sufficient condition for the existence
of a time-even operator 4 satisfying

U=¢" 3)
is that
Ur=U™.

(ii) There exists a unique operator 4 satisfying Eq. (3)
and having its eigenvalues 4, lying in a given interval:

A €laa+ 2.

2. THE DECOMPOSITION THEOREM

In the first part of this section we demonstrate the exis-
tence of two Hermitian and time-even operators p, and y
satisfying Eq. (1), provided some conditions are fulfilled. The
proof of the existence theorem is performed by exhibiting a
particular solution ( p,,y ), whose properties are studied in
part B. Results of part B enable us to obtain, in Sec. (2 C), a
new result, the decomposition theorem, which is stronger
than the existence theorem proved in Sec. (2 A).

A. The existence theorem

Before stating the existence theorem, it is useful to men-
tion a preliminary result which permits us to formulate the
conditions for the existence of the decomposition (1) in sever-
al equivalent ways.

Preliminary result: Let p and p’ be two Hermitian
projections.
The following assumptions are equivalent:

Py llp—p'll<1.®
(P,) The operator (1 — R } is regular, where

R=(p—p).
(P,) The unitary operator

7 =(2p - 1)2p' - 1)

does not admit the eigenvalue v = — 1.

(P,} The projectors p and p’ do not have any common
eigenvector corresponding to different eigenvalues of p and

The proof of these equivalences, being lengthy but rath-
er straightforward, is left to the reader.

Existence theorem: Let p be a Hermitian projector and p - its
time-reversed. If p and p;- satisfy the equivalent hypotheses
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two operators p, and y such that

p=e¥pse X, o))
Po= po’ = {polr 4
x=x"=xr. ®)

Lemma: Let p be a Hermitian projector and p its time-
reversed. Ifp and p , satisfy the hypotheses (P, ), there exists a
time-even Hermitian operator y such that

pr= e~ 2ixp e2i,y . (6)

Proof. The proof given here is suggested by results concern-

ing pairs of projectors which can be found in Refs. 9, 10.
Consider the Hermitian and time-even operator:
1—-R=1~(p—p;),

which has the obvious property:
[1—R,p]=[1-R,pr]=0. (7)

Since p and p satisfy (P;), this operator is strictly positive,
and one can define a Hermitian inverse square root

(1—R)™ V2
Let us define:
U= {ppr +(1—pl(l —p7)J1 —R)"'7
=(1—R)""?[ppr + (1 —pll —pr)]. (8)

One can easily show that

(i) U is unitary,
(i) U =UT,
(iti) pr = U TpU. (9)

According to Theorem 3, one can find an operator y fulfill-
ing Egs. (5) and (6), and such that

U= e, (10)

which proves the Lemma.

Toachieve the proof of the theorem, it remains to verify
that the Hermitian projector p,, defined by

Po=e Y pe (1D
is time-even, which is a direct consequence of the time-rever-
sal invariance of y.

Before proceeding further, it is worth stressing the fol-
lowing point: We have shown the existence of a time-even
Hermitian operator y satisfying (6) by referring to Theorem
3. However, such an operator y is not yet univocally defined,
since: (i) the operator (1 — R ) 2 used in the construction of
U can be defined in several different ways; (ii) it remains to
specify the interval of definition of the eigenvalues of y. In
order to remove all these ambiguities, we first note that the
operator U used to define y by Eq. (10) has the property

Ul=rr, =¥, 12)
with 7 = (20 — 1). Equation (12) can be obtained from the
definition (8) of U, by use of Eq. (7) and of the involutive
character of 7 and 7. According to Theorem 3, there is a
unique operator Yy satisfying {12) and having all its eigenval-
ues in some given interval [a,a + 7/2[. We define y by
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choosing @ = — /4. Since the condition (P) excludes the
eigenvalue v, = — 1 for the operator e *¥, the eigenvalues
A, of y all belong to the open interval:

A,el—w//4 w/4]. (13)

Incidentally, we emphasize that the operator y just de-
fined is identical to that defined by Baranger and Vénéroni.'
This was not apparent up to now, but is clearly illustrated by
Eqgs. (12) and (13). Following the terminology of Ref. 1, we
will call the decomposition defined by such an operator y,
and the operator p, constructed from y by Eq. (11), the “nat-
ural” decomposition. '’

Notice that in the above definition of y, the condition
(P} is dissimulated in Eq. (13), whereas the equivalent hy-
pothesis (P,) was needed at the very first to define U through
Eq. (8). These conditions (P;) were not mentioned in Ref. 1,
whose authors were interested in the decomposition theorem
for operators y small compared to unity (4, €1): this as-
sumption guarantees the fulfilment of (P,), and therefore en-
sures the existence of the decomposition (1) submitted to (4)
and (5).

B. Further properties of the natural decomposition

Let us now investigate characteristic properties of the
natural decomposition constructed in Sec. (2 A).

From the definition (12), (13) of y, it is clear that for any
eigenvector |u) of the diagonalizable operator 77, (17 is
unitary):

Treluy =v, lu), (14)
one has:

xlu) =4,luy, (15)
with A, defined by Eq. (13) and by

=y, . (16)

One can also easily show that

rrr(r|u)) = vi(r|u)) (17)
for any |u) solution of Eq. (14), which leads to

x(rlu)) = — A, (r|u)). (18)

As a consequence of Eqgs. (15) and (18), the operator y of the
natural decomposition satisfies

¥+ 7y =0, (19)
which can be written equivalently as

XP tPX =XPotpPoX =X (20)
or as

pxp=(1—p)x(l —p)=0. {21)

If p is the one-body reduced density operator of a spin-1/2
particle system, Eq. (21) means that the operator y has only
particle-hole and hole-particle matrix elements.

To further study the natural decomposition, one can
state the following lemma (whose proof is straightforward):

Lemma: Let y be a Hermitian operator such that
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TT —e 2i,1/7. eZiX s
X+ 7y =0.

Then y satisfies e ** = 77,. As an immediate conse-
quence, the natural decomposition is the only one fulfilling
(13) and having the property (19} (see Theorem 3).

C. Decomposition theorem

The main results established up to now can be summa-
rized as follows:

(a) Assuming the conditions (P, ) satisfied by p and p .,
we have constructed a Hermitian operator y solution of Eq.
(6). This operator y is shown to be time-even.

{b) We have seen that Eq. (19) [added to the condition
(13)} is a characteristic property of this particular solution.

(c}) The Hermitian operator p,, constructed from y and
p by Eq. (11), is time-even.

These results can be collected into the following
statement.

Decomposition theorem: Let p be a Hermitian projection, and
T the time-reversal antiunitary operator satisfying
T?2= 4+ 1.

The equivalent assumptions (P;) for p and p ;- are neces-
sary and sufficient conditions for the existence of a ungiue
set of Hermitian operators p, and y such that

@) xpo + pox =X» (20)
(i) all the eigenvalues of y lie within the interval

1—#/4, o/4[, (13)
(i) p =e¥pye . M

The two operators p, and y are time-even.

N.B.: (1) By rearranging the results (a)—(c) in different
ways, one can obtain several other formulations (not com-
pletely equivalent) of the decomposition theorem (see, e.g.,
Ref. 12).

(2) In the statement given above, the conditions (P;)
appear as necessary. This is obvious, since the violation of
(P,) would lead to the occurrence of at least one eigenvalue
A, = + w/4for y, which would be in contradiction with the
requirement (ii). We would like to point out that a stronger
result is available, by replacing the open interval in (ii) by a
semiopen interval. The proof would go as follows: One
shows that Egs. (12) and (20) cannot be simultaneously ful-
filled by an operator y having an eigenvalue A, = + 7/4.

3. SOME IMPLICATIONS FOR SYSTEMS OF SPIN-1/2
PARTICLES

Let us turn back to the existence theorem, studied in
Sec. (2 A). This theorem has been proved under some su/fi-
cient conditions (P,), expressed up to now in a mathematical
language. By looking at systems of spin-1/2 particles, we will
now investigate necessary conditions of existence, and also
get some light about their physical content.

From now on p will be a one-body reduced density oper-
ator describing a system of spin-1/2 particles. If the decom-
position (1) exists, the trace of the time-even Hermitian pro-
jection p, is an even number (see Sec. 1). Since p is deduced
from p, by a unitary transformation, we conclude that
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(22)

As a necessary condition for existence, Eq. (22) implies that
no decomposition (1) fulfilling Egs. (4) and (5) can be found
for the reduced one-body density operator of an odd system
of fermions. Property (22), which did not appear in the proof
givenin Sec. (2 A), has just been shown ““a posteriori” to be a
consequence of the sufficient conditions (P;). We directly
show in the Appendix that (P;) implies (22).
We now consider the case where the single-particle

states are normalized eigenstates | + ) of the spin operator
S .

z*

Tip=2p, peN.

p=p‘e|+){(+ | +p'e|—)(—]. (23)

It might be of interest to ask under which conditions on
the spatial parts p “ and p ¢ of p there exists a decomposition
(1) satisfying (4) and (5), such that the spin states | + ) are
eigenvectors of y. Added to the requirements for y to be
Hermitian and time-even, this condition constrains y to be of
the form:

x=x"e|+)(+| +xre|—)(—|, (24
with

Xu — (Xu)‘ . (25)
We will now show that the property

n*=n9, (26)

with n* = Trp “and n® = Trp “, is a necessary condition ™ for
the existence of a decomposition (1) satisfying the require-

ments (4), {5), (23), and (24). This is easily seen by computing
the operator ¢*¥p,. ¢ ~2* | which must be equal to p when a
decomposition (6) submitted to {24) and (25) exists. One gets

p" = exp(2iy”) p7 exp( — 2ix").
Since y “ is Hermitian, this implies

Trp* = Tip§ = Trp?,
which shows (26).

To end up this section, let us see how the condition (26)
is contained in the assumptions (P,) for p and p,. We first
note that the conditions (P,) are satisfied by p and p . if, and
only if they are satisfied by p “ and p%.. (The proof of this

result is elementary.) In particular, the fulfilment of (P, ) by p
and p, requires that

lo* — P71l <1.

As shown by Sz.-Nagy,” this property implies (26) (see also
Ref. 14). We will not demonstrate this well known result, but
simply mention that it can be derived by exactly the same
procedure as used in the proof of the existence theorem:
Equation (27) allows to define

V=Ip'p7 + (1 ~p)1 —pD 1 — " —p7° .

The unitary operator V'is easily shown to transform p * into
d
PT:

@n

pr=V'pV,
which leads to (26).
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SUMMARY AND COMMENTS

The essential results obtained in the present work are
the existence and the decomposition theorems given in Sec.

2.
The first theorem states the existence of a decomposi-

tion fulfilling Egs. (1), (4), and (5) for any projection operator
p which, together with its time-reversed p ., satisfies the con-
ditions (P,). Since this result has been demonstrated by the
explicit construction of a particular solution (the so-called
natural decomposition), the conditions (P,) appear as suffi-
cient, but not a priori necessary. Investigation of necessary
conditions for the existence has been made in Sec. 3 for the
reduced one-body density operator of a system of spin-1/2
particles. We did not discuss the possible uniqueness of (1)
submitted to (4), (5), and to the condition (13) for the eigen-
values of y. Actually, it can be shown in some specific phys-
ical situations that such uniqueness is not true. A counter-
example is given by the density operator obtained from a
solution of the static Hartree—Fock equation by a Galilean
transformation.'-?

In order to get an existence-plus-uniqueness theorem,
we have investigated characteristic properties of the natural
decomposition. These properties are the reduction (13) of
the interval of definition for the eigenvalues of y and the
relation (20). Added as supplementary conditions to Egs. (4)
and (5), they ensure uniqueness and lead to the decomposi-
tion theorem.

To end up this summary of our mathematical study, we
point out that the choice of a finite N-dimensional space,
made here for the sake of simplicity, is not a real restriction,
at least as far as the existence theorem for projection opera-
tors of finite trace is concerned. Indeed, as shown in the
Appendix, the significant space to consider in this case is the
linear sum (% + % 1), which is a Hermitian finite space.

Coming back to physics, one can ask about the conse-
quences of the nonuniqueness of (1) submitted to the condi-
tions (4), (5), and (13). Does it induce ambiguities in the
physical results? An answer to this question is known when
the decomposition (1) is used in the framework of the
ATDHF approximation. Indeed, it has been shown in Ref. 1
that all the possible sets of operators ( o,y ) fulfilling (1), (4),
and (5) lead to equivalent dynamics; thus condition (20) does
not appear a posteriori as a physical limitation, and can be
legitimately imposed in practical calculations, as done in
Refs. 5, 15.

The proofs given above are not restricted to reduced
one-body densities, although up to now all the applications
concern the time-dependent Hartree—Fock approximation.
It might be of some interest that these proofs apply to any
finite-dimensional projections satisfying conditions (P;), and
therefore to a larger class of #-body operators.
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APPENDIX

We restrict ourselves to a space 5%~ generated by the p-
body states of a system of fermions and such that the time-
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reversal operator has the property 7° = —1 (i.e., pis an odd
number). If 7 is a single-particle space, what follows con-
cerns the reduced single-particle density operator used for
instance in the Hartree—Fock approximation.

We will show directly (another proof is given in Sec. 3)
that the fulfilment of conditions (P,) for p and its time-re-
versed p, requires:

Tip=2p, peN.

Let % and Z , be the subspaces on to which p and p,-
project:

R =p(F), Rr=p(F).

From its definition, it is clear that the operator

e —1=4pp, —2p + pr)
transforms each vector of #” into a vector of the linear sum
(Z + F )

(rrr —=Dju) = {u,) + {uy),
with (u)) € #, |u,) € #,. Hence, (# + H# ;) is an invar-
iant subspace of (rr, —1), and we can define the restriction

12 of the operator (77, —1) to the subspace (Z + #,.).
To study the spectrum of {2, we note that if

2u) =" ~Dju),
then
2(rju)) = (e ™" —Drju),
2|7y =" -l ay,
and
Q(rr@)) = (e ~1) rpli) .

All the vectors |u), 7|u), |@), 7 |i#) belong clearly to
(# + £ ;). The dimensionality of the subspace %, generat-
ed by these four vectors (all generated from a given |u}) can
be different in the case where ¢*** is real and in the opposite
case.

(i) If e**£ =+ 1, these four vectors span a four-dimen-
sional space .’ since the two sets (|u),|@7)} and
(rluy,r1|@)) correspond to different eigenvalues of £2, and
the two vectors of each set are linearly independent [see Refs.
7]

(ii} The case " = — 1 cannot occur if the condition
(P,) is required.

(i) If *** = 1, the four eigenvectors are associated with
the same eigenvalue zero of 2. To study the dimensionality
of .7, , we shall use the following property.

Lernma: Let p and p' be two Hermitian projectors. Each
vector |u) satisfying

pluy =p'luy
is a common eigenvector of p and p:
plu) =p'lu) =ulu).
Let us consider the eigenvector |u) of £2 associated with

the eigenvalue (¢*** — 1j = 0. It is easily seen that such vec-
tors satisfy
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plu) =prluy,
and the Lemma ensures that
plu) =prlu) =u). (A1)

Therefore, the subspace %, in the case &*™ = 1 is just:
Lu=RBR, .
This space is of dimensionality 2 or 4, since Eq. (A1) implies

prli)y =play =l\a),

with (uji) =0.
To summarize, we have obtained the results
dim(#Z NP, Y=2n, neN, (A2)
dim(# + #,;)=2n+4k, keN. (A3)

As is well known,

dm(Z + Z 1) + dm(F N R ;) = dimP + dimZ . .
Since

dim%? = dim%#  , (A4)
one gets from (A2)-(A4) the final result

Trp =dim# =2(k +n)=2p, peN,
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In this work, we develop the quantum field theory formalism in the curved space-time for the case
of massive vector field, using the Quantum Equivalence Principle previously introduced. With
this principle and for a particular model for expanding universe—spatially flat Robertson—
Walker metric—an adequate particle model is obtained. The mean density of created particles for

the corresponding Bogolyubov transformation is finite.

PACS numbers: 11.10. — z, 04.60. + n

1. INTRODUCTION

The Quantum Equivalence Principle (QEP) has been
introduced in previous works (cf. Refs. 1 and 2). In the case of
a scalar material field the QEP enabled us to find an ade-
quate particle model in the curved space-time. With this
model we obtained a Bogolyubov transformation, which led
to the creation of a finite number of particles. Dealing in this
way with the problem of generalizing the flat space-time
field theory into the curved space-time field theory, essen-
cially consists in treating the material field as a quantized
one, and to introduce through the metric used, the gravita-
tional field as an unquantized classical external one.

Lichnerowicz developed the mathematical formalism
of the fields’ theory in a curved space-time for the fundamen-
tal fields (cf. Refs. 3,4, and 5). Afterwards the problem of a
real scalar field has been treated in various works.®'° The
existence of ambiguities derived from the developing of a
particle model in the curved space-time followed. These am-
biguities lead to a possible existence of a mechanism of creat-
ing particles which is called the Bogolyubov transformation.
Unfortunatly the Bogolyubov transformation for certain
particle models produces an infinite number of particles.

As was shown in Refs. 1 and 2 for a real scalar field, one
of the fundamental problems is that the so-called Lich-
nerowicz conditions do not determine in a unique way the
biscalar kernel G,(x,x’) of the curved space-time that is the
generalization of the kernel 4 ,(x — x’) of the flat space-time.
One way to solve this problem is to suppose the existence of a
different decomposition for the solutions of positive frequen-
cies (and negative ones) for each normal Cauchy hypersur-
face 2 of the curved space-time. This curved space-time is
supposed globaly hyperbolic and endowed with normal
Cauchy hypersurface (cf. Ref. 2). This fact led us to suppose
that there is a different kernel G *(x,x’) for each normal
Cauchy hypersurface 2. In each normal Cauchy hypersur-
face 3 a proper kernel G {¥'(x,x’) will be determined, when
their Cauchy data on each hypersurface 3 are given.

The QEP, which enabled us to solve this problem satis-

“Fellow of Consejo Nacional de Investigaciones Cientificas y Técnicas,
Argentina.
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factorily, essencially consists in choosing the Cauchy data in
such a way so as to make the kernel G'*)(x,x’) of the curved
space-time as similar as possible to the kernel 4,(x — x') of
the flat space-time, on the normal Cauchy Hypersurface 2.

In the present work we are going to use this proposition
for a real massive vector field with the spatially flat Robert-
son—Walker metric.

In Sec. 2, we are going to develop briefly, the Lagran-
gian formalism for a real massive vector field in the curved
space-time.

In Sec. 3, we deal with the Cauchy problem for a vector
field, and we show, generalizing a Lichnerowicz theorem (cf.
Ref. 3), the existence of a bitensorial kernel X “V(x,x’) (1-
tensor in x, 1-tensor in x’) that in a unique way solves the
Cauchy problem.

In Sec. 4, we study, for the particle model proposed in
the curved space-time, the decomposition into positive and
negative frequencies.

In Sec. 5, we outline the Bogolyubov transformation for
the vector field.

In Sec. 6, we find the solution of the field equations for
the particular case of the spatially flat Robertson-Walker
metric.

In Sec. 7, making use of the QEP, we find an adequate
bitensorial kernel X '*"~(x,x’) for each normal Cauchy hy-
persurface 3.

In Sec. 8, we find the initial conditions for the solutions
of positive and negative frequencies which result from re-
quiring the diagonalization of the Hamiltonian operator.

Finally, in Sec. 9 it is shown that the initial conditions
for the solutions of positive and negative frequencies, result-
ing from the QEP, are those which originate a Bogolyubov
transformation for which the density of created particles is
finite. The initial condition obtained from the diagonaliza-
tion of the Hamiltonian operator led to an infinite density of
created particles; consequently they cannot be used.

2. LAGRANGIAN FORMALISM

With the aim of constructing a model of massive spin-1
particles in a curved space-time, we start from the following
action integral'!:
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S = j \/E{ - Agﬂ-ﬂg"a(¢v;“ - ¢#;V )(¢0:P - qu;o)

+im'e 0.} d'x. (2.1)
The variation of the action integral (2.1) leads us to the
following equation for the field g, :

—g*pl, + R+ @ —mip?=0. (2.2)
Equation (2.2) involves the following two equations:
A —mApf=0, (2.3)
P =0, 24)

where 4¢” = — g*p”  + R%g@“ is the Rham Laplacian
(cf. Ref. 3) for a vector field.

The energy-momentum tensor of the massive vector
field, as obtained from (2.1} is

__2 o5
af \/E P
=1lg.08"8"" — 816485 + 848
— 88,65 + 8382) ] fu fro (2.5)

—Im’g 20, @, + WM P95 + Pa@.),

wheref,, =d,¢, —d,@,.
The energy-momentum tensor (2.5) satisfies the follow-
ing two conditions:

TaB = TBa’ (26)
T, =0 2.7)

From (2.5), and for the particular case of the Robert-
son—-Walker metric, which is

ds® = dt* — @*(t )[dx? + dy* + dz?), (2.8)

and which is going to be studied later on; the following ex-
pressions are obtained for the components Ty, and T, of the
energy-momentum tensor:

Too=(1/28% S fo foy + (17284 3 f,8,9,
r Y
+(1/2a%m* 3 @2 + ymip}, 2.9

Ty = (1/24%) Zﬁ)jc?,-qyj. (2.10)

Equation (2.7) for B = i and for the metric (2.8) is

Te, = (1/\/|—§_|)%(\/E T=) 0. 2.11)

The integration of Egs. (2.11) in the four-dimensional
space leads to the conservation of the quantity
p=at) [  10d% 212

t = const.

To obtain the spin operator we use the infinitesimal
transformation of rotation. The total variation of action (2.1)
is

55 = J d*x8(Z lg|) +'f Jigl £8d*,  @13)
R R
where R is a finite region of V.
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We make the following infinitesimal transformations of
coordinates '
X = Xt 4 EXM = X"+ EM{x). (2.14)

If the transformation is such that 88us = — (£sa
+ £..4) = 0, where 6g,; indicates only the variation in the
form of the function gz, Eq. (2.13) results:

3 [a2 Jel) =
-[ 2 |as dss,
r Ix” L3 (dp,/0x")
+2 gl ] d%,
where 5% indicates only the variation in the form of the
function @, . Let us consider an infinitesimal transformation
of rotation, with £* = w*_x", where w*  are the infinitesimal
constant parameters of rotation and, moreover, u*
= —w™ (W not constant). Using (2.15), it is possible to

define, as is usual, the zero component of the spin angular
momentum tensor density .}, ; | in the following way:

or_ AL Jlel o g sl
‘ya a(a¢‘u /axo) (g,uagﬁ ¢B 6/1 wa )'

In particular we are interested in the component %9 2
which, for the metric (2.8}, results in

B 2=a3g#aﬂ)a(gmgm¢’£ - ;21471)-

Therefore the spatial density of the third component of
the spin vector S will be:

5= f 03 x = dfd % (forp1 — for2)-

(2.15)

(2.16)
(2.17)

(2.18)

3. THE CAUCHY PROBLEM FOR MASSIVE VECTOR
FIELDS

We are now going to obtain the solution for the
equation

4 ~mip,(x)=0 (3.1)
that satisfies the following boundary conditions on an spatial
hypersurface 3:

e (=0, rV @ (y)=¢7, (3.2)

where ye3 and n” is the unitary normal vector in each point
of 2 {Cauchy problem). We are also going to show now,
generalizing a Lichnerowicz theorem (cf. Ref. 3), the exis-
tence of a bitensorial distribution G,,.. (x,x'} (1-tensor in x, 1-
tensor in x') that will enable us to solve the Cauchy problem.
To do so, we write the solution in the following way:

@, x)= L [GW X'V @ "

@1V, G bxx) I de, (3.3)

with x'eX.
In Ref. 3, it is shown that if U and ¥ are two vector
fields, they satisfy

[(4 —mV 1, U — V, ({4 — m)U *
= — VUV, V, - VV,U,] (3.4)
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It is known that there are two elementary kernels
E (xx') and E ., (x,x'), whose support are respectively
in the future and in the past of x'. These kernels are deter-
mined, in a unique way, by the following properties:

E L (xx)=E ., (x'x),

{3.5)
@, —mlE \xx')=86,,(xx'),
where 8, (x,x') = 7 . (x,x')6(x,x) and T ,,, (x, x' = x)
= 8, (x).
If we define
{A - (q) )}pv’ = EA_V' (xyx,)vp¢ (};t) - ‘P é‘l VpE/I:/(xtx')y
(3.6)

and in (3.4) we let V* ¢ * and U,~—E ;, it follows that
— Vo4 g ), = [(4, —mIe K)VE 1 (xx)
— @[, —mIE ~(x X)) (3.7)
= [[4; — mY)p (X)])'E i (xx)
— @ (x)B0 (xX').
We consider in the four-dimensional space two regions, £2'
and £2 " separated by a spatial hypersurface 2. The 7” vector

is orientated from £2 " to £2 *. If ¢ is the solution of the equa-
tion (4 — m? ¢ = 0, Eq. (3.7) involves

VoA (@ o =@ (X0 (xX). (3.8)

Using Stokes thorem we write

f VP4 ~ (@)}, d*x =Flux;4 ~{p). {3.9)
-

Taking into account (3.8) and (3.9) it follows that
Flux;4 ~ (@) =@, x)€'x'), (3.10)
where

elx) = {1 i.f x'ef?

0 if x'e2’

If we define
4@l =ELxX),0%x) - @*(X)V,E i (x.x)
we obtain

Flux;4 *(p)= — @, (x')e"(x'), (3.11)
where

o 1if xen’

€)= [o if x'en "

Subtracting expression (3.10) from (3.11), there results

—Flux(4 “(p)—4 " (p)) =@.(x),
and taking into account the definitions of 4 ™ and 4 ~ we
see that Eq. (3.3) holds, having as a result '

G, xx)=E . (xx') — E 7 (x,x).

It is easy to show that if the kernel G,,,, (x,x’) satisfies
(3.3), it must have the following properties:

G, xx')=0,

VG, (xx') =7, 8(xx'),
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nn’V,Y,G,. (xx)=0,
for x,x'eZ.

We are going to deal now with the solution of the fol-
lowing system of equations:

4 —mip, =0, (3.12)

V.g"=0. (3.13)
It will be shown that if the following conditions are imposed:
V. (=0, n9,(V,@*)(y)=0, yeZ (3.14)
on a @, (x) field that satisfies (3.12), then the field has covar-
iant divergence equal to zero in all the points of the space-

time.
Taking into account that

V. (4 —mp ¥ =4 ~m*V, p"
and as ¢*{x) satisfies (3.12) it results that
(4 —m*)(V,p*) =0. (3.15)

The covariant divergence V, ¢* satisfies (3.15) and the
boundary conditions (3.14). Using the Cauchy problem solu-
tion for a scalar field it follows that V,¢* = 0 holds for all
the points of the curved space-time. In this way we have
shown that the system of equations {3.12) and (3.13) is equiv-
alent to Eq. {3.12) with the boundary conditions (3.14) on the
hypersurface 2. The kernel G, (x,x'), defined above, satis-
fies Eq. (3.12) but has no covariant divergence equal to zero.
[t is easily shown that, in the case of a vector field with covar-
iant divergence equal to zero, the kernel G,,,, (x,x') in (3.3) is
replaced by:

X#v' (x’x') = Guv’ (x’x,) -

A
£ Y G (x,x'), (3.16)
m

2

where G (x,x') is the kernel of the solution of the Cauchy
problem for a scalar field.
Therefore we have the result

.l =L X, (x0)V, 0" ()

~ @ (X)V, X, (xx)]n" do.
Moreover, as X, (x,x’) satisfies the equations
(4, —~ mA)X,, (xx) =gV X, (xx) =0,
this kernel has the proper properties to be considered the
commutators of the massive vector field
[o. x)p. (x)] = iX,,, (x,x).

4. BASE OF SOLUTIONS AND DECOMPOSITION IN
POSITIVE AND NEGATIVE FREQUENCIES

In order to establish orthogonal conditions on the solu-
tions of the field equations, it is necessary to define an inner
product.  being a Cauchy hypersurface and #” and v° two
vector fields, we define:

(W) s ::z‘f [(V‘,Z’l)vl — :‘(vai)]n” do

x

(3.17)

= if 6,n* do. (4.1)
P2

If 4 # and v* are solutions of Eq. (3.1} it is easy to show
that the inner product, defined in this way, does not depend
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upon the hypersurface 3. It is also shown that
(uiﬁu/l > = <U,{)u/1 )‘»
so that the product is Hermitian, and therefore (u*,u, ) is

real. It is important to emphasize that (u*,u; ) is not a posi-
tive definite number. It can be shown using (4.1), that if

* *
(w*u;) >0 then <u‘,u,1> <0.

We stress that 6, in (4.1), with 4° = v” is the usual four-
vector current when the field is complex.
Using (4.1), the Cauchy problem solution (3.17) is

@.x)=1i (XW XX \@ ), x'e3. (4.2)
Let {

solutions of Eqgs. (3.12) and (3.13), where (a) is a pair of indi-
ces, one, k, continuous and the other s discrete (to denote
momentum and spin, respectively, as we are going to see
later on). This basis will be called orthonormal if it satisfies

BiBuee) = — 8k kB,
(8 88 0 ) =00k — K00, “3)
<¢ s ;‘; #15'5‘> =0.

Any solution of the system of Eqs. (3.12) and (3.13) will
be expanded in this basis in the following way:

*
x)=Y d’k (a,ixqﬁ s x) + a)
where the coefficients of the expansion satisfy

o= — BLE)e, X)),

L }u{ ) } be a basis of the space of complex

(4.5)
* *
alis = <¢7;(x,);¢p' (x )> .
*
In the quantization process the coefficients a,, and a,,

become the operators that satisfy the following relations of
commutation:

[aksyak ’s' ] - [aks >ak s’ ] = Os
lasady ] =8k — k"8,
Replacing the expressions {4.5) in {4.4) results in

oty = ([ %3 {ored Lon)

YA (x')] @y (x')>. (4.6)

Comparing (4.6) with (4.2) we see that we have obtained the
development of the kernel X ##'(x,x’} in the basis

[B4.30(6 4.3

xwx) =i (%S {6 i) -
(4.7) x

With the aim of performing the quantization in the
curved space-time, it is necessary to generalize, in some way,
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the decomposition into positive and negative frequencies of
the fields’ theory of the flat space-time. Taking into account
(4.6), the ¢*(x) field can be decomposed in the following way:

®

()
gHx) = @x) + @Hx),

where

o) = ([ % (1B pm); 0,0),

(4.8)
o= (- [k S(Fewppm]; o.m)

Considering the orthogonality conditions (4.3) it is pos-
sible to find that

(75 g.0) >0
(01, g.t0) <0,

® 5]
therefore we shall assign @ and g to the parts of positive and

negative frequencies, respectively.
Now defining

[S) , *
X9 %, x') = i f APk S I 1),

X4, x) = — zjd KT B (X)),

it is possible to write

#41x) = (X, X ,x),

] ]
prx) = (X, X @, ).
B

We have to notice that the kernels X #*'(x, x') and
[S]
X"(x, x') of the curved space-time, play a role similar to
that of the kernels 4 ®**(x — x') and 4 ®*(x — x') of the
field theory of the flat space-time.

It is possible to generalize the 4 4°(x — x') kernel,
defining

® (S
X4 (x, x") = i(X“P' - X""')(x, x')

-| a3 |F i L) + 67 ) b1t
: (4.9)

There is an important difference between the properties
of the X #*'(x, x’) and X 4°"(x, x') kernels. While the kernel
X #*'(x, x') is unique, and therefore, when it is written in the
form (4.7) results in being independent of the selected basis
{o 4, Juld ¥}, the kernel X 4*'(x, x') is not independent of
the basis. Thls is due to the fact that the vector sets of positive
and negative norm do not constitute a vectorial subspace.

In Refs. 1 and 2, the impossibility of determining a
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unique kernel G (x, x') for the case of the scalar field has been
largely discussed. To solve the problem we suppose that a
kernel G ¥'(x, x') exists for each Cauchy hypersurface Z. Ina
similar way we can solve the problem in the case of a vector
field. We suppose that there is a different decomposition of
solutions of positive (and negative) frequencies, for each
Cauchy hypersurface 2 of the curve space-time. Conse-
quently, there is going to be a kernel X ###’(x, x’), different
for each Cauchy hypersurface X. This fact of nonuniqueness
of the kernel X ###’(x, x') is also shown when the Bogolyu-
bov transformation is performed. While the kernel X **'(x, x')
is invariant under a transformation of this type, X /*’(x, x') is
not (cf., e.g., Ref. 9). As was said in the introduction, we are
going to consider the Bogolyubov transformation as a possi-
ble mechanism for particle creation. In the next section we
shall analyze, for the case of a vector field, this
transformation.

5. BOGOLYUBOV TRANSFORMATION

Let {¢ {7 *]u{é {77%*] be a basis of the space of solu-
tions of the equations (3.12) and (3.13) that satisfy the initial
conditions in the time £ = .7; and {¢ | "*]u{¢ &7 "*} the
basis of the space of solutions that satisfy the initial condi-
tions in the time ¢ = 7' (cf. Ref. 12). As both sets of func-
tions are basis solutions of the space of complex solutions of
the same differential equations, there will have to be such
adequate complex coefficients a,, - and 5, ., as will en-
able us to write a set of solutions of one function in terms of
another, in the following way:

() (7 r] (T 1)
¢ Jd3k Z s ke 's' ¢ % kose +Bksks ¢ krs:) (5.1)

This means that a classical solution, which is a solution
of positive (or negative} frequencies in the “out” region, is a
mixture of solutions of positive and negative frequencies in
the “in” region and vice versa. As we shall see in Sec. 6, for
the type of metric used, we are going to take as the basis of
solutions those with well defined linear momentum k. Equa-
tion (5.1) is then reduced to:

)

¢ ix)

(571} 7 )%

= Z[algs‘ ¢ ;ésr (x) +B— kss’ ¢

sr

“ )52

and therefore

(7 % [Va™ (9

8 10 = S (@ 8 0B '8 ) (53

From Eqs (5.2}, (5.3), and (4.4) the following Bogolyu-
bov transformation on the a « anda™ ,; operators results:

%k
1J [4 va
ks' - Z[G/ESS'a"S: ) +Bkss a (: }cs]! (54)

5
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a(/ri_z{ a(7)+/5',95,a‘iﬁ}9]. (5.5)

Using the orthogonality conditions (4.3} in 7~ and in
7" and taking into account (5.2) and (5.3) we arrive to the
following equations for the a,,, and B, coefficients:

L] %
z(alfss'alis's' - ﬂ- IESS'B — Ifs"s') = 6ss" ’ (56)
i * * * *
Z(ﬂ — lsss'a —ks"s T algs’ﬁ lg":’) =0. (5‘7)

On the other hand, if we suppose that in the times = .7
the universe is in the |0) - vacuum-state, we have the result

N‘j)lo)‘y‘ = aks i )a'y’l())y = 0,

where N |7 is the operator number of particles in the k mode
and s spin component. Making use of Egs. (5.4) and (3.5) it
follows that the mean number of particles present, in the k
mode, and with s spin components, in a (La(t ))* volume and
inatime. 7 '>.7 is,

’a (O|N(I§’)l0 >.‘/ = ZI'B@': lz .

Therefore the mean density of particles present in the
time 7' > 7 is

NI =1 ©|N10),

lim
Loven [La( TLa)? &7
replacing =, —(L /27)’§ d 3k leads to

M= [zmz(t)Pf k2B .

The necessary and sufficient condition to obtain finite
mean density of particles must be

Jd 3I£ z IB’LSS' 2«

6. SOLUTION OF THE FIELD EQUATIONS

- We are going to realize our study of the massive vector
field for the metric (2.8). The only nonvanishing components
of the Christoffel symbols are

w. (5.9)

4lt)
alt)’

In the previous expressions we do not have to sum on
the repeated latin indices.

The components of the contracted curvature tensor
R, " are

Iy =afthalt), I'o=I%=

3 at)

a(t )

R, =23%t) + aft)d(t),

R, =0 if u#wv.

Wlth the Christoffel symbols and the contracted curva-

ture it is possible to develop Eq. {2.3) and (2.4). From Eq. (2.3)
there results

Roo= —

F . d
—p®— Vip® 4+ SH(t)—p®
o’ a’(t) ¢+ A )at

Foussats, Laura, and Zandron 361



l%

o __ _2,1_V2¢70+5H(I)%q70

oat? a*(t)
F V3 SH
atzw—a() ¢7+ (t)_
(6.2)

where H (t) = d(t)/a(t ) is the Hubble coefficient and
R(t)=R

Equation (2.4) is written

:p +Z—¢? +3H(t)p°=0. (6.3)

j=1
A basis of solutions of the system (6.1), (6.2), and (6.3)
may be obtained through the method of separation of varia-
bles. In this manner we obtain the solutions in the form

Gult, X) =fhlt)e ™~ (6.4)

The functions f% (¢ ) must satisfy the following system of
ordinary differential equations:

Ao+ sHE0 + (o - 2) ey o (6.5)
f@(t)+sH(t)f'@(t)+( R‘”+2H2(r))/h(r)

= 2ih7H (£ )f2t), (6.6)
AN =i 3 haf3e)+3H @V =0, (6.7)
where w = (m* + h */a*)'">.

As we have demonstrated, Eq. (6.3) can be replaced by
the conditions (3.14) on the Cauchy hypersurface 2. Replac-
ing (6.4) in the conditions (3.14) and using Eq. (6.5) we obtain

fUT) —i Z/uf’ T) +3H(T) folT) =

(6.8)

2H (T T) + [WiT) + 6H AT (T

+i z h,f(T) =0.
m=1

From here onwards the differential equation (6.7) will
be replaced by the initial conditions (6.8). The system of
equations of second order, (6.5) and (6.6), allow eight linearly
independent solutions. Taking into account the condition of
zero divergence or the equivalent initial conditions (6.8), the
linearly independent solutions are reduced to six. Neverthe-
less, we only need to know three solutions, which we are
going to call f% (¢ ), with s = 1, 2, 3. We are also going to
indicated 1, (2, X) = f%.(tJe ~ "* First itis shown that, if /()
satisfies (6.5), (6.6), and (6.8), f** *,s (1) also satisfies them. If
the ¢ % (¢, X) functions satisfy the “orthogonality conditions
(4.3), it is easily demonstrated that the six functions /% (¢ ) and
f**, (t) are linearly independent. Any real solution of the
system of equations

(4 —mip”=0, Vigp, =0,
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“(t)= — 6(d(t)/a(t) + H *(t ))is the scalar curvature.

can be written as a linear combination of the functions s
(x) and ¢ /.*(x), that is to say,

@"(x) = fd h S {a,,

s=1

hox) + a*,, 6 * (%)}

We have justified in this way the assumed development
in (4.4).

We have to emphasize that the orthogonality condi-
tions (4.3) in t = 7 together with those of zero divergence
(6.8) are not sufficient to determine the 24 initial conditions

W T ) =A%, fi(T)=BY, (6.9)

which are necessary to determine in a unique way a basis for
the solutions of the problem. Additional conditions, such as
the QEP (Sec. 7) or the diagonalization of the Hamiltonian
operator (Sec. 8), are necessary to define the basis of solutions
in each time 7.

7. QUANTUM EQUIVALENCE PRINCIPLE

To define a bitensorial kernel X *%**(x, x') for each
Cauchy hypersurface 2, the following Cauchy data are
necessary

%) (%)

X{xx'), nfd, X5V (xx');

x, x'eZ. (7.1)

We recall that in the flat space-time, and in Cartesian
coordinates, the kernel 4 4’ (x — x') is written

A4(x — x') = (g — 348" /mAA,(x — x), (7.2)

where (cf e.g. Ref. 13):

Al(x'—x,) - 1 f coswk(t_ t,) e*”ﬁ-(i'f)?)dSk
(277)3 wy T

= — m_2 Im(H(]ll[m((x’y _ x,Ll )(X/’“ _ x[t))l/Z])
47 m((x,;z _ X,; (x'/l. _ x"))”z

(7.3)

If we write the expression (7.2) in the flat space-time,
but in curvilinear coordinates, we obtain

. T
A%, x') = [r*“ %) = - gt

x| 4, 1.4)
where S is the geodesic arc that joins the x and x’ points, and
t#(x, x') is the transport bitensor (cf. e.g., Ref. 3).

As a generalization of the Quantum Equivalence Prin-
ciple used in Ref. 2 for the case of the scalar field, we are
going to state for the case of the vector field the following
QEP:

“The ¥ /"’ (x, x') kernel has on the normal Cauchy
hypersurface 3 the following Cauchy data:

()

X#(x, x') =A% (x, x"), (7.5)
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0 (2) 0
nd, X\ (x, x") = n"d, 41" (x, x'),

X, x'eX, (7.6)

where in (7.5) and (7.6) the kernel A §*’(x, x') is the transcrip-
tion of the expression (7.4) at the curve space-time.”

Now, we shall make an evaluation of the Cauchy data
for the metric (2.8). For simplicity we suppose that the nor-
mal hypersurface 2 is the hyperplane t = .7". To calculate
explicitly 4,(S) and ¢*¥(x, x) and to obtain with them
A4 (x, x') (cf. Ref. 2) we are going to make use of Rieman-
nian normal coordinates (cf. e.g., Ref. 14). The use of such
coordinates, as was largely discussed in Ref. 2, makes clear
the global nature of the problem. The kernels X {***'(x, x')
and A4 #*'(x, x') are equal on the whole normal Cauchy hyper-
surface. Then we can carry out the calculus to all orders of H
when we write the Cauchy data (7.5) and (7.6) using normal
coordinates.

Let a point O with coordinates x,, = (7, X,) and an-
other point P with coordinates x’ = (¢, x’), and S = the
length of the geodesic arc that joins O with P. We are going to
give the name v* to the components of the unitary tangent
vector to the geodesic arc at the point O, expressed in an
orthonormal tetrad with its temporal axis normally orientat-
ed to the hypersurface 2 at the point 0. We shall call normal
coordinates of the point P, with an origin at the point O,
those obtained with the following coordinates
transformation:

V)

xH =81y S. (1.7)

We have to notice that, in the system of reference, the
geodesics passing through the point O are straight, and also
they become:

S?= =8y (x(O,)(:] (:"’ (7.8)
The transformation (7.7), for the metric (2.8), is written
(;V’) = At + 1a*H (%) + 1a*(LR + H?)
X (4x)* At + O (H?, AxY),
(7.9)

(N)
X' = AX + HAtAX + 1> H *(AXVAX

+ YR /6 — HY)A1?AZ + O(H?, AxY),

where At =t' — 7 and AX = X' — X, I the deceleration
parameter g = 1, the scalar curvature R is of the same order
ofmagnitudeasH .0 (H*,4x*)and O (H >,Ax*)aretermsthat
tend to zero like H * when H—0, and like Ax* when 4x—0.

Taking into account (7.8) and (7.3), and the metric (2.8),
we can write

As)=4 (t 2T )(;] )1/2

1 J‘ cosw, t™V
= e
27y W
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N 7) g 3

If in the previous expression we replace ¢ %' and 'V
[Eq. (7.9)], we retain the terms up to the H order, and we
make the variable change & = a(7" )k, we obtain

4,8)= 1 J‘ cosw(dt + Ja*(T\H (T )4%7)
T a7y w
X g~ h{Ax + H(T)As “"d3h (7.10)
where w = (m* + h*/a*(T))"/%.

Now, we are going to obtain explicitly the transport
bitensor ¢“¥(x, x'). Let O and P be two points of the curved
space-time and .S the geodesic arc that joins them. Also let #®
be a vector at point O of coordinates x, and u* the vector at
point P of coordinates x’ obtained by parallel transport of u*
vector on the S geodesic arc. From its definition the trans-
port bitensor satisfies the equation

u® =1%(x, x')u, (7.11)
and also has the property
Y x, x' =x)=065". (7.12)

Accordingto(7.11) ¢ 2’(x, x’)is a covariant 1-tensor at x,
x,and a contravariant 1-tensor at x’. The #™ vector at point P
can be also written

u”(x') = 8% u"(x) — 8%’

/4
x| Tty dy

where the integral of the second member has to be made on
the .S geodesic arc that joins O with P.

The covariant and contravariant components of the
metric tensor, in normal coordinates, neglecting order H *
terms are:

(7.13)

(N) PN ) 2(N%
t =

goro:('x)zl—flia(%R_H ’

(N) (V) (N (N)

o (%) =1’((R — H?)S, x "1,

(N) (N)

_ ™),
8= — a1+ R — 11

(N) (NJ
+la4H2|: 25:: _ xk x 6;(',61;:, ,
(7.14)
(W) V) R LW,
g°Ix)=14+1alR — H?*x ?,

(N) (V) N)

(W)) = iR — Hz)xf t’

(¥) (N ) (),
g7 x)= — (1/02)61‘.: [1 — R —HYt 2]

IHZ[ T 2511

(V) (V)
x“x7

From (7.14), and with the same approximation, the fol-
lowing components of the affine connection are obtained:
(N) (N

)= —’H*(&/8), + 6.8,
ke Si (N)m
- 25]/ 6m1 )x ’
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(N)

%, () = 3R — H)? 6%,

1N) (N)

Ieex)= — %GR — H’)x g

mrs?

(N) (N)

é)'rkl %{éR Hz) t ’ ‘k', ]

(N)

(M)
OrO;x)— —§(%R HZ)x y

(N) (N)

'S, x)= (7.15)

In (7.14) and (7.15) a, H, R, are evaluated in t = 7.

In Eq. (7.13) we can replace u®(y) by uP(y = x) if we re-
tain only the terms in H 2. Then, in the normal system we
have the result:
V) (V) V) PN ) (V)
ux) =8y ulx)— 83 uf(x)| I's,(pdy”. (7.16)

(¢]

Comparing (7.16) to (7.11) we find that the transport

bitensor is:

W) PN) (V)
1y =67 6808 | I's,dy”+O(HY. (7.17)
0
Replacing (7.15) in (7.17) and integrating we obtain:
t 8’ =1+ a*}R — H’) "2
) N} (N)
t 2r= —éaz(%R—Hz)t /xk,
(N)
=8} — 4R —~ H?)6} gt "2 (7.18)
22 [ (N) ) )
+ 28 [6’,:;:'2 bx’ x ]
N)

‘ (N) (V)
ty=YR—HY)x"t"

Using the inverse transformation of (7.9) we write the
transport bitensor in the coordinates where the metric takes
the form (2.8):

t%(x, x') = 1 + Ja*H YAx),

%, x') = — | H+ J(4R — 3H*At| Ax

t°(x, x') = H + J3R — H At | Ax, (7.19)
— (/a3 [ 1 — HAt — iR — H3)At
X8 +3a}T\HAx'Ax'}.

In order to simplify the calculus, we are only going to
retain linear terms in H. For computing

t7(x, x') =

Alltw(x’ x'”x=t'—.7
d

el

= | thox) —

|
t=t' =7
(7.20)
we use the expressions (7.10) and {7.19), and we take into
account that in the sense of distribution it is verified that

[armgmnarie-=
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_—_(_i)nfdsile—ﬂ_vzaiz " (7.21)

The components of the kernel 4 4 (x, x') on the
Cauchy hypersurface t = 7 are:

) 1 -
At f—o = — fd3he“'é"’x
tldr=0 (21ra)3 -
4 + i )’
( a*w a‘m?w
. —7 —
X @ \uw® mzw)’ 7.22)
A% |40 = — Jd"‘h i x
lar-o 2rap )¢ =°
NLLT RN )
a2 \ w? mw)’
" 1 sl 1 w
A, = fd3h ~"r3(—-__).
P lar-o (2ma)’ =€ w m?

In order to determine all the Cauchy data on the hyper-
plane t = .7, it is also necessary to know d /9t A% (x, x').
Deriving the equation (7.20) results in:

9 44 (x, x')

a ’

= [ _a_tl""(x’x)
ar=o0 at’

_'er?gW(x)(a g ))a axﬁ] i

+ (t““(x, X) = gl

xg e )aa afﬁ) Ails )]A,:o'

Using in this equation the expressions (7.19) and {7.10)
and working similarly we obtain

2 g
at ! At=0
1 o 2H Hm?
- e (o2 22
(21ra)3f ¢ \ d®w + 24%u°
h;h; 3 m?
+ ! H(—— )], 7.23
m2a4 w + 2w3 ( )
_QTA ?il — —BTA ‘;0’
at At=0 at At=0
(27ra)® = a’m?
94 p— fd%e-"b-z;
ar ar=0  (2ma) =
3 2w m? ]
H - —4— — .
x [ 2w + m? 2w’
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We have seen that Eq. (4.9} gives us the kernel
X#(x, x'} in functions of the basis of solutions. In our case
this basis of solutions is:

) =flalt)e %,
Replacing {7.24) in {4.9) we obtain:

X x) = [n 3 e

s=1

(7.24)

1TV )] (1.25)

Equation (7.25) involves:

X x| = [d% z PRIV

N
3 (7.26)
an“,“’:(x, x’),t,=y
= Id h i [ LT VT )+l TV 25T

— th (X — %))

Introducing in (7.5) Egs. (7.22) and (7.26) results in:

(7.27)

S oV -1V

s=1

i H 1 1
- (217(1)3;5 i[2w3 B mzw]’
S | wl Vsl + Pl

5=

1 [& | hA ]
T Q2ma) [azw a‘wm? I’ 7.28)
S TV ) 4117V

s=1
i H [1 1
(21ra)3 P

2w mwl
3 PV ) + 12

s=1
S [L - _w_]
(27a) Lw m? i

Similarly, introducing in (7.6) Eqs. (7.23) and (7.27) we
obtain

> [f TV W)+ (7}/";'9(9)]

s=1

i wh,

(2ma) a*m?’

> {f”fﬁs TVl T+ Ll TV m}

s=1
i wh;

 (2ma @°m®’
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S V)4 1TVl

1 {6’1[ 2H  Hm?
" (2ma)® 2a°w?

H - + »
+ m*a* w 2w

é_]{/":hj(ﬂ/"_ W)+ ATV

(7.29)

1 [Zw 3 m? ]
= o—sH|— — —— — ——|.
(2ma)® Lm 2w 2w
The orthogonality conditions (4.3) imply the following
equations on f%(¢) and f%(¢), int=.79"

S V) 85147

j=1
1| b . :
= {2 2TV N(T)—
az [(27{0)3 + ( Ils( és:( )

#7V3,))
(7.30)

STV 07V =TV}

= _1;{/-0 (7}f0— hs; (7 — o_-lfq*hs: }

The system of equations (7.28)~(7.30) and (6.8) for f%.(.7")
and f*%,(.7") has the following solution:

h
o= — ————
a(2ma)*’? J2w

1 Hm( )]
Xl—+i— -1}t
[m 2w \ m?

h
ifgs(y_)= — "[Zﬁ—iiv‘,

a(2ma)’? J2w' ™ m

(7.31)

a [als hjhs ]
(270)3/2\/5 @ d'mm+w

SR
(27a) 3/2\/2w 2w’

x(ig +— i )+ a k’f‘ ]
a a‘m(m + w) mw a

We have to remember that in the initial conditions
(7.31) the terms in H ? had been ignored.

We are going to see later on (Sec. 9) that with the initial
conditions (7.31) obtained from the QEP, the mean density

of created particles for the Bogolyubov transformation (5.2)
is finite.

W)= —

d vl

8. HAMILTONIAN DIAGONALIZATION

The metric (2.8) is independent of the spatial coordi-
nates {X), therefore the P, linear momentum becomes a con-
stant of motion. If we develop the field in a basis {¢ " % (x)]
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U{é”lun | that satisfies the orthogonality conditions (4.3),
it is easy to demonstrate that the P; operator is diagonal,

P =a) f PR3

— — [ann a7l (8.1

s=1h

A basis that in 1 = .7 satisfies the orthogonality condi-
tions (4.3) or (7.30), is orthogonal for all other times since the
defined inner product (Sec. 4) is independent of the Cauchy
hypersurface. For this reason Eq. (8.1) for the operator P, is
valid for any time .7, independently of any other additional
conditions imposed on the chosen basis. On the other hand,
as the metric (2.8} depends on the time (¢ ) the energy of the
massive vector field is not conserved, and if the operator

PT) = a¥(T) f d3% . T(T %), (8.2)

is developed in an orthogonal basis the result is not generally
diagonal.

The QEP is not the only way to complete the initial
conditions f%,(.77) and f% (") to determine the basis of solu-
tions of positive and negative frequencies, on the hypersur-
face t = 7. We can also obtain the additional conditions, if
instead of using the QEP, we require that the Hamiltonian
operator be diagonal in ¢t = .7, that is to say,

PiT) = [h0l7) 3, i (a7 (8.3

For this purpose we use the following development of
the field operator q}“(x) in an orthogonal basis:

¢ = [°h 3 {a(716 tle) + 0,716 Y] (84

If we replace (2.9) in (8.2), and then use (8.4) we obtain for
P,(7") an expression of the form

A7) = [0h S feul 7 had (T, (7)

+ C*rv ('C/ }_l_ )alls(y‘)a — hs’ (y)
+ Do (T Jay (T Y (I} (8.5)

To diagonalize PO(J ) we must have C,,(7 ,h) = 0. Then it
follows that:
z{w '/ jhx j—hw(/)+ jh\( jfh\/(‘/ )}
= — (T ([wT )+9H2(5‘)1fom(71f§7@q,(7)
+f ol TVE o (T + 3H(TH 30T
X&)+ T8l TVE s (TN (8.6)

Equation (8.6), the orthogonality conditions (7.30), and
the condition (6.8) of zero divergence determine, in a unique
way, the following initial conditions:

Gy —a (§/f_ s hjhs )
hs (‘/ ) - (217-a)3/2(2w)1/2\02 a4m(m + w)
d oo _.__E___ —i
Z 115(‘/ ) = (277_0)3/2(2w)1/2[(2H iw)
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Coi) w

?+a4m(m+w) ’ ®.7)
0y o7y hs

Sut)= — ma(2ma) *2w)"?’

d 0 _ hs

'd_tfﬁt(y)'— a(21ra)3/2 ( }1/2\3H )

The conditions £, (77) and f%, (.7") are the same as those
obtained in the quantization of the massive vector field in the
flat space-time (cf. e.g. ref. 13).

It is important to emphasize that, in order to obtain Eq.
(8.6) we have not supposed HAx <1, and therefore the solu-
tions (8.7) are exact.

Obviously the basis compatible with the initial condi-
tions (8.7), diagonalize the operator Pyonly int = .7".

We are going to see later on (Sec. 9) that with the initial
conditions (8.7), the corresponding Bogolyubov transforma-
tion leads us to an infinite density of created particles.

9. PARTICLE CREATION

Finally, we want to analyze the particle creation when
we use the theories based either on the QEP or on the diagon-
alization of the Hamiltonian. To do so, we are going to use
the results obtained by Olver on the valuation of error in the
approximation WKB."?

The first derivatives in the differential equations {6.5)
and (6.6) can be eliminated, making the following change of
variables:

—j eyde gl =deml e m). 9.0)
Then, Eqs. (6.5) and (6.6) are:

2
jm g°(n) + @’ w* — IR — 2H’| ) = 0, (9.2)
d* . .
an gin) + aw’gn) = — 2iHh,g%n). (9.3)
Defining:
Py(h, ) = (@*/hw* ~ 2H? — IR),

Eq. (9.2) can be written so as to use the Olver results (Ref. 15
Theorem 4, p. 800),

d 2
dn’
There is a solution of Eq. (9.4) that is written:

g'm=(hn)""2p
Ui
X [exp( — ih f P d77’> +erh )], (95)
0

which has the following derivative:

g%m) + A *Pr(h, n)g°(n) = 0. (9.4)

d . .(h)‘/2 1/4{[ i oo ap d ]
— = —i—) P 1— —P —P
meM=-13) F T g
] d
X ex —'hfP‘/zd ’)-———P 2 = Prerh,
p( l 0T n A an r€r(h, 1)
+ i57-(/1, 77)] 19.6)
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According to Olver it is easy to show that

lex(sh, )|, |8r(sh, 9)|, ,
(h —ip - diPT!)sO(h -3), (9.7)

67‘(’_’_’ 0) = 5T(}1’ O) =0
The general solution of (9.2) or (9.4) can be written

g°m =A4°%"(n) + B%"(n), (9.8)

where 4 ° and B © are two arbitrary constants.
The solutions g"(n) and g7 () of (9.4) satisfy

X d . d .
Wighg" \nm=g"—g" —g" —g"=i. (9.9)

dn dn
Now we are going to solve Eq. (9.3). We can consider, in
this equation, the second member as a inhomogeneity. The
homogeneous equation associated to (9.3] is

ZPE(h’ ﬂ)gi(”) =

with P.(h, ) = a*w’/h .

Using the Olver approximation a solution g%(%) can be
obtained from (9.10). These g“(5) have properties similar to
those of Eqs. (9.5)~(9.7), and (9.9), when we replaced in them,
T for E.

In this way, we find that the general solution of {9.10) is:

(9.10)

Ghomos (1) = 4785 () + B’g=(n).

A particular solution of (9.3) can be obtained by the
method of variation of the constants:

Seart(M) = gE("?)Zhj [4 OFl(h’ 7+ BOFz(h» 7))
— g5 (m)2h; [A°F¥(h, n) + B°F¥(h, 1)}, (9.11)
Fyih,m) = j H e ()" ') iy (9.12)
Fyfh, 7) = f Hme 6" () . (9.13)
Then the general solution of (9.3) is
g(n) = Ag"(n) + B’g"(n) + &eart (1)- (9.14)

Among the general solutions (9.8) and (9.14), the useful
ones will be those which satisfy certain intitial conditions. In
t =7 (n=0)they are named gi)"(n) and in t = 7 '(5 = £
they are named g3, (7)

We write theseconditions in the form

(0) ) v
gh(n=0)= G0, L g’z;(n —0=GL, (.15
dny -
d © v
85 =€) =GLE), 2 shin=£)=GLE) (916

Later on, it will be useful to suppose that the initial
conditions (9.15) and (9.16) are

Gl =Ghhy GI°=G %, (9.17)
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GY =v8 +ulhh,.
(9.18)

We can determine in (9.8) and (9.14) the values of the
constants 4 %, B A/, and B’in such a way that the conditions
(9.16) are satisfied. These values are:

. d’ i
- i, [G3E L")~ 6T
(9.19a)

Gis = V48, + puh;hy,

o (5'0
A°=A% =

© d ,
5= By =in (62612 ¢Te) - 66 TE)], D190
= d’]

) d " . _
Al=4, = —i[d—gf(§)[n(§)&s + € B, ]
7
— [+ E MR I )
| 0oy d ir
T 2inyh, {Fl(h,g)[ah(g)%—g €)
— G )| + Fulh, )

x| - 2@%5@) rererTel] v

B = B = [, + ey ) 2o E)
~ D, + A 1)
~ [ Fih §)[G € )——gr(§)
G + Fih£)

[ GOl )— () + G Y T IE )” (9.200)
With these constants we can write

ghs(n) hng("]) + B h;gr(ﬂ)’ (9‘21)

&)
1) = A% 1) + Boug=() + Lorr ) 9.2

If in (9.19)9.22) we set £ = 0, we obtain the solutions that
satisfy (9.15) and which we will to call gio¥(n).

The initial conditions are selected in such a way that the
orthogonality and zero divergence are obtained, and there-
fore, the six functions gi.)(7), gi2*(7) (s,s' = 1,2, 3) are linear-
ly independent.

Then any solution of the system (9.2) and (9.3) with
zero divergence can be written as a linear combination of
those functions. In particular,

(§l (0)

g hs 7]) zahxs ghsl (1]) + ﬁ hss - hsr (77) (9‘23)

If we remember (9.1} and (6.4) we see that (9.23) implies

(> l

Zahss hs; (‘x) + ﬂ— Ilss'¢ (:;_f;r(x)’

which is the Bogolyubov transformation {5.2).

o0 =
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We now have to see if with the initial conditions (7.31)
or with the initial conditions (8.7) the result is

[EE3

pAyd

We can suppose that a,,, and B, can be written as
follows:

a’lss' = Cajl + Dhshs"

(9.24)

(9.25)
B}_ls:’ = E 5§/ + Jhs hs‘ ’
where C, D, E, and J depend on the modulus of / and, of
course, of 7 and 7.
Replacing (9.25) in (9.24) we obtain

f dhh*RUE*+ E4+Jh* )} < . (9.26)
0

If we can show that {2|E | + |E + Jh *|*} behaves like
O(h ~ ©*9) with e> O when h— o, we will have proved that
the mean density of created particles is finite. Then we must
try to find equations that let us determine the behavior of £
and of E + Jh > when h— 0.

If we replace (9.21), and (9.21) with & = O, in the zero
component of (9.23), and then we take into account the linear
independence of g7(7) and gT'(n) we obtain

(§)O 0)
A hs = E[ahssA hs» +B

s

B 0» hsr ]y
(9.27)

1§)O 10)0 (0)0
Bl_ls = E al_lsx'Bﬁsr +ﬂ—llss'A fllsr ]

If we now use in these equations the expressions (9.25),
(9.19) and (9.19) with £ = O, we obtain a system of two equa-
tions with the two unknown quantities (C + DA ?) and
(E + Jh ?). For the latter we obtain

E+Jh*= [[62 A g GvogT

d77 ligy

d
-G —g ]
dn (o)

d - - h
—[Gﬁ-gT—G'ﬁgT
A dn 4o
X|GY%8 —Gj— < g ] ]
d77 &)

I[G GY—GOG'Y ]—'O,.

xX|G Vg

(9.28)

We can now replace (9.22) and (9.22) with £ = O in the
spatial components (¢ = j) of (9.23). Using (9.27) and consid-
ering that g %() and g*"(y) are linearly independent, we
find:

0) (0|
l’-‘ = z[ah“ A hse + B — hSr }’ (9.29}

£) 0y (0) i
Bth 2 ahrc B hs» + B - hss — hsr M

We now replace Egs. (9.25), (9.20a), and (9.20a) with
£ =0, and (9.20b) with £ = 0 in Eq. (9.29). If we consider

(9.30)
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likewise that 5 and /;h, are two tensors independent linear-
ly, we obtain from the part of the equation that is proportion-
al to &, the relation

{n i;’E— n's""‘]

(&)

C{n——gE o gE]

+Eln g 178 . 931)

Working ina s1m11ar way with Eq. (9.30) the result is:
d
e - y:gf} =Cln oo s
+E{n ——g" — n'gE] o
From (9 3 1) and (9.32) we can resolve E:
E= { gE n‘g“’] [n —gF — n'gEL
©) (&)
f —gE— Vh'gE] [n —g" — n'gE]
dn el dn ©

1 _
XT[rz‘n' —va¥n*la - (9.33)

(0}

(0)

(9.32)

Now we have to make an evaluation of the asymptotic
behavior (A— o0 ) 0f (9.28) and (9.33), for the initial conditions
(7.31) of the QEP, and for the initial conditions (8.7) that
diagonalize the Hamiltonian. Making the change of varia-
bles (9.1), both conditions can be written:

() _ahs
g0 =€) =GoEh, = [—_
(27a)*’? 2w
m
[m +1H0'(_ - W)HWAQ, (934)
3] —a’h
2 ey — €)= G A, = (—"—_
d (2ma)*’? J2w
x[—§—+i£] , (9.35)
m (n=2¢)
&) _
&hsm=E&)=vul€)8 + (& Wk,
= [——,.1__( — (5’5 + JiL)} , (9.36)
a2map’* [2w mm+w)/}

() .
di (=€) =TS +mY(E Wy,
]
1 oHm? )
= — > — 1w
[(27&)3/2\/210[( 2w )

) h:h
x(—&;+ e )+ oH h,-hS“ .(9.37)
m{m + w) muw n=¢)

In the previous expressions we have had to consider
o = 1 for the QEP, and o = 0 for the diagonalization of the
Hamiltonian. Similar expresions result for £ = 0.

From the expressions {9.31) and (9.37) we easily ob-
tained the constant G 5, G Y°, ¥, s, ¥ » and Y . With these
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constants and the expressions for g© and (d /d7)g” obtained
from Olver results, the equations (9.33) let us demonstrate
that ESO{h ), when h—oo.

This result is worth indistinctly, for the conditions that
diagonalize the Hamiltonian and for those of the QEP.

If we replace now the expressions (9.5), (9.6) and the
values of G§ and G2 in (9.28), we obtain:

E+Jh2=—l-[ _2z+i"—ﬂ€]

4 wo g

—_ 1 2
% [ (c— 1)H + i2H +2R /6)
w 2w )

3
Xexp(—ihf PT”Zdn')
0

-g[~2i+(ﬁii)£]

(9.38)

)

— 'l 2
< [ (co— 1)H 4 i2H +2R /6)
w 2w @)

£
Xexp( + t'hJ- PT”Zdn’) + 03
0

We see here that if we use the conditions that diagona-
lize the Hamiltonian (o = 0), it is |E + JA ?|*~ O (h %), and
considering Eq. (9.26) the mean density of created particles is
not finite.

If we use instead the conditions of the QEP (o = 1} in
(9.38), then we obtain:

2 5
i[ 2H +R/6] exp(_ihfPTI/Zd”')
4 w? o) 0

1[2H2+R/6]
— |
w )

E+Jh*=

£
Xexp( +ih j P, ”2d17'). (9.39)
(4]

We emphasize that in Eq. (9.39) we can guarantee that
E + Jh? has no terms in 4 ~', but we cannot guarantee the
exactness of the terms in # ~2, because in the calculus we
have neglected terms in H 2. Consequently, we only can say
that |E + Jh2|*SOh 9.

Therefore

ZIB@“' ,2

S5

=2E|*+ |[E+Jn?
SOh 9.

With the theory constructed from the QEP, the mean
density of created particles in a finite time is finite.

Finally, we are going to give brief consideration to the
mean value of the energy density. Suppose that the state of
the massive vector field in the time ¢t = .7, is the vacuum
state |0) ., . We are interested in knowing which is going to
be the mean value of the expression (2.9) for a time . 7' > .7 .
Sowe haveto calculate .-(0[:T3(7", X):|0) ,- making use of
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the following development for the field:

7
o7 0= [dh3 [a@(ﬂ”) 84077

+a (76 )|
Using Egs. (5.4) and (5.5) to write the operators @} "'

and a,} (7"') as functions of the operators a,,(7") and a ,; ()
we obtain:
{0 |1T001|0 Yo

gl

w2
o 2 Zﬁas' S b
i .
— L Shfachs s~ 37 Shifut - |

X Za}iss’ﬂ * — hss” +

+ jw zfogs'ﬂ)@s"

[comp.conj.],_ ~

1 —. .
2 Zf *i’iS'f;'éS”
a =

2

w
WS Yoo+ — DS *s s

J

X za — hss” B&ss’ +

1 .
+ =l zlhif*ihs'ﬁ)hs" -

Lo po 1 .
—_ g{g ,h}f jhs’j;‘h:" - —2_(1;[.2"./'}""‘"]' ihs'
X Zﬂhs:’ﬁ *hss" }'

If in this equation we replace (9.25) and the conditions
(7.31) we obtain finally:
s (013T0 7’,)?)-!0) s

fds {(27;}1 : (C+Dh2)(E+”’)

1 G
F zlhifl"hs"f‘()hs’

t=.9"

(9.40)

”’2 (2CE*+(C—+—Dh2)(E +Jh2)> ]

+E+Jn?P ]} (9.41)

(2

We have to notice here that the last term in the integral,

as we have already seen, behaves like O (h ~?), when A—oc.

Nevertheless, in order to prove either the convergence or the

divergence of the integral (9.41) it has been necessary to take
into account the terms up to H ? order.

CONCLUSION

The QEP formulated in this way for the case of a vector
field, as we did in the case of the scalar field (cf. Refs 1 and 2),
leads us to a model of particles for which the Bogolyubov
transformation gives us a finite mean density of created par-
ticles. As far as the mean value of the component 7%, of the
energy-momentum tensor is concerned, we are not able to
assure neither its convergence nor its divergence. In spite of
the fact that the last term of Eq. (9.41) makes the integral not
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convergent, this is a term in H  and in our calculus we have
not taken this term into consideration. This is going to be
considered in a future work for the case of the massless vec-
tor field, which is more interesting from a physical point of
view.
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Wick polynomials with a mass gap are not infinitely divisible
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We show that Wick polynomials of a generalized free field with a mass gap are not infinitely

divisible.

PACS numbers: 11.10.Cd, 02.10.Nj

1. INTRODUCTION

In a paper’ by Hegerfeldt it was shown that any field
(relativistic or Euclidean) can be decomposed into prime
fields, which are themselves indecomposable, and an infi-
nitely divisible field. The free and generalized free fields are
examples of infinitely divisible fields. Now we want to look
into the class of Wick polynomials of generalized free fields
to see whether there are other candidates for such fields.

A necessary and sufficient criterion for a field to be infi-
nitely divisible is the conditionally positive definitness of its
truncated n-point functions. In this paper we stay within the
framework of the Wightman axioms. In the following we
want to show that Wick polynomials, for which the underly-
ing generalized free field has a mass gap, are not infinitely
divisible. Without the cluster property it is known that there
are many such fields. Take for example %7

=¥ -1=0%, .-}, where % can be any Wight-
man functional. It is ev1dent that all assumptions except
clustering are fulfilled. Therefore our proof will rely mainly
on cluster properties in contrast to the paper” where we in-
vestigated the case of a Wick square using a special trick.

il. WICK POLYNOMIAL
Let us start with a generalized free field ¢ (x).% Its 2-

point function W (y — x): = (£2,é (x)¢ (v}42 } is given by
— s, 2
WEr=od 22| i,

fert:=RY+iV T,
where d is the dimension of space-time and p( p?) denotes the
Lehmann spectral function. We assume a mass gap, i.e.,
p(p*) = 0 for p* < M. Lorentz invariance implies
W ()= W(C?). This together with positivity gives the
estimates
W< W (o — |2]), z=o0 + ireC\[0,0)

A p
W~ o)< e -uve o oer,
011
for some positive constant o and some polynomial P.
A Wick polynomial* in its simplest form is an expres-

sion like
PB)x)= Y ard ix)

k=1
The dots denote Wick ordering. But it is only a minor modi-
fication to replace :¢ “:(x) by :P; (d,...,4 ):(x) where
P, (X,,....X,)is linear in all its arguments and the coefficients

a.cR, n>2.
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are not only numbers but can be finite products of §# such
that P, (d,...,# ):(x) is a scalar—e.g., (0 & (x),
4P, :(x), :$**d,, @, :(x) . Therefore we call

PP)X) = 3 Pl Hix)

k=1

a Wick polynomial, too.

We want to deal only with neutral, scalar fields though we
expect the result to be true for other fields, too. But it is much
more complicated to write down the positivity condition for
general tensor fields.

Now we want to show that no Wick polynomial is infi-
nitely divisible. This is equivalent to showing that the trun-
cated n-point functions #77(x,,...,x,,) are not conditionally
positive definite. Let us recall that a functional ¥~ over the
Borchers algebra .# is said to be conditionally positive defi-
nite iff for all f= (0, £}, .- )68 Z(£*X)f)>0.

In the following we consider only the truncated 4-point
function #7(x,,...x4) = W (€€ o) = x; w1 —x. If
¥ is not positive definite then % 7 cannot be condmonally
positive definite. W [(£,£,,£,) is the boundary value of the
analytic function W [(£,,6,,6:).6, = & + in,, 5,€V *. Lo-
rentz invariance together with locality enlarge the domain of
analyticity and imply that W }(£,,,,(5) is an analytic func-
tion of the six independent variables ¢ 2, (£, + &,),

€1+ 5+ 665, 6+ 6 and £3; ie, WIG1E::65)
=WiEHE + LA 6 + 6+ &6 36, + £5)%, &%) For

Wick polynomials we know the domain of analyticity. It is
given by H® :Hs ... e H, where H C C denotes the domain of

analyticity for the 2-point function vf/(g %) of the underlying
generalized free field. For our purposes it is enough to know
that H D C\ [0, o).

lil. PROOF

We want to give an indirect proof. Assume #7} to be
positive definite. Then the Cauchy-Schwarz inequality tells
us that for z,2',§,,er™

|W4T(E+ fl,f,z’,z’ +§3)|2

I e+ 622+ 6V IE + 6527 +6),
or written in translation invariant manner
{W i — Enbalall?

< WZ-( - ;1917]21§I)WI( - ;3’i772’§3}’

with £, =z — Z= &, + in,er™, where we have chosen the
imaginary parts of z’ and z to be equal.
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Let us attack the problem in d = 3 dimensions first. For =AUV2oL, — 1)+
- F¢ =A4V2,1, — 1)+ i u/A)(1,0,0 >0,
d>4 we put zeros at ail the remaining free places of the d- = 4 P ho#
dimensional vectors ¢. & =A10,01) + in;, eV ™.
A special choice for the £, i = 1,2,3 is
5§ =210,10)+in,, A>0npeV™, Let us write the above inequality in the invariants
_1

W= EPA =&+ LR =+ Lo+ ERL G + 65,
KW= G2 = &+ i — &+ imy + 3 limaolins + E5E2)

X ﬁ/‘tT(( - §3)2,( - §3 + i17,) ,( - §3 + i, + §3)2,(mz)2,(iﬂz + §3)2,§§ ).

By continuity and because the real parts of £, and £, are spacelike we can set 7, = 77, = 0 as long as 77,e¥ . The values of the
invariants are

(=GP =gl =(=&P=LT=—4%
(=& +&P=(-4 +§z+§s)2_=§§ =6+ &) = v 2u — W/,
- é:l + in,f = (i"?z + §1)2 =(- §_3 + il = (4 63 = — A%~ (/A 7
("51 +in+ 6 =l =(—5+ i+ 6 = —w/A),
and therefore the following inequality must be fulfilled:
W 10— A2/ 2l — (/A Py 2 — (/A Pty 2l — (/A Pty 2l — /A Py~ 2%)]
=A% = A2 (/AP — WA — WA — A% — /AP, — A7), (1)
IV. STRUCTURE OF W (t,,¢0,64)
Now we have to study the structure of W I(£,,65,65) or #71(21,2,,25,24).

For a moment let us consider a very simple Wick polynomial, namely, :¢ *:(x). The truncated 4-point function corre-
sponds to a diagram® like

z Z; Z, Zy Z;
Z4 24 Z, z Z3
r A A
Such diagrams are self-explanatory: + (W(=A? =W/ APYW(—pu/AP)]} =
Wiz —z) j>i because W( — A ?) falls off exponentially and ﬁ\’( — /A
z; Z, = Wiz, —z) i>j) explodes only like an inverse power of (/A4 )>. So to get a
r contradiction we only have to adjust 2 > 0 such that
W 4(21522,23,24) Wiy 2ju) 0. But W is an analytic function in C\ [0, 0 ) and
=16{W(z, — 2z )Wz, — 2,)W(z: — 2,)W (24 — z3) cannot be identically zero on the half-line {iu,u >0}.

_ _ _ _ Inthecaseof :P(¢ ):(x) = = _ @, :d Xi{x), @, #0,n> 2,
+ Wiz —2)Wizs —2)Wie — )Wz, — 2,) the following diagram

+ Wizy —z)Wl(zs — 2))W (23 — 2,)W (25 — 2,)}

z Z
=16{ W)W (&, + &+ HIW (GG (‘) ‘)
Z4 23

+ WEIWE, + LW (6, + 55 (E5)

YW+ EIWE+ Ea+ EYWEIW(Er + 5. =W +5WE + S)NWIE + 6+ SIWIEN Y,

The left-hand side of the inequality (1) converges in the is one contribution to the left-hand side of inequality (1)

limit A— oo to 16] W(z(\/?.),u |*, whereas for the right-hand whic.h remains ﬁnite in the limit /{;—»oo. On the other hand
the right-hand side converges again to zero, because a term

side we get . .
which contains only G,and &, + &, + &; violates the cluster
lim 16{ [ pf/( —A 2)17;\/( — /A VY condition for W and therefore there is at least one factor
Ao ~ ~ W ( — A %) which kills any finite power of W( (/A ?)inthe
+ W(=AW (=A% = /A P)? limit A— oo.
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For a general Wick polynomial :P (¢ ):(x)
=37 _ ‘P (d,....0 ):(x) we remind the reader that each :P,

(@,...,¢ ):(x) can be obtained as a limit of :P, (@ (x,),....,¢ (X )):—
all the singularities between the x;’s are removed by Wick
ordering!—where we set x, = --- = x, = x. For a diagram
contributing to W ] this means the following:

Instead with one point z, we start with the points
Uyseslhy, #; = u; for i = j, in the vicinity of z,. To each point
u; there is attached a line representing a factor W(y — u,) or
Wiu, ~ y). Because of Wick ordering there is no line between
any two u#,’s. Now we have to apply some differential opera-
tors d* and contractions to the «,’s prescribed by
P (& (uy),....¢(u, )):. Finally we put #, = -« = 4, = z,. For
the points z,,z,, and z, we proceed in an analogous way. The
result is that some of the factors W have to be replaced by
derivatives W multiplied with some polynomial in the in-
dependent invariants, e.g.,

a
oz,

A d ~
Wz, — z,)%) —W{(z5 — z,)}
; ((z. 1))327 (s —2,)9)
= WG W (6 + 626 + &)

= W'@z (S, +§22)2[§2 + {6 +§2)2 gz]

Of course all the derivatives of w (z) obey similar bounds like
W(z) itself does, i.e., W‘”( — A 3 still falls off exponentially
and W — (u/A )2) grows atmost like an inverse power. So
the conclusion is the same. The left-hand side of inequality

(1) for W has a limit greater than zero, whereas the right-
hand side coverges to zero.

V. RESULTS

This result can be extended in many respects.

(a) It is not really nccessary to assume a mass gap for
& (x). All we need is that W( A ?)and all its derivatives fall
off stronger than any inverse power for A going to infinity.
Sufficient for this is to assume that p(M )M ~~ dM is a
bounded measure for all sufficiently large V.

373 J. Math. Phys., Vol. 22, No. 2, February 1981

{b) We dealt only with the case of 3-or more dimensional
space—time. What haprens in two dimensions? By choosing

A ) , .
="+ %(1,0), £ = ,%(1,0) = in,,
we get the same result. Of course in the inequality
(Wi~ Enbatsll?

W (= S )W {imssin,in,),
the second factor of the right-hand side grows like a power of
A but this is killed by the fall off of the first factor. For the
left-hand side we can argue as above, because there are terms
with remain finite or even grow with A going to infinity.

(c) If the generalized free field does not fall of fast
enough in spacelike directions we were sucessful only in spe-
cial cases, e.g., for the Wick square we can show that it is not
infinitely divisible as long as the growth for small distances is

not much stronger than the decrease for large spacelike ar-
guments of the 2-point function.

;l =A' (011)1
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Using the concept of gauge equivalence of two-dimensional classical field theories, we reduce the
CP " nonlinear o model to a system of 2N — 1 independent real fields obeying relativistic field

equations.

PACS numbers: 11.10.Lm, 11.10.Np

1. INTRODUCTION

Gauge transformations of the linear Lax system of dif-
ferential equations for an exactly integrable field theoretic
model represent a simple and elegant tool to constitute a
field-coordinate transformation within a model. They exhib-
it that various models occurring in the discussion of classical
exactly integrable field theories are—in spite of their differ-
ent physical interpretations—mathematically equivalent,
i.e., they differ only in the choice of field coordinates.

If the linear Lax system is written as

dep (58 ) =U(Em5 )8 (£m8),
3,868 ) = V(EmE ) (&m8),

where U and V are meromorphic functions of the parameter
£eC, the gauge transformation is defined by

(1)

U =g 'Ug—g 9.8
¢=g¢" . g-n ¢ gﬂl ¢ (2)

V'=g 'Vg—g d,8
&= (x"+x"/2and 7 = (x" — x")/2 are the usual light-
cone coordinates, ¢ and g take values in a certain Lie group G
and U,V take values in the corresponding Lie algebra &. The
structure of U,V and U’, V", respectively, suggests at times
parametrizations, which in general are different, so that one
is led in this way to different coordinate systems.

The first clear demonstration of this was given by Zak-
harov and Takhtadzyan' and by D. Chudnovsky and G.
Chudnovsky.? They pointed out that the nonlipear Schro-
dinger equation and the Heisenberg equation for a continu-
ous chain of spins in the isotropic case are related by a gauge
transformation. Afterwards it was shown,> that the same
relation holds for the m-n component nonlinear Schrodinger
equations and a generalized Heisenberg model for a matrix
S, being an element of a Grassmann manifold U(m + n)/
U(m) X U(n) and also for the O(n) invariant nonlinear o
model and certain generalized sine-Gordon equations.

It is a natural question to ask whether this technique
can be further exploited to construct the generalized sine-
Gordon models equivalent to the CP” o models.* In this
paper we will just discuss this question. But instead of gauge
transforming the Lax system of the o models we will demon-
strate that by assuming a certain structure of the matrices
U,V and a special dependence on the parameter { one is lead
in a natural way to a class of models which are generaliza-
tions of the sine-Gordon model. The gauge transformation
of the Lax system of these modelis then is very simple—the
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transformation g is identical with ¢ ( § = 1)—and leads to
the CP™ o models if U, ¥ are elements of the Lie algebra of
U(N + 1)in a way to be specified in Sec. 2.

2, REDUCED CP" ¢ MODELS

The special dependence of U and ¥ on the parameter §
will be

U={4+C,
&)

V=¢'B+D.

The consistency condition
3,U—38.V+[UV]=0,

then decomposes into
9,4+ [4,D] =0, (4a)
d:B+ [B,C] =0, (4b)
3,C—3.D+{4,B]+ [C.D]=0. {4c)

Relativistic covariance requires D to be an 77 component, C
to be a £ component of a Lorentz two-vector. We now con-
sider a decomposition of the Lie algebra & of the group
U(N + 1) into the Lie algebra .Z of the subgroup

U(1) X U() and its orthogonal complement k with respect
to the Killing form of UV + 1):

Y =F ok
Note that
[Z, Z)C Z,
[ F,k]Ck, (5
k,k]CZ.

Let us assume that 4,Bek then it follows from (4) and (5)

that C,De.Z . Because of the very structure of # and k we
represent 4,8 and C,D by complex block-off-diagonal and
block-diagonal matrices respectively, in the following way:

0 12'2"'&1\' +1
-,
A= ,
: 0
=¥y
0 PP
— ¢
B= , 6a
: 0 (62)
— PN+
© 1981 American institute of Physics 374



C= (—(t)rX )3) , X'= —X, D analogously.
(6b)

Note that also from our final intention it is natural to choose
the following starting point:

If ZeC ™ * ' is the usual CP" field and Y a complex
N X (N + 1)matrix such that g = (Z,Y) is amoving ortho-
normal frame of C" "', then

* 0oz,
1=eD:8=\y9,z o )

. oz,
B=eDe=\yy7 o )
n

C=4,, D=4,
with

Czn%ﬁwz 0 )
A§(n) = + ?
0 Y9, Y

Dy (8 =0sy8 — 84z ()

(see Ref. 5).
Since in the CP” model we may normalize the coordi-
nates such that

—4tr(g'D; g)* = — (gD, g’ = 1,
we require in addition

N+ N+1
2 lelP= 2 4=t (6¢)
i=2 j=2

Proposition 1: By a gauge transformation
h (&,m)eU(1) X U(V ) one may reduce (3) to a standard form

U=¢d+C, (7a)
V=¢"'B, ' (70)
with
0 1
A= (:) 0 , B as in (6a), (7c)
—1
(e 0---0 0
0 c
C=]: 0 . B (7d)
0 Cy
0 —&e—& -aof
where
_ ¢N+1ag¢-~+x + 22’:2 ag‘?’k'ﬁgk (7e)
t 5 s
3 I‘PN+ 1 l“ -1
%)
¢, = ¢ P + Pr c,. (79)
PN+ PN+
Note that indeed ¢] = — ¢,.

Proof: The first step towards such a standard form is a
gauge transformation 4 (§,7)eU(1) X U(V ) by which Dis re-
duced to zero:
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U'=¢h [ 'dhy+h [ 'Ch —h '3k,

8

V'=¢"h " 'Bh+h [ 'Dh—h 'd,h, ®
Choosing A,(£,77) so that

3,h, = Dh,, ®
leads to

y'=¢BY, (10)
and (4a) and (4¢), are reduced to

d,4'=0, ie, 4] =4(), 1)

3,C'=[4"B'] =0. (12)

We are yet free to apply a gauge transformation
h,(£)eU(1) X U(N) which rotates the £-dependent unit vec-
torof 4.

0 :
’/? into 1,

) 0

wN +1 1

leaving the condition D = Qinvariant. h,(£ )isdetermined up
to transformations 4,(£ )eU(1) X UV — 1) which leave

0
0

1
invariant, and by inspection of Eq. (12) we see that A,(£ ) can
be used finally to reach the structure of C indicated in (7d).

Soh (&,m) = A (Em)h(€ Ins(& ) transforms (3) into (7a)—(7d).
Inserting B,Cinto Eq. (4b) and solving for the c;, we arrive at
(7e), and (7f). Thus Eqgs (4a) and (4b) have been solved, and
the remaining Eqs. (4c) are the field equations for the @;:

ancl +¢_7N+1 ~@ni1 =0,
(13)
ad,c, +¢, =0, k=2..N.

They involve 2V —1 independent real scalar fields.

3. THE GAUGE TRANSFORMATION
Proposition 2: The model defined by the linear system
3.6 = Us,
d,6="¢,

where U,V are given by (7) is gauge equivalent to the CP "
model.
Proof: We choose g = ¢ (§ = 1)eU(V + 1), then

d:§=A+C)g,
d, g = Bg,
and
U'=g'64+Clg—g'4+C)

= (§ - l)g_lAga
V'={"g'Bg—g'Bg
="' -g'Bg
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Let us define
+1 0)
S=g'Pg where P=
0 -1
As g runs through U(¥), S runs through CP”, Then
S(?_ES = g“Pg(ag(g“)Pg + ghlpagg)
=g"'P(~(4+C)Pg+g'3.g)
Because of PCP = C, PAP = — A, we obtain
83,8 = 2g7'4g,
and similarly
S9,5 =2g"'Bg.
On the other hand we have $? = 1 and therefore 53,8
= —d,8§-S, hence
U'=3¢—-1[S3.5]
(14)
V=4"'-1nH[sda,5]
U',V' are just the operators of the linear system of the CPY

model, i.e., of the dual symmetry, and the integrability con-
dition for (14) is the field equation of the C2~ model.

4. EXAMPLES

(i) N = 1. The CP ' model is the O(3) 0 model, the equiv-
alent linear system (7) is then

o=¢( ) o)+ (5 )
v=c(_ 0 %)

where ¢, = @0, @,/2|@,|>. With @, = e = we obtain
¢y = (i/2)d; a. Hence

0 1 i 8§a 0 )
U*g(—1 o)+?(o —d:af

e 2. )

This is again the linear system of the sine-Gordon model—
up to a rescaling of £ and 7.

(ii) The reduced CP? system can be parametrized in
terms of three independent real scalar fields a, ¢, ¥:

0 sinae ~ %  cosae ~ ‘¢
B=| —sinae™ 0 0 ,
— cosae™ 0 0

376 J. Math. Phys., Vol. 22, No. 2, February 1881

< 0 0
C=|0 0 c,
0 —-¢ —0

It turns out to be convenient to introduce a new variable 8 by

_ ¢33§(;3 + @29: ¢,

I
SlealP—1 7 %
Then

¢, =Y (d.a +icotad, (B +¢)),
and ¢ is determined by «, f3, ¢ by the equations

d:¥ = — 13, B + cot’ad, (B + ¢),
I = — —— (3, B +3,0 cos'a).
sin’a
a, B, and ¢ solve the hyberbolic field equations
cosa

—— d.(B +¢)3,(B +¢) + sina cos¢ =0,
sin‘er
0 B —4cosa sing = 0,

L 18,a0,(B + ) +3.ad,(B + )]

sina cosa

DOa +

Op —

+ 309 (1 13cos’a) =0,
cosa

which can be derived from the Lagrangian density
& =1[d,ad%a + 18, 3B + cot’ad, (B + ¢)
X3 B + ¢)] + cosa cosgp —1.

We finally remark that @, 3, and ¢ are related to the CP * field
Z in normal coordinates by

(D:Z -D,Z) = cose®,
0, B=(D.Z -D.D.Z), —id,B=(D,Z-D,D Z)
For 8 = ¢ = 0, the above system reduces to the sine-Gordon
equation with the Lax pair written in the spin 1 representa-

tion corresponding to the O(3) subgroup of U(3) generated
by the Gell-Mann matrices 4,, A5, 4,.
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Quantum tachyons in Schwarzschild space~time
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The wave equation of a spinless tachyon is studied in Schwarzchild space-time. In contrast to
earlier approaches to the problem, it is shown that tachyonic static solutions satisfy a simple
second-order linear differential equation regardless of the mass of the black hole and the mass
parameter of the tachyon. Physical implication of the present approach is discussed. Using
Langer modification of the WKB (Wentzel-Kramers-Brillouin) boundary condition an expression
similar to the Bohr-Sommerfeld quantization condition is derived.

PACS numbers: 11.10.Qr, 14.80.Kx

Following a line of research initiated by Barashenkov,’
by Davies,” by Honig et al.,> and by Narlikar and Sudar-
shan,* Dhurandhar’ in a recent publication contemplates
analyzing tachyonic scalar waves in Schwarzschild space~
time by using a semiclassical treatment. Here the tachyons
are regarded as quantum wave packets, but the gravitational
field is unquantized. Thus the tachyonic wave function ¢
satisfies the Klein~Gordon equation in free space. Expand-
ing ¥ into partial waves and separating out its time depen-
dence by means of Fourier analysis, one arrives at a differen-
tial equation which does not permit simple analytical
solutions. To deal with the situation Dhurandhar® makes
specific assumptions with regard to the mass of the black
hole and mass parameter of the tachyon, obtains a relatively
simple equation, and constructs solutions by the WKB
method,® which are valid everywhere in space, save certain
exceptional regions. This treatment provides, in a natural
way, physical information about interaction of quantum ta-
chyons with a potential barrier produced by a Schwarzschild
black hole. As is typical of the WKB approximation, the
Airy function is exploited to make a smooth transition be-
tween the oscillatory and exponential domains which lie on
the negative and positive energy sides of the classical turning
point.

The object of the present note is two-fold.

(i) To obtain the soluble equation of Dhurandhar by a
strict mathematical procedure and thereby avoid the mass
restriction imposed in Ref. 5.

(ii) To obtain the WKB eigenvalue formula via the
Bohr-Sommerfeld quantization condition for tachyonic sca-
lar waves in the background of Schwarzschild space-time.
We also present astrophysical implications of (i) and (ii)
wherever possible.

The tachyonic wave function ¥(R,8,p, ) in empty space
statisfies the Klein—-Gordon equation

(D2 - Mé)¢(R’9’¢»t) =0, )]

where M, is the mass parameter of the tachyon and the
operator

1 aJ -
T e (9. ®
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Here g¥ is the metric tensor for Schwarzschild space-time
and — g = detg”. The components of g;; are

- (1= 22). 1o~ 1 2)"
3)

gzz = — R 2 3 and g33 = — R zsinzg 3

M being the mass of the black hole and G the gravitational
constant.

With the metric (3), the scalar field in Eq. (1) can be
split into partial waves and time-dependence separated. To
that end one uses the partial wave and Fourier
decompositions

R o9 = 5 'p’(j:”) Py(cost), (42)
and
W) = [ A@UIRY"da, (#b)

and thus arrives at

d*y? 2m  dy? ( ,  r—2m
+ o +
dar nr—2m) dr (r —2m)? r

_ ame—am) l(I;rl) (,_2,,,)),;,{2=o,(5)
r

with

r=RM,, m=GMM, and w=1N/M,. (6)
Note that because of azimuthal symmetry of the problem,
the function ¥ is independent of @. It is clear from Eq. (4b)
that the square of {2 corresponds to the energy associated
with a particular partial wave /.

Dhurandhar® observes that Eq. (5) is fairly complicated
but it assumes a relatively simple form if the mass of the
black hole is of the order of the mass of the sun and the
tachyon mass parameter equals the mass of an electron. We
point out that such an assumption is not necessary to reduce
Eq. (5) to a tractable form. To see that we transform the
dependent variable by substituting

v0) = @ fexp ( —m| x—(;%;ﬁ) (7a)
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- (L) et (7b)

This yields
d2¢ {2 2
ﬁl n r 7(w2+1—2—m— 1(14;1)
dr: (r—2m)’ r IS
m2
X (F—2m)+ —4)<1>,”. 8)
¥

The term m*/r* inside the large parentheses represents a sin-
gular region centered about r = 0. In place of this term
Dhurandhar found —2m(r —2m)/r*. Thus the region of
coordinate singularity appears to be over estimated by a fac-
tor of four in the approximate treatment made in Ref. 5.
Anyway, if we look for solutions of Eq. (8) outside the small
sphere centered about » = 0, we can drop the term m?*/7* and
arrive at the desired equation. For the s-wave case this equa-
tion reads

ao ., i (k2_2—’7-1-)<p=0, ©)

ar (r —2m)?

where k2 = w” +1. We have, for brevity, omitted the super-
script {2 and subscript / = 0. At very high energies the s-
wave is expected to sample the region of space near the sin-
gularity. The term m”/r* will no longer be negligible. Thus at
distances close to ¥ = 0 one will have to deal with an

r

equation
d’® r
adih k2 —-v(n]d =0, 10
=t [ (n]d (10)
where
V) = 2m _ m‘; _ (11)
F ¥

Equation (10) is identical with Eq. (25) of Ref. 5. The reason
for this coincidence is fairly straightforward. In obtaining
Eq. (10) from the behavior of Eq. (6) near r = 0, Dhurand-
har has chosen to work with the right kind of transforma-
tion, namely,

b=r1. (12)

The transformation (12) is a special instance of (7a). In par-
ticular, when 7 is very small one can replace x(x —2m) by
—2mx to obtain Eq. (12) from Eq. (7a).

Looking at Eq. (7b) we see that the partial wave solu-
tion of Eq. (1) breaks down at » = 2m, the event horizon for
the Schwarzschild black hole. In this region, curvature ef-
fects come into play. In Ref. 5, WKB method has been used
to examine the nature of the solution here. The point
r, = 2m/k *is a classical turning point of Eq. (9). Therefore,
the situation in the vicinity of » = r, deserves to be more
closely examined. Since Dhurandhar has treated this point
in some detail, we pose a slightly different problem.

It is well known that as the particles of real mass cross
the Schwarzschild radius, they cannot come out. In contrast
to this the gravitational field of the black hole tends to op-
pose the infall of tachyons. A classical tachyon is bounced by
the black hole and emerges from inside the event horizon.
Besides this, a quantum tachyon also tunnels through the
potential barrier and hits the singularity.” In the jargon of
the trade, could one visualize the possibility of a black hole
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producing and ejecting tachyons? It may be that the peculiar
space—time effect inside the Schwarzschild radius generates
tachyons, which may form bound or quasibound states and
eventually come out of the Schwarzschild barrier due to any
small perturbation whatsoever. Thus any experiment which
attempts to detect tachyons should be directed towards
black holes rather than a laboratory set up. It will, therefore,
be of some general interest to formulate the eigenvalue prob-
lem for the interaction of a quantum tachyon with Schwarzs-
child space—time within the framework of the WKB
approximation.

At the classical turning point #, in a repulsive potential
field, like ours, the WKB function has a singular amplitude.
This prevents formulation of the boundary condition. The
difficulty can, however, be circumvented by using the well-
known work of Langer.” The method consists in replacing
the WKB differential equation by another differential equa-
tion which (i) agrees with the Schriodinger equation near the
classical turning point and (ii) agrees with the WKB differ-
ential equation elsewhere. Before we proceed to use the basic
philosopy of Langer’s work, it will be worthwhile to look
closely into Dhurandhar’s formulation of the boundary
condition.

Equation (8) (with m?/#* deleted) exhibits that the /-
wave problem has two classical turning points determined
by the positive real roots of the equation

w*—vi(r)=0, (13)
with

vi(r) = (1 —

It is clear from Egs. (13) and (14) that unlike the /-wave case,
the s-wave problem has only one turning point. Thus for /> 0
one can derive an expression similar to the Bohr—Sommer-
feld quantization condition. The s-wave case cannot be treat-
ed similarly. It appears that Dhurandhar has overlooked this
point.

To treat the lowest partial wave on equal footing with
the higher ones we replace /(I +1) by (/ + 1)* in Eq. (14).
Such a replacement is consistent with the Langer modifica-
tion of the WK B boundary condition.® The turning point r,
and r, are now determined from

2—’")(@—1) (14)

r re

w’> — v (r)=0, (19
with
1 2
Vi(r) = (1~ 2—"’) ((’—*g)——l ) (16)
r r
Clearly, the s-wave problem has also two classical turning
points.

If @ £ is to be bounded for ¥ <7, thenin r, <r<r,
DU =0 (r)cos (f drQ(r) — %) . (17

Similarly if @ () is to be bounded for r < r,, thenin r, <r
<7

@ r) = Q ~*(r)cos ( f :er(r) + %) . (18)
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The quantity Q (r) in Egs. (17) and (18) determined from
Egs. (8), (15), and (16) is given by

2
r)= ———— [0* —v2(")] . (19)

0%() = e [0~ )]

The two expression for @ {* given above must be the same.

Thus

f“dr QW) =(n+ . (20)

The result is very similar to the Bohr-Sommerfeld quantiza-
tion condition. Derivation of Egs. (17)—-(20) is fairly straight-
forward. Reference 7 will be useful in working out the de-
tails. In the general case one cannot use simple analytical
methods to determine the eigenvalues via Eq. (20) since nei-
ther the solution of Eq. (15) nor the integral §7:dr Q (r) can
be obtained in closed form. However, it is possible to treat a
special case for low frequency waves, which are expected to
lie at very large distances from the singularity. With this
approximation, Eq. (15) yields the following expressions for
the classical turning points.

ro=m—[m + (4 D+ D], (212)
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and
r=mt (m 4+ )@+ D]
In this case

Q=I[(r—r)r,—n1" (22)
Thus the determination of energy eigenvalues for low fre-
quency waves by combining Eqgs. (20)~(22) is a simple prob-
lem of elementary calculus.
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The two Froissart-Martin high-energy upper bounds for forward and nonforward scattering are
combined into one formula under the additional assumption that the scattering amplitude is
polynomially bounded in energy for all scattering angles inside the Lehmann-Martin ellipse. The
method used presents a modification of that of Kinoshita, Loeffel, and Martin. The analogous
bound for the scattering of particles with spin is obtained as well. Using the same method, a bound
for the case of complex scattering angles is also derived and ways leading to its improvement by
using the solution of the Dirichlet problem are suggested.

PACS numbers: 11.20.Dj

1. INTRODUCTION

Froissart' was the first to obtain high-energy bounds on
the scattering amplitude from the requirements of unitarity,
polynomial boundeness, and the Mandelstam representa-
tion. The same results were rederived later by Martin,” who
used the analytic properties of the scattering amplitude
which follow from axiomatic field theory instead of the
Mandelstam representation. The bounds were found sepa-
rately for the forward (and backward) direction and for all
other scattering angles:

|f(s,cos6)| <Cysln’s, for@=0orm, n
53/4 lnS/ZS
[sing | /2’
These two bounds cover all physical values of the scattering
angle 8, but they do not transform into one another for 8
approaching 0 or 7. They also say nothing about f(s,cos¢ )
outside the physical interval —1<cosf<1.

The aim of the present paper is to extend (1) and (2) to
unphysical angles and also to the case of particles with spin.
The method used here presents a generalization of that de-
veloped by Kinoshita, Loeffel, and Martin in order to derive
an upper bound on the scattering amplitude from the Man-
delstam representation.>* In Sec. 2, following the approach
of Ref. 3, we derive some useful mathematical relations and
estimates. [In this approach,it is additionally assumed that
the scattering amplitude f (s,z) is bounded by a power s” (poly-
nomial boundedness) in s for all energies above a certain val-
ue at all zinside the Lehmann-Martin ellipse.] In particular,
we find that the function g(s,w) defined below by formula (4)
is bounded by the power sV © '/* at large energies, thereby
improving the bound s¥ * * of Refs. 3 and 4. Then, In Sec. 3,
we derive a bound combining (1} and (2), i.e., all physical
angles, into one formula, Eq. (25). Let us remark in this con~

|f(s,co80)| <C, for 8 #£0 and . )
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nection that there is, of course, a much simpler formula
which combines (1) and (2} (in a continuous manner), namely,

s3/4 1n3/2s )
Ising |2/

But the method used in Sec. 3 to combine (1) and (2), later
allows us to obtain a bound on the amplitude at unphysical
angles (Sec. 4). The generalization of the results of Sec. 3 to
the case of particles with spin is given in Sec. 5. A further
improvement of the former bound using the solution of the
Dirichlet problem is in progress.

[f (s, cos8)| <inf (Cl sin’s, C,

2. GENERAL RELATIONS

The amplitude f(s,z) for the scattering of two spinless
particles can be expanded into the Legendre series

s
2k

where s is the total energy squared, z = cos8, 8 is the scatter-
ing angle, and & is the momentum of the particle, all in the
center-of-mass system.

Simultaneously, consider the auxiliary function g(s,w)
defined by

f(S,Z) =

i Q! + g, (5)P,(@), 3)

gls,w) = S @+ Da, (s 0))

s
7(‘ =0
The series (3) converges inside the ellipse E, with the semi-
major axis p equal to

p=1+a/s &)
and with the foci at the points z = + 1, a being a positive

constant, which depends on the process considered. Thisim-
plies the following relation for the expansion coefficients

a,(s):
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Vs 241
Y (2l + Da,(s) = - L/‘Q/(#)f(s,ﬂ)d#,

where the integral is taken along the ellipse E, (cf. Ref. 5,
Sec. 39). Denoting by M (s) the maximum of | f(s,u)| on the
ellipse, we have

\z/ks la,(s){dg)—f% Q)] |du] -
The Legendre function Q,( ) can be estimated as follows
(cf. Ref. 5, Sec. 38):

Q)| <@/1)2 R ~¢0(1 — R 17,
here R =p + (p*> —1)/%. Thus,

asl] < = ML )
)

LR

R IL= R, (6

lagls)| <1,

where L (s) is the length of the ellipse. Using the expression
lim, , , inf|a,(s)| =" for the convergence radius R of (4), we
obtain that

™

We now use the following well-known representation of
the Legendre polynomials

R’;R =p+(p2_1)l/2‘

1 w'
P(2)= — dw, 8
@) ﬁt'J;(w2—2w2+1)‘/2 ®

where I is a curve connecting the points z — (z2 — 1)*? and
z 4 (22 — 1) (see Ref. 5, Sec. 156). We choose z so that the
points z + (z> — 1) lic inside the convergence circle C of
(4), and choose I so that it lies fully inside it, too. Then,
using (3), (4), and (8), we can relate f(s,z) to g(s,w) by the
following formula:

®

wi Jr (W? — 2wz + 1)1

We assume now that the scattering amplitude £ (s,z) is
bounded by a polynomial in s for all energies higher than a
certain value,

(10)

at all z inside the Lehmann-Martin ellipse, N being indepen-
dent of z.

The function g(s,w) can be estimated as follows. Rela-
tion (4) and inequality (6) imply

Ms)L (s)
2\/ T

+1+0(=)
s

lf(S,Z)I <SN, §> 80,

& 2+1
> —

=1 \/l

Igis.)] < (1—R =172 R |y

M(s)L (s) 2 wl
< [2m(R 2% — 1)]? ,go(ZH Y ‘R‘ '

Using the well-known formula 3, /u’ = u(1 — u)? for
|u| <1 we obtain
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MELOR R + w))
[Zﬂ(RZZA;(IE '(/2)552— w])?
SIL (S
< y R).
[2mR* — )R — [w)) lwl<R)

We also can derive an asymptotic formula
(R*—1)"*~(2a/5)""*v/2 for s—> o because of (5) and

R =p + (p*> —1)'”. Since L (s5) is the length of the ellipse,
we have L (s)—4 for s— . Recall that M (s) <s* for suffi-
ciently large s because of (10). Consequently, the last in-
equality yields

A (s,w)

[g(s.w)| <

lim sup

Sor oo

where
4 SN +1/4

(20)1/4'\/7 (R - |w|)2 '
This implies the following high-energy upper bound on
g(s,w):

h(s,w) =

N+1/4

g0 <5 s

Jwl)*’
for any £ larger than 4/[(2a)"*v/ 7).

Besides this polynomial bound, an energy-independent
upper bound on g(s,w) holds inside the unit circle, jw| < 1. It
follows from the unitarity condition, |a,(s)|< 1, and has the
form

(11

for jw| <R,

S T 12
(1= lwly*’ @

These two bounds can be used to improve the bound on
g(s,w) for |w|>1 by applying the following Theorem.® Let
& (2) be analytic in a domain limited by two circular arcs 4,
and 4, (see Fig. 1), which intersect at the points 4 and B. Let
@ (z) be bounded from above by M, and M; on 4, and 4,,
respectively. Then ¢ () is bounded on the intermediate circu-
lar arc 4, connecting the points A and B by M,, where

M2 =M1B/(a+/3)M3a/(a+B) . (13)

Here a and f are the angles of intersection of 4,, 4, and 4,,
A, respectively.

We will use this theorem to extend the bound (12) in the
complex w plane to a point denoted by re  which lies outside
the unit circle |w| < 1. The three arcs must be chosen so that

lgGs.w)| < for [w| < 1.

Az

7

A B

FIG. 1. The domain, in which ¢ (z) is holomorphic, is a sickle-shaped region
between the arcs of circles A, and A,.
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A, and 4, lie fully in |w| < 1 and'in jw| < R, respectively, the
point re ‘’ being situated on the arc 4,. This leads to the
following situation (see Fig. 2):

(i) A4, is the arc of a circle of radius r — € centered at the
origin (where € > 0 will be determined later);

(ii) 4, is the arc of the circle passing through the points
reand + (r — €)e ™2+ 9,

(iii) 4, is the arc of the circle passing through the points
(R —me“and + (r — €)e™?* % (> 0 will be determined
later). Here, R is the radius defined by relation (7).

Some elementary trigonometrical calculations lead to
the following relations:

e2r—e)
P (r—e?’
sinB = 2{r(r — €)[(R — n)* — (r — )]
— €l2r — €)ir — elR — 1)}
XUP +(r—e?1 (R —nf +(r—ef1} .
(15)

Since the ellipse E, approaches the segment [ —1,1] with
increasing s, we have to require

€—0, 7—0, R—1, r—l,
with r>1, r — € < 1. This means that
a—0, p—0,

and, consequently,

sing =

(14)

a R—vr
B €
if, additionally,

—1,

(16)

€+7n
—2X 0.
R—r (17

Let us choose 8 /a such that

B/a =1Ins (18)

FIG. 2. Application of the Hadamard-Nevanlinna theorem to the function
8(s,w).

382 J. Math. Phys., Vol. 22, No. 2, February 1981

and apply the formula (13) by setting

N l/4
= _—c}__._7 , and M3 = é‘ s 3 s
(1 = jwl)? n
with 7 = R — |w| [see (12) and (11), respectively]. Then,
formula (13) takes the following form:

MZ _ ( CleN +1/4 )lm/(l + Ins) (_é;)l/(l + Ing)
2 2 :
(1—-r+e ]

Whereas € is determined from (16) and (18), % can be
chosen in such a way that its influence in formula (19) is
suppressed. In particular, we demand

1

(19)

772/(1 Flns) - zq,’
for sufficiently large energies. If we choose, for instance,
7(s) = s ~ then the condition (17) induces the inequality
co>1/72.

Further, we shall need a uniform estimate for g{s,w) in a
region |w|<F. We use again the condition (17) and obtain

~ 1 2a\1/2
I +Ins\ s 20)

In this way, we are led to the following form of estimate
in the region |w|<#:

P
[1—r4+@®—n/ns)?’ @D
where |w| =rand ¢, = c,e™*'/* "> both for physical and
for unphysical scattering angles.

Using this result for g(s,w) and the relation (9) between
f(s,2) and g(s,w) we can obtain the bound on the scattering
amplitude £ (s,2). Its form is different for the physical and for
the unphysical scattering angles.

|g(sw)| <

3. THE CASE OF PHYSICAL SCATTERING ANGLES

For 6 = 0 or 7 the integrand in Eq. (9) has poles at the
points w = z = + 1. Finding the value (9) at the points
z= + 1, inserting Eq. (21) into the result obtained and tak-
ing into account Egs. (7) and (5), we obtain the following
bound on the amplitude f(s,z) for s>a:

In’s  cyslns
R-1* 2
i.e., the Froissart bound (1) for forward scattering.

In the case of a scattering away from the forward or the
backward direction, the integrand in (9) has no poles but has
acutinw along the interval [e ~ “,e ““]. We can write from (9)

[ ) =g+ D<e, ., (22)

1 gls,w)
s,co86 )| < — > —| |dwl,
A )l T J;* Ww? — 2w cosd + 1)'7? |duw]
(23)
where the contour I" connects the points ¢ and e ~ “ and

does not leave the interior of the circle C;.

We choose the integration contour to be composed of
(see Fig. 3):

(i) the interval AB: w = re"’!, 1 — [sind |<r<|;

(i) the arc BC:w = (1 — |sind |)e”, — |0 |<¢<|0 | (for
16| >7/2, ¢ runs from |6 | to 7 and from — 7to — [0 |);

(iii) the interval CD: w = re ~°/, 1 — |sin@ |<r<1. In-
serting relation (21) into (23) we see that the integrands over
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L Im w
8 A
B RSW
¢ D

FIG. 3. Integration contour ABCD for theestimate of the right-hand side of
Eq. (23) in the case of physical scattering angles.

the intervals 4B and CD are equal and that the integral over
BC does not exceed the bound on the integral over AB. We
have

w? —2wz +1 | = (1 — 7)"* [4rsin®6 + (1 = 1)*]"
Substituting (21) into (23) we obtain

1f(s,cos6)|
3 8Gs.re)|
7 Ji—sine (1 — 1) [4rsin®@ + (1 — r)?]*
|sin@ '
dv
, 24
<6 fo (8 + v?)?|sind |2 @9
where

_ R -1 _ Q)"
Ins Vs Ins
= be; = —1—2-eN+‘/4+2“’,sincec,=2.

2 T

Evaluating this integral, we finally obtain the following up-
per bound on the scattering amplitude:

v=(1-n"2 6 for s>a,

C3

c 1 |sing |1/2
|fls,cos8)| < —21(53’21sin9|"2 arctan 37
1
—_— 25
t e+ |sin0])) @)

This formula gives, apart from constant factors, the bound
(1) for <4 and the bound (2) for 6.

4. UNPHYSICAL SCATTERING ANGLES

If z lies outside the physical interval [ —1,1], all formu-
las derived in Sec. 2 remain valid. We represent z in the form
z =y cosf + iy’ —1)"?sinb, (26)

where ¥ > 1 and 6e( — 7,7], but & has no longer the meaning
of the scattering angle. Using Eq. (9) and the bound (21) we
obtain

c, 1 |dw|
2} < —= ’
Vsl T J;* (1—r+e? |w?*— 2wz + 1)V2
where € = (R — r)/Ins and I ' connects the point
w=z+ @ - D" with w =z — (2 — 1)"? and lies fully in

(27)
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the interior of C;. Evidently,

Zi (22 _ 1)1/2 — yt eiis,
and

w? — 2wz +1=(re" — y.e)re" —ye ), (28)
where

Y. =v+@ =D
and

w=re".
The contour I" ' must lie inside C; and the following inequal-
ities must be satisfied:

Ve <F

The right-hand side of (27) can be estimated in various
ways and we shall not look for the best estimate here. One
possibility would be to follow closely the approach of Sec. 3.
We show another way, choosing for 7"’ in (27) the segment
connecting the points y.e ~'* and y.e . Along this line we
have [w® — 2wz + 1| = by(1 ~ 13, — 1<A<], P =b,
+ b A + b4 2 with by = 2 — sin6, b, = 2p(y* — 1)"/%, b,
= y? — cos0, |dw| = (b,)"/* dA, and the right-hand side of
(27) becomes
_C—z 7/2 dx
7 J s [1+R/Ins — A (by+ b, sinx + b, sin’x)'?)?

A=1+1/lns.

This integral can eastly be shown to be bounded by ¢,/ /7,
where

/2 dx
I= f .
—ann [14+R/Mns —Ay — A (P — ' sinx]?
Thus
rg — Ay
5,2)| <c ,
62l <e (re — AV (rg — Ay )
rg =1+ R /Ins. (29)

This is a high-energy upper bound on f{s,z) for z inside E (s)
which is the ellipse with foci + 1, — 1 and with the semima-
joraxis 1+ [1/(1 +1ns)?] a/s. The bound depends on s
through R and A. Moreover, in contrast to relation (25),
which holds for physical angles, zin (29) outside the physical
segment [ — 1,1] cannot be kept fixed. With increasing s, the
ellipse E (s) shrinks to the segment [ — 1,1]. The parameter ¥
tends to 1 so as to preserve r, — Ay, positive at all energies
above some value.

It is to be mentioned that the bound (29) is not the best
one and may be improved in two different ways. One of them
is a better estimate of the right-hand side of (9), of course.
The other one consists in solving the Dirichlet problem for
the doubly connected domain whose boundary is formed by
two disjoint curves I', and I, where I'; is the interval
[ — 1,1} and I, is the boundary of E (s).

As (1) and (2) are better bounds than (29) at the points
zel™|, thesolution of the Dirichlet problem for f(s,2) bounded
by (1), (2}, and by (29) at zel™, and at zel", respectively, would
yield an improvement of (29) inside E {s). A detailed analysis
of this problem will be given later.
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5. THE CASE OF ARBITRARY SPINS

For the case of the scattering of particles with spins the
series (3) will be rewritten as follows”:

F=F}%62)= S QI +1)fii.,6d%@), 30
J=M

where A, is the helicity of the jth particle,
A=A, —A,, p=A~4 -4, M=max(|1},|¢]).
The series (30) converges in Martin’s ellipse £, * for the
fixed energy s'/? and helicities A,.
The functions G i:j‘f, (s,w), similar to the function in-
volved in Eq. (4), are defined as
G sw)

s

+1 f/‘ll‘/l,,/l(/ld(s) sign(A,u)( — i’)M —#l

(F(J+m+1)F(J—m+1) )‘/sz‘M 31)
FTU+M+OIJ—M+1) ’

J

I

where
m = min(4 |, |}
and they satisfy the conditions (11) and (12) (see Ref. 9).
Using the integral representation for the functions
7. (2),'® we obtain the following relation between the func-
tions F jjl’ (s,z2)and G ﬁi’ (s,w):
| [ dw G5 (swh(6,t,ab)

Fi2(s,cos0 ) = — , (32
Ak ) i Jr (1 — 2 cosbw + w?)'? 32

where
;. W—cosd— (1 —2costw+ w?)'/?
i sind ’
a=|A—pul, b={l+ul
el a+b
hGab) = [cos(8 /2) + it sin(6 /2)] ’ (33)
t a
and the contour I"is the same as that for the spinless case (see
Fig. 3).

For fixed values A,u the function 4 (6,¢,a,b ) is majorized
on the contour I" by a constant which is independent of 8.
Indeed, let us express w from Eqg. (33) in terms of 6,z:

w = cos@ + (i/2)t + t ") sinf
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On the contour /" the function (w — cosf )/sind is bounded
by a constant for any angles 9, therefore ¢, ! and 4 (8,t,a,b)
are bounded by constants which are independent of 6.
Therefore the integral {32) is reduced to Eq. (23) and, in anal-
ogy with Eq. (25), we obtain the upper bound on the ampli-
tude F.(s,cos0):

: 6 12
F;(s,c080) < const (53/2‘5“19‘1/2 arctan | 12!/2{
1
_— ), 34
5,6, + ]sin9§)) .

where

R 1 24. 1/2

5 = i4s) :( _‘) for s»a,.

Ins Js Ins

If 8¢5, or %6, formula (34) transforms to Eq. (1) or Eq. (2).
It agrees with the result of Refs. 11 and 12. Analogous con-
siderations, as in Refs. 13 and 14 for the helicity amplitudes,
can be used also here to obtain bounds similar to (25}.
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Solution of the unitarity equation with overlapping left and right cuts: A tool
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The partial-wave unitarity condition is complicated by the presence of overlapping left and right
branch cuts when the lowest exchanged mass is small in comparison to the direct-channel mass. A
coupled-channel ND ' method for constructing unitary amplitudes with overlapping cuts is

described. The study is motivated in part by the problem of analyzing the 77 — KK system near

the § * resonance.

PACS numbers: 11.20.Fm, 11.50.Ec, 11.80.Gw

1. INTRODUCTION

We discuss the unitarity condition for coupled two-
body channels in a definite angular-momentum state. For
simplicity in notation we take two channels, but our methods
apply as well for any finite number. The square of the energy
in the center-of-mass frame is denoted by s, and s, is the
threshold of the ith channel, s,<s,. As is appropriate in ana-
lytic S-matrix theory, we study a generalization of ordinary
unitarity. If the masses of the particles in one channel are not
too dissimilar to those in the other, generalized unitarity has
the form

(T(s) = Tis_)1/2i = T(s, Jols)T(s_), (1.1)

s>8, T{s, )= lim T(s+ie),

e—0

where the 2 X 2 scattering matrix 7 (s) is analytic in regions
above and below the half-line s > 5,. The diagonal matrix of
phase-space factors p(s) includes unit step functions 6 that
vanish below channel thresholds:

PO = pA)8;}, pis)=0(s —s)g:(s). (1.2)
For the case of spinless, equal-mass particles in channel 7 one
has

q:(s) = [(s — 5,)/s]". (1.3)
Generalized unitarity (1.1) restricts the amplitudes 7',,(s)
and 7>,(s) in the region s, < s <5, where channel 2 is closed,
whereas ordinary unitarity refers only to open channels.

A complication arises if mass differences are large.
Namely, the left cuts of some of the amplitudes overlap the
half-line s > s,. This occurs when the lowest mass in a cross
channel is sufficiently small in comparison with the mass of
the direct channel. The unitarity condition then becomes

[T7(G) ~ T(5)1/2i = T(s.)pG)T(s) + 4, T(s), (1.4)

where 4, T'(s)is the matrix of discontinuities of T"(s) over the
left cuts (denoted collectively by L ).

“Work supported in part by the National Science Foundation and the Unit-
ed States Department of Energy under contract No. W-7405-ENG-48.
P'Participating guest.
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An example is the two-channel problem with 777 and
KK channels in a definite isospin state, considered near the
KK threshold where the 477 state has only a small production
cross section. Under the assumption of Mandelstam analy-
ticity, the partial-wave amplitude for KK—KK has a left cut
beginning at the branch point s = 4m} — m?%). According
to (1.4) the right cut begins at s = 4m?2, so that the two cuts
overlap. The amplitudes for 77— and 77—KK do not
have overlapping cuts; their nearest left branch points are at
s = 0. The possible importance of treating correctly the
overlapping cuts in the phenomenology of the 77—KK sys-
tem, especially near the § * resonance, has been emphasized
by Yndurain,' Gonzalez-Arroyo,>* and co-workers.® Al-
though the 77— KK system has been discussed extensively,
it appears that a full explication of the unitarity effects re-
mains to be made. A similar situation of overlapping cuts
occurs in the NN system, which is of high current interest in
connection with baryonium states.5

In studying systems with overlapping cuts, from either
a dynamical or 2 phenomenological viewpoint, one encoun-
ters a generalization of the standard problem of partial-wave
dispersion relations.” That is, given the left cut part of the T
matrix,

BG)=T() — 1 f T(s", Yp(s)T (s"_ )ds o as)
T Js,

s —s

determine the most general 7 (s) having that left cut part and
satisfying the augmented unitarity equation (1.4) as well as
appropriate conditions of analyticity and asymptotic behav-
ior. We shall provide a straightforward solution of this prob-
lem, based on the matrix ND ' method.®"' As in the usual
ND ' method, the problem is reduced to solving a linear inte-
gral equation for N (s). It is gratifying to find that the equa-
tion is identical in form to the usual one. Only the derivation
of the equation is altered. Being of Fredholm type under
weak conditions on B (s), the equation is amenable to numeri-
cal solution.

Our results are applicable in phenomenology as well as
in dynamical schemes. In phenomenology the traditional ap-
proach to determination of B (s) is to use crossing symmetry
and experimental information on scattering in the cross
channel. Such an approach determines the nearby singulari-
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ties of B (s) to a certain extent, but leaves the distant singular-
ities to be represented by empirical parameters. A potential-
}ly more informative approach now under development is to
use a new definition of Reggeon exchange, valid at low as
well as high energy.'? The Reggeon exchanges involve all
partial waves in the cross channel and form an important
(possibly dominant) part of the analytically continued cross-
channel absorptive part. It is hoped that a model of B (s)
based primarily on Reggeon exchanges will be realistic.

An ambitious scheme for construction of a crossing-
symmetric unitary Regge theory, proposed in Refs. 12 and
13 and extended in a forthcoming paper to allow coupled
channels, requires solution of a generalization of the prob-
lem treated here. In a crossing-symmetric treatment of coup-
led 77 and KK channels, for instance, one must account for
the 477 threshold at s = 16m2 in the KK amplitude, which
lies to the left of the beginning of the left cut at
s = 4(m} — m?2). As we shall show in a later paper, this
complicated situation of overlapping cuts can be handled in
arather simple way by extending the present ¥D - method to
allow a matrix of externally prescribed absorption param-
eters, in analogy to the work of Ref. 14. In the crossing-
symmetric theory the absorption parameters for the 44 state,
etc., are obtained dynamically through crossing. The ex-
tended ND ! method with absorption should also be usefulin
phenomenology, especially for study of absorption in the NN
system. A correct treatment of overlapping cuts is conceiv-
ably important in assessing the effects of absorption on bar-
yonium states predicted from crossed NN potentials.®

Section II contains the general solution of the two-
channel problem under rather weak conditions on B (s). It
will be evident that the method works as well for n channels.
The Castillejo-Dalitz-Dyson (CDD) ambiguity’ is treated
in detail, since a complete treatment for the coupled channel
case has not been available in the literature. Recently Nen-
ciu, Rasche, Stihi, and Woolcock "’ criticized the ND ! meth-
od and suggested a method based on a pole approximation to
B (s) as a replacement. We feel that the discussion of Secs. 11
and I11 answers their criticisms and shows that the method is
both general and practical. In our experience the pole ap-
proximation has not been very useful, since in realistic mod-
els B (s) is not given in terms of poles and to approximate it by
poles with sufficient accuracy is rather awkward. We note,
however, that the pole approximation can be used in the
ND ' scheme with overlapping cuts and that it leads as usual
to explicit analytic forms for the solution of the integral
equation.

In Sec. IV we give an ND -' method for a single-channel
problem with absorption present at threshold; for example,
KK—KK. The absorption parameters are regarded as given
and left cuts may or may not overlap the absorption cut
below threshold.

In Sec. V we discuss a special case of our problem solved
recently by Gonzalez-Arroyo*; namely, a two-channel prob-
lem in which only the element B,,(s) of B (s) is nonzero. We
reveal two new aspects of the Gonzalez-Arroyo solution by
deriving it from our formalism: (a) It necessarily entails
CDD poles as defined in the two-channel formalism; if there
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is not at least one CDD pole, only the trivial solution in
which T, (s) = T,(s) = Q is obtained; (b) even though the
Gonzalez-Arroyo solution entails arbitrary rational func-
tions, it is not the general solution of the problem with

B, (s) = B,,(s) = 0; rather, it corresponds to putting some
elements of the CDD pole residue matrices equal to zero.

In Sec. VI we comment on a proposal of Yndurain for
an explicit unitary parametrization of the 7" matrix with
overlapping cuts.

Appendix A is concerned with asymptotic estimates of
principal-value integrals under conditions of logarithmic de-
crease of the density function. Appendix B contains the
proof'that the integral equation of Sec. 1 is of Fredholm type
under conditions of logarithmic decrease of B (s).

We hope to reexamine in a later paper the phenomenol-
ogy of the 77—KK system near the S * resonance using the
methods described.

1. GENERAL SOLUTION FOR TWO-CHANNEL CASE

In this section we solve the two-channel problem, with
two pseudoscalar mesons of mass m; in the ith channel. The
phase-space factors are as given in (1.3), with s, = 4m;. We
make analyticity assumptions weaker than those implied by
the Mandelstam representation, since the extra generality
involves little effort.

Let us first recall the implications of the Mandelstam
representation. The partial-wave amplitudes T',(s) and
T,,(s) = T,,(s) are analytic in the s plane, each with cuts
(— 0,0, [5,,0), where s, = 4m} . If m3 <2mj3, Toy(s) is
analytic in the plane with cuts ( — o0, 4(m3 — m{}}, [s,, ).

FIG. 1. Possible analyticity domains §2,,, 2%’ of T,(s), T5x(s),
respectively.
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If m2 »2m?3, we must regard T,(s) as sectionally analytic,
since the cuts overlap and divide the plane in two:

T$7(6), Ims>0,
Tonls) = { 2, Q.1
T55°(s), Ims<O,
where T$;°(s) and TS, ’(s) are analytic in their respective
half-planes. One has 7, (s) = T;(s*)*, whichfori=;=2
means that 755 (s) = 7§, (s*)*.
Our requirements on the 7" matrix, weaker with respect
to analyticity, will be as follows:
(@ T,(s) =T(s) (2.22)
(b) T,,(s)and T,,(s) are analytic in open neighbor-
hoods £2,,, £2,, of the half-line [s,, ), as illustrated in Fig. 1;
(2.2b)
T5706), se25,
TS (), se2dy,
where T3 ’(s) is analytic in £2 {3 . Here £2 {3’ is an open
region of the upper half plane with [s, — €, 00 ) as part of its
boundary, and 2§, ’ is the complex conjugate of that region
(see Fig. 1);
@ TE=TE"%
() AT()=[T()—T(s))/2¢
= T(s)pG)T () + A, T,
AT (0 0 )
T(s)= 0 06, —6G)) 5, <S5 <5y

where 6 (s) is the unit step function and ¢ (s) = 4 75,(s),
5 <8<S, s

(© TpB)= [ (2:2¢0)

(2.2d)

s>s5,, (2.2¢)

XBL 793-1022

FIG. 2. Possible analyticity domains f), 1 !5:3 of B,,(s), B,(s), respectively.
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(O T (s)|<kns) ¢, s>s,,

s—s

IT (s, ) — T, )| <k(lns) =« Yogssss, 20

a>1, O<u<l.

Here and in the following, « represents a generic positive
constant, which is understood to have different values in
different equations. The inequalities (2.2f) apply to each ele-
ment of the matrix T'(s) separately. The second of these in-
equalities follows from the stronger but more comprehensi-
ble requirement that 7" (s,) be Holder-continuous for s < rand
continuously differentiable for s > » with

[T(s.)| <«s 'In ~ “s, the point r being arbitrary.

We shall determine the entire class of 7 matrices satis-
fying conditions (2.2a), (2.2b), (2.2¢), (2.2d), (2.2¢) and
(2.2f) and having the same given left-hand cut term,

BG)=T()— if T(s", )p(sHT (s )ds e
T

Su S’ — S

Note that property (2.2f) ensures convergence of the integral
in (2.3). The following conditions on B (s) are a consequence
of the conditions on T (s) and the definition (2.3):

(@) B,(s) = B,(s) (2.4a)
(b)  By(s), Bx(s), and By,(s) are analytic in

{gu =£2U[s,0), 2, = £2,,U[s(, 0 ), and

£2,, =002 Vs, ,0),  resp. (see Fig. 2);  (2.4b)
© B(s)=B("* 2.40)
) |BE)|<k(ng) ", 535,

|B(s) — B (s)|<k(lns) | 251" gosms,. (2.4d)

The property (2.4d) is obtained from (2.3) with the help of
Lemma 2 on asymptotic behavior of principal-value inte-
grals which is proved in Appendix A. The other properties of
B follow immediately from (2.2).

Henceforth we suppose that a function B (s), satisfying
(2.4a), (2.4b), (2.4c¢), and (2.44), is given. We seek the most
general 7'(s) that gives that B (s) through (2.3), and which
satisfies (2.2a), (2.2b), (2.2¢), (2.2d), (2.2e), and (2.2f). Our
analysis is based on the nontrivial theorem that any T (s)
satisfying conditions (2.2d), (2.2e), and (2.2f) has an ND -
representation with appropriate properties. To be more ex-
act, under those conditions there exists a 2 X 2 matrix % (s)
such that'®"’

(a) Z ;(s)is analytic in the plane with cut [s;, o0 ) and is
defined by continuity on the cut. The function on the cut,
2 ;(s , ),is Holder-continuous on any finite interval. (2.5a)

(b) Z(s)=[1+2ip(s)T ()17 (5.); (2.5b)
(©) F(s) = D (s*)*; (2.5¢)

(d) Z(s)is nonsingular (has an inverse) at every finite
pointof the cut plane, including pointss , onthecut; (2.5d)

(e) There are integers #, such that the modified matrix
D)= [s""D (), s~ " ,(5)]

tends to a finite, real, nonsingular limit as |s|-—»o0:
D ($)—>D () = D*(w), detZ(eo)#0.
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Here &/ (s) denotes the jth column of Z(s). (2.5¢)

The properties (2.5) clearly do not determine & (s) uniquely;
at the least, one may interchange the columns of a given
 (s) and multiply them by nonzero constants, thereby ob-
taining a new matrix that satisfies (2.5). Nevertheless, the
(nonordered) pair of integers n,, n, is uniquely determined
by the asymptotic behavior of T(s), and n, + n, sets the de-
gree of ambiguity in the determination of 7°(s) from a given
B (5), as we shall explain presently.

In the single-channel case Z'(s) is determined up to a
constant multiplier and has the familiar form

8(s")ds ) ’ 2.6)
5, S (" —3)

where 4 is an arbitrary real constant and & (s) is the phase
shift, normalized sothat 8 (s,) = 0. In the many-channel case
there is, in general, no closed expression for Z (s). Rather,
) (s) is obtained through solution of a certain Fredholm
integral equation with a kernel constructed from T'(s.). If
8 (s) 1n (2.6) tends to a limit § () and obeys the bounds

16(s) — 8 (0)| <k(Ins) ~ 7,

D (s) = Aexp ( S
T

]

16(s) — 8(s")) <(lns) ~«| =% | (2.7
s<§, O<pu<l, a>l,

then
D (s)~s2", s>+ o0 (2.8)

1f8 (o ) > 7, one has a CDD ambiguity in the determina-
tion of T'(s) from a given B (s); cf. Ref. 7. We shall find a
similar ambiguity in the two-channel case if n, + n,>1. Let
us write

TG) = [TOIZOIZ ') =HGOZ ') (29
and compute the discontinuity of .#7{s) from (2.5b). If the
unitarity equation (2.2e) holds, we have
ANV(S) = [T ()P (s.) — T (s)Z(s))/2i

= {T(s.) — T +2ip()T (s)1} D (s.)/2i

=4, TP (s.)=A4,T($Z(s), (2.10)
In the final step of this calculation we are able to replace
% (s.) by Z(s) because of the form of 4, 7 (s) and the fact
that the cut of & ,,(s) begins at s = 5,. We have 4.77(s) =0,
s>s,,in the simpler case in which left- and right-hand cuts do
not overlap. With overlapping cuts,

528,.

AV, =0,
AN () =0(s, — )¢ ()Z (), (211
J=12, szs,.

The left-hand cut of each matrix element ./, (s) does not
overlap the right-hand cut of the corresponding 7 (s).

We next consider the possible asymptotic behaviors of
4 (s) allowed by (2.5¢) and for each type of behavior write a
Cauchy representation for a matrix D (s) closely related to
% (s). The matrices D (s) will subsequently be used to derive
integral equations for N (s) = T (s)D (s). We suppose initially
that there is no bound-state pole of T'(s), and also that neither
column of Z (s) tends to the null vector as |s|—o0; thus,
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n; >0. Presently we shall show that the vanishing of a column
of Z (s) at infinity is an exceptional case, not expected to
occur in realistic models, provided that there are no bound
states.

First take Case 1: n; = n, = 0 in (2.5¢). We define

DO =D6) T (w), NG =4 (o) 12)
By properties (2.5b), (2.5¢), and (2.2f),
ImD(s.) = (D) —D(s)|/2i
= —pOT()Z ()T (o)
= —p) (D ()
= —pEN() =0 (n" “). 2.13)

If follows that D (s) has the Cauchy representation (Case 1):

1 (7 p(s"HN (s")ds'

D) =1~ — (2.14)
T

55 S’ — S
We next consider Case 2: n, + n, > 0in(2.5¢). To define
D (s) in this case we first choose any polynomials of the form

ﬁ (s — Si;)s

Pi(s)= 1«
1, if n; =0,

where the real points Sijs k=12, ..,
distinct. Then D (s) is defined by

S <8y, if n, >0,

(2.15)

,J =1, 2, are all

D@—@@C”w O)@%) 2.16)
= U 0 PZ' ‘(s) / 0 ), .
and it has the Cauchy representation
2 n C(kﬂ
PDEH=1-3 %

IR Skj —

1 f PN Hds” @17

T Js s —5

since D () = land N (s) = O (In = “s). The residue matrices
C * have components

n

. “y 2
C([pl‘r{) = gl'lj(skj) ( H

p o LpEk

1
(skj_spj) G (). (2.18)

Henceforth we shall consolidate the indices k& and j and write
(2.17) as (Case 2):
R, C 0 ' 1] )
DEe=1-3 ——— —]-f -———-———p(‘){v(”ds .
$ S —S

i—1 0, —§ T

(2.19)

Except for possible poles, the matrices D (s) have the
same properties (2.5) as Z(s). Also, (2.10) implies that

AN () =4, T(s)D (s), (2.20)
The poles in (2.19) are analogous to the familiar CDD poles
of the single-channel case: we shall again call them CDD

poles. Because the pole positions ¢, are all distinct, the resi-
due matrices C, are singular:
detC;, =0. (2.21)
That is seen from (2.18): the matrix C * has rank 1, being a
dyadic constructed from the vectors &/, (s,,) and & ;. (o).
We now turn to the derivation of the integral equation

obeyed by N (s) = T (s)D (s) for each of the two cases. The
integral equation has a dual status. First, it is a necessary

S2>8,.
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condition on the NV (s) associated with any given 7 (s). Second,
it is a means of constructing a properly analytic, unitary, and
symmetric T (s) from a given B (s). In applications one usual-
ly thinks only of the second aspect, but for the general the-
ory, especially for demonstrating the generality of the solu-
tion of the construction problem, it is necessary to consider
both aspects. We begin by deriving the equation as a neces-
sary condition on N (s) for a given 7 (s) and later treat the
construction problem.

For a given T (s) satisfying conditions (2.2) and such
that Case 1 holds, we examine the matrix function

A@=TE-B@IDE) — = [ ZERONE
T Js, s —s
(2.22)
Since B (s)p(s)N (s) = O (In ~*%s), theintegral converges. No-
tice that by (2.3) the difference T'(s) — B (s) is defined in the

whole cut plane, even though 7'(s) and B (5) separately may
not be, in view of our weak assumptions on the region of
definition and analyticity of 7" (s). Clearly (2.22) defines a
function A ,(s) = A (s), analytic in the half plane Ims > 0, and
another function A,(s) = A (s), analytic in Ims < 0. We show
that A,(s) is the analytic continuation of A ,(s) and that in

fact A,(s) = A,(s)=0. Fors <3,
AA(s) =[AT () — AB(5)|D (s) = 2.23)
For s>s,
AA () =AN(s) —AB(s)D (s.) — B(s.)AD (s)
— B(s)o(s)N (s)
=4, TD () — A4, T (9D (s) + B(s)p(9)N (s)
— B(s)p(sIN (5)
=0. (2.24)

The structure of 4, 7 (s), assumed in (2.2¢), and the € func-
tions in 4D (s) = — p(s)N (s) allowed us to replace D (s.) by
D (s)and B (s.) by B (s) in (2.24). In the case without overlap-
ping cuts the terms AN (s)and — 4B (5)D (s.) are separately
zero; here they are nonzero but fortunately cancel. We see
that A (s) is analytic in the entire plane. Also it vanishes at
infinity, as is clear from (2.3}, (2.14), and (2.22). Thus

A (s)=0and (2.14) may be substituted into (2.22) to yield the
integral equation

N@) = B@+1f

Thanks to the & function in p(S ) the domains of the first and
second rows of N (s") in the integral are [s,, ) and [s,, ),
respectively. Consequently, each V;(s) is in a region of anal-
yticity over the domain in which Eq. (2.25) is to be solved, as
is seen from (2.11).

The derivation of the integral equation proceeds simi-
larly in Case 2. The only change required is to account for the
poles of D (s). Referring to (2.22) and (2.19), we see that A (s)
inherits the poles and in fact

A =3

i=1

B(S) B(S)

PEIN(sHYds'.  (2.25)

_10_ [T(0,) — B(a)]C,. (2.26)

This equation yields the result
N()=B()+ Z

i=1

[R, + B(s)]C,
— 0;
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1 f TBOZBE) jwishds, @27)
T Js s—s

R.=T(0,)— B(0)). (2.28)

Henceforth we refer to the general equation (2.27), which
includes (2.25) as the special case with C; = 0.

The integral equation (2.27) is amenable to the Fred-
holm theory in an appropriate Banach space, as is shown in
Appendix B. By the Fredholm Alternative Theorem,*° the
integral equation has a unique solution in the space consid-
ered, provided that the corresponding homogeneous equa-
tion has no nontrivial solution in that space. We shall sup-
pose that the homogeneous equation in fact does not have a
nontrivial solution, since the contrary case has not arisen, as
far as we know, in realistic physical models. It does arise in
the anomalous event of an “extinct bound state” as discussed
by Atkinson and Halpern.'® The assumption that there is no
solution of the homogeneous equation allows us to rule out
the possibility that a column of & (s} vanishes at infinity, as
promised above. If Z (s), the jth column of ¥ (s), tends to
the null vector as [s|— oo, then it has a Cauchy
representation

205 = — ﬁf p(s)V(s)ds

s'—s

(2.29)

Owing to the lack of the usual unit matrix term on the right-
hand side of (2.29), the corresponding integral equation for
A,(s) is homogeneous:

N (s = Wf -Bi(s—ztﬂﬂp(s')ﬂ,(s')dst (2.30)

Thus .+, ;(s) = 0 and & ;(s) = 0, contrary to the fact that
4 (s) in nonsingular. The derivation of (2.30), carried out as
before by showing that A (s) = 0, fails if 7°(s) has a bound-
state pole. We defer the discussion of bound states.

Since we have ruled out the possibility that &, (s) van-
ishes at infinity, we may conclude that the matrix N (s) for
any T (s) obeying (2.2) satisfies (2.27). Furthermore, the
properties(2.2)and(2.5) guaranteethat N (s) = T (s)D (s)lies
in the Banach space used in the Fredholm theory of Appen-
dix B. Thus, for a given 7'(s), the matrix N (s) = T (s)D (s)
coincides with the unique solution of the integral equation
provided by Fredholm theory.

When B (s) rather than T (s) is given, there is no a priori
certainty that a corresponding satisfactory T (s) exists. By
the preceeding remarks we do know that if such a 7" (s) exists,
it must be obtainable in the form N (s)D (s)"', where N (s) is a
Fredholm solution of (2.27) for some choice of the param-
eters C, and R,, with an arbitrary choice of the o;; here D (s)
is given in terms of ¥V (s) by (2.19). We now show that the
Fredholm solution ¥ (s) of (2.27) gives a T (s) satisfying (2.2),
provided that detD (s)#0 in the cut plane and that, when
there are CDD poles, another minor condition holds (condi-
tion (2.34) below). This assertion holds for any choice of the
parameters consistent with restrictions already laid down.
Those restrictions, we recall, are that all parameters be real,
that o, <s,, 0;#0,, detC;, = 0, and that the R, be positive-
definite, symmetric matrices. The positive-definite character
of R, follows from its definition and (2.3), since
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T (s)p()T (s) = T(s.)p(s)T (5.) T, where + denotes Hermitian
adjoint. The matrices C; and R, entail only three real param-
eters each, since C; is singular and R, is symmetric.

If N (s) isasolution of (2.27) and D (s) is given by (2.19),
we may write T (s) = N (s)D (s)", the proposed solution of
our problem, in the form

T@=B@+(is’ R.C
= s —o;
TR 10 191 (S')ds')p-‘(s). @31)
T Js, s —3S

This expression is derived by recognizing a term B (s)D (s) on
the right-hand side of (2.27). Since detD (s) is nonvanishing,
it is clear that 7" (s) has analyticity in accord with conditions
(2.2), provided that it has no pole at s = ¢;,. To demonstrate
absence of a pole we write D '(s) = cofD (s)/det D (s), and
show by calculation, using det C, = 0, that

CicofD(s) =0(1), s—o,
(2.32)
detD ()~ —'— +0(1), s—a,,
a;, = E(CillchZ + C1'22lel - Cil2cﬂl - lezcizl)
J#1
+Ciny [1 +122(Ui)] + Co [1 +111(‘7f)]
—I(0)Cyy — 1,(0,)C,;, (2.33)

where 7,;(s) denotes the integral that appears in D;(s). Thus
formula (2.31) contains no pole provided that
a, #0. (2.34)
Condition (2.34) is the extra requirement for existence of a
solution in the presence of CDD poles, mentioned above.
Having proved analyticity, we have yet to show that
(2.31) is properly unitary and symmetric. To check unitar-
ity, we first calculate AN (s) = 4 (T (s)D (s)) from (2.31):
AN ()= B (s)AD (s) + 4B (s)D (s.) + B (s)p(s)N (s)
= — BEPWON () + 4, TOD(S) + BN (5)
=A,T($D (). (2.35)
The unitarity condition (2.2¢) is now verified as follows:
T(s.) = T(s)=[N(s)D(.)'D(s) — N(s))D ()
= [N(@E)D(Gs)'D(s)—N(s)
+2i4,TEDE]D ()"
=N Y D) —-D(E))DE)!
+2i4,T(s)
= N()D (5.) 'p()N D (s)' + 2i4, T(s)
= T (s.)p()T (s.) + 2iA, T (s). (2.36)
As before, the prefactors p(s) and 4, T'(s) allowed us, on
occasion, to replace s, by s. This calculation reveals a situa-
tion not present in the case with nonoverlapping cuts. Name-
ly, T (s) satisfies unitarity only if N (5) satisfies the integral
equation (2.27). In thenonoverlapping case N (s)D (s)' is uni-
tary, but in general not symmetric, for an arbitrary real ma-
trix N (s) such that the integral in D (s) is well defined.
Symmetry of 7'(s) in (2.31) is proved by the method of
Bjorken and Nauenberg.'® We examine the function

P =D OITE)— T ($)ID (), (2.37)
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where the superscript 7" denotes transposition. Because of
the definition (2.3) and the assumed symmetry (2.4a) of B (s),
it is clear that @ (s) is analytic in the upper and lower half-
planes, even though we have not assumed that 7°(s) is analyt-
ic in a whole cut plane. We shall show that the discontinuity
of & (s) over the real axis is zero and that & (s) has no pole at
5 = 0;. Since @ (5) vanishes at infinity, it must then be identi-
cally zero. The symmetry of T will follow, since we have
assumed that D (s) is nonsingular. For s<s,, AP (s) is obvi-
ously zero, since AD (s) = 0 and B (s) = B '(s):

AP (s)=D (A [T () — TT(s)]D(5)

=D"(9)4 [B(s) —B"()]1D(s)

=0, s<s,. (2.38)

For s> s, we apply (2.35) and find

AP (s)=A [DT(S)N (s) — N7 (s)D (5)]
=D7T(E)AN() +AD TSN (5)
— N7(5)AD(s) — AN " (5)D (s
=D"()A, T($)D (s) — N7 (s)p(s)N (5)
+ NT()pN () — D T()A, T (5)D (5)
~0. (2.39)

The CDD poles in the factors D ?(s) and D (s) of (2.37) cancel.

That is seen by introducing (2.31) and invoking the symme-
try of R;; the sum of the pole terms is

E(S - ai)vzc IT(RI - R IT)CI = 0

i

(2.40)

Toshow that 7 (s) of (2.31) satisfies the bounds (2.2f) we
refer to the Fredholm theory of Appendix B, which shows
that the solution N (s) of the integral equation obeys bounds
the same as those of T (s). If I (s) denotes the integral appear-
ing in D (s), then Lemma 2 of Appendix A shows that 7 (s,)
aiso obeys bounds like (2.2f). It follows that
1T (s.)| <x(lns) ~ “. To verify the second inequality of (2.2f)
we write, with s<s’,

N@ED(G, ) '"=NE)YD(E, ) !
=[N@E)—-NG)DGE,.) '+ NG, ) !
X[DG,)=Ds HDE, ) (2.41)

When there are no CDD poles it is obvious that the required
bound is satisfied for each of the terms on the right side. With
poles, the only additional task is to demonstrate local Holder
continuity near the poles. That is easily done with the help of
(2.32) and assumption (2.34).

We have finished the proof that T (s) constructed from a
solution of the integral equation (2.27) satisfies all of the
conditions (2.2), provided only that det D (5)#0 in the cut
plane and a, #£0.

The question of how to verify in practice the condition
det D (s)50 arises. In the following section we describe a
simple and practical method of verifying the condition,
which involves computation in the physical region only.
Fortunately, it is not necessary to search the complex plane
for zeros of det D (s).

Suppose that we solve (2.27) with an arbitrary choice of
the real, symmetric, positive-definite matrices R;; let us de-
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note these input parameters as R ", If 7°“(s) denotes the
amplitude constructed from (2.31) and the solution of (2.27),
will it necessarily happen that R ' = T°%(¢,) — B (0,)
=R™ .
In general the answer is no, because it is always possible
to change R " without changing R ¢*. Since C; is singular, it
has a real left eigenvector v; with eigenvalue zero:

v7C, = 0. (2.42)

If we change R " by adding to it the positive-definite sym-
metric dyadic Av,v], A >0, there is no resulting change in
R ', since R " enters the equations for NV (s) and 7 °"'(s) only
in the product R i"C;. Furthermore, we may argue that in
general

R =R+ po, (2.43)

wherez = u(R ™)is areal scalar function of R ", If we multi-
ply (2.31) on the right by D (s) and equate residues of the
poles on either side of the equation, we find that

(R —RMC, = 0. (2.44)

Both columns of C, are proportional to the same vector u,,
and R ™' — R ", being real and symmetric, has the
representation

2
R™—R?= Y Awuw

i=1
By (2.42) and the orthogonality of the w, we see that either
w/u; = 0or A; = Ofor eachj, and that at most one of the 4, is
nonzero. If 4,, say, is nonzero, then w, has the same direc-
tion as v; (being orthogonal to u;) and (2.43) follows. Since
R ?%'1s a nonlinear function of R ' (in the domain where it is
not a constant function) the function £(R ') is not a simple
one.

How many arbitrary parameters are associated with
each CDD pole? To answer this question we first note that
the pole positions o; are not to be counted as free parameters.
Suppose that we have constructed an amplitude T (s) from
(2.27) with input parameters o;, C,, R;. Recalling the deriva-
tion of (2.27), we see that the same 7' (s) has a representation
T(s)=N()D(s) L where D (s) has new pole positions &, and
new residues C;, and N (s) satisfies (2.27) with (o, C;, R))
—{(8,, C,, R;,). Thus a change in pole position o, may always
be compensated by a change in C; and R, so as to yield the
same amplitude T (s). The essential parameters are three in
C, and three in R,, but it must be remembered that there is a
subspace in the space of R, parameters on which 7'(s) is con-
stant; i.e., we may add any term of the form Av,v7, 4> 0, to
R, without changing T (s).

(2.45)

11l. BOUND STATES, LEVINSON’'S THEOREM, AND A
TEST FOR THE PRESENCE OF GHOST POLES

Bound states seem not to occur in meson systems, but
there is nevertheless a good technical reason to discuss them.
The many-channel version of Levinson’s theorem states that

(1/2i)in detS () = —n, + n,, 3.1

where 7, is the number of bound-stzte poles, n, the number
of CDD poles, and S the scattering matrix

S(s) =1 +2ip"*5)T (s.)p"/(s). (3.2)

391 J. Math. Phys., Vol. 22, No. 2, February 1981

The quantity In det S (o) is defined by considering In det
S(s)asa continuous function of 5, with In det S (s,) = 0, and
taking the increment between s = 5, and s = o . Our interest
in bound states and the Levinson relation stems from the
circumstance that “ghost” poles (spurious poles of the T’
matrix lacking a physical interpretation) are counted in Le-
vinson’s relation just as though they were bound-state poles.
In a system with ghosts (3.1) is replaced by

(1/2i)In detS (w0) = —n, —n, +n,, (3.3)

where n, is the number of ghost poles. In a calculation with
the ND ! method based on a specific model of B (s), the num-
ber In det S (o) is computed easily in conjuction with the
solution of the integral equation, z_ is an input parameter,
and n, = 0 is usually demanded by the physics of the situa-
tion. Thus we can determine the number of ghosts from
(3.3), rather than by searching the complex plane for zeros of
det D (s). Should bound states be allowed in the problem,
their location and number are easily determined by looking
for zeros of det D (5) on a small interval of the real axis.

Levinson’s relation is true for any amplitude 7 (s) satis-
fying conditions (2.2), provided that the homogeneous form
of Eq. (2.27) has no nontrivial solution (in the space consid-
ered in Appendix B). Of course the latter condition is a re-
striction on B (s) alone and it seems invariably to be met in
realistic models. It is understood that the poles of T'(s), n, in
number, are all simple poles with factorized residues (i.e.,
each residue matrix is of rank 1). A proof of Levinson’s rela-
tion, valid under the conditions stated here, is given in Sec. 5
of Ref. 11. The proofas written applies when the poles of 7'(s)
are at real points § <s,. One may also have ghost poles at
complex points in conjugate pairs (§, §*). An extension of the
argument of Ref. 11 is required in that case.

IV. SINGLE-CHANNEL PROBLEM WITH OVERLAPPING
CUTS AND ABSORPTION AT THRESHOLD

In some phenomenological studies it may be more prac-
tical to treat only one channel explicitly, accounting for
coupled channels by empirical absorption parameters. A
simple extension of the single-channel ¥ /D method with ab-
sorption’ allows one to handle processes such as KK-—-~KK
and NN— NN, which have absorption at threshold and over-
lapping cuts. The object is to construct unitary single-chan-
nel amplitudes of the form

T (s, )g(s)T (s )ds’

s'—s

_ (T
T@~&@+vL

+ LJ £y @.1)
TJs, § —8§

where the left cut part B, (s) and the absorption function F (s)
are given. We suppose that B, (s) has the properties of the
function B,,(s) of Sec. II; [s, in (4.1) is to be identified with s,
in Sec. II]. The inelastic threshold s, is assumed to be lower
than the physical threshold s, and may be either to the left or
to the right of the end of the left cut at s, . With the channel
considered labeled as the zeroth one, F (s) is the inelastic part
of the unitarity sum,

F(S) = z Ton (s*)pn (S)Tn() (S,),

n#0

4.2)
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where the functions p, (s) contain step functions to account
for the closing of channels. The sum over #» may actually
include integrals if states with more than two particles are
involved. We have F(5)>0 even for 5 < s; since the 7 matrix
is real-analytic and symmetric, T,,(s.) = T, (s.)* even be-
low the threshold of channel 0. For s3>5,, F (s) is expressed in
terms of the usual elasticity function 7(s):

F() =[1 —7*(9))/49(s), s>, 4.3)

T(s) = [n(s)e*® —11/2ig(s), s>s,. (4.4)
We suppose that F(s) satisfies bounds like those on B (s) in
(2.4d). It then follows from (4.3) that [1 — 7(s)]/g(s) satisfies
such bounds as well, and in particular that 7(s)—1, s—s, + .

Inthe N /D method with absorption,’ the function & (5)
is defined in terms of the real phase shift § (s) of (4.4) by the
expression (2.6). In the present extended method we use the
same Z(s), but use a B (s) different from the usual one;
namely,

5O =B+ - [ £
Tt §—s
+ —l—f el CONPN (4.5)
2 Js. 4 — )
In other words, we treat the part of the absorption cut be-
tween s, and s, just as though it were a left cut contribution.
The derivation of the integral equation then proceeds in the
same way as in Ref. 7. In the case without CDD poles the
equation reads

7(s)n(s) = ReB(s)
4 1 J * ReB (s) — ReB (s")
m Js,

, q(sIn(s")ds’, (4.6)

where n(s) = — ImD (5.)/¢(s). The amplitude is obtained in
terms of n(s) [which is not the same as the numerator func-
tion N (s)] by the formula

1 * ReB (s")g(sn(s")ds'

T(s)=B(s)+ DO " , 4.7)

b=t L [" e “s
T Js s —5

Each of the last two terms in (4.5), contributing to ReB (s),

has a logarithmic singularity at s = s,. The singularities of

the two terms cancel, however, because F (s) is Holder-con-

tinuous and

2
F)= 121® _1=0¢) o (4.9)
4q(s) 24(s)
As a result ReB (s) is Holder-continuous for s>s, and the
integral equation (4.6) is of Fredholm type on the space of
Appendix B, provided that 77(s) has no zero. A solution of the
integral equation gives an amplitude (4.7) that is properly
analytic and satisfies unitarity in the form
ImT (s.) = T ()0 (s — 50)g(HT(s) + F(s) + 4,.T(s),
(4.10)

$>5;.

provided that D (s) has no zero in the cut plane. Asin Sec. I1],
a practical test for the presence of ghost zeros of D (s) may be
based on Levinson's relation, which in the present case holds
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in the form

- 8(0) = —m(n, —n,). 4.11)

V. A SPECIAL CASE SOLVED BY GONZALEZ-ARROYO

We return to the two-channel problem of Sec. II and
discuss a special case treated by Gonzalez-Arroyo*?®; name-
ly, the case in which the left cut parts of T, and T, vanish
and nonrelativistic kinematics hold:

B,,(s) = B5(s) = B,,(s) =0, G.DH
P =6(s—s)s—5)"% i=12 (5.2)

Because p; (s) grows at infinity, we must assume that B, (s)
vanishes more rapidly than does B (s) of Sec. II. Instead of
(2.4d), we take

|B(s)|<as ™% s>8,,

s—5

u
|By,(s) — Byy(s)| <xs ,  S'2s2S,,

lca<l, O<p<l (5.3)

For a given B (s) satisfying (5.1) and (5.3), we seek the
general T (s) satisfying (2.2a), (2.2b), (2.2¢), (2.2d), (2.2¢),
and bounds such as (5.3) instead of (2.2f). For such a 7'(s)
there is a 7 (s) satisfying (2.5a), (2.5b), (2.5¢), (2.5d), and
(2.5e) and a corresponding D (s), as defined in (2.16), having
the representation (2.19). Consequently, the integral equa-
tion (2.27) holds. The first row of the matrix equation is
trivial, giving N,;(s) explicitly as a function of CDD
parameters:

Nyo=3 Ry =12 (5.4)

=1 §—0;
From the second row of the integral equation we have

M@= 3 (IR +BOIC s —

+ ..1_ f B22(s) - BiZZ(s) qg(S’)N2|(S’)dS’, (55)
mJs, 5s—3S
and

N = B+ 3 (IR +BOIC s ——

Lt jw&&jgz_@lqz(s')sz(s')ds'. (5.6)
T Js, §—9

The integral in the D matrix elements (2.16) corresponding
to (5.4) may be evaluated to obtain

D=8, + 31(C), +RC),

i=1

X[y =0 +ig @1 —— - 5.7)

We suppose as in Sec. II that the homogeneous version of the
matrix integral equation for ¥ (s), equivalent in the present
case to the homogeneous version of the scalar equation (5.5),
has no nontrivial solution. Then if there are no CDD poles,
the integral equation (5.5) for &,,(s) is homogeneous and has
only the trivial solution N,,(s) = 0. Without CDD poles we
obtain only the trivial solution in which channel 2 is com-

pletely decoupled, and T, ,(s) = T,(s) = T,,(s) = 0. Thus
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the solution of Gonzalez-Arroyo necessarily entails CDD
poles as defined in the two-channel formalism. Since Gonza-
lez-Arroyo reduced his problem to a one-channel case by a
special device, this fact was not previously apparent.

To reduce the problem to a one-channel case through
our formalism we circumvent solution of Eq. (5.5) and re-
quire solution of (5.6} alone. Accordingly, we suppose that
the solution of (5.6}, in a Banach space appropriate to condi-
tions (5.3), is given; see the remark at the end of Appendix B.
The solution N,,(s) obeys conditions like (5.3); of course, the
same is true of the solution N,,(s} of (5.5). Because the inho-
mogeneous term in (5.5) is O (s ), it is possible to show that
N,,(s) = O (s~ ")and D,,(s ) = O (s~ "/2). The proofis done by
showing that the integral operator “improves” the asymp-
totic behavior of V,,(s). That is, if N,,(s) = O (s ~ %), then the
integral is O (s ~2** '/?). By iteration of this argument one
eventually gets N,,(s) = O (s ).

We exploit the symmetry of the 7' matrix, writing
T(s)/detD (s) and
IZ(S) = —~ N, (5)D,(s) + N x(9)Dy,(s) =
= — Noy(5)Dy($) + N3 ()Dys(5). (5.8)

From (5.4) and (5.7) we may compute f“lz(s); it is just a
rational function, since the terms from the imaginary parts
of D,,(s) and D, (s) cancel. With that observation and a
knowledge of N,.(s) and D,,(s) we can use (5.8) to find the
general form of NV,,(s) and D,,(s). The rational function

Tyy(s) is

T(s)=
7tz 1(5)

12(5) = — N, (9)ReD,(s) + N,.(s)ReD) (s)
R C 11 o)
= z( ) z[(c)lz + (5 “0')]/ (R;C)i]
1 (RiCi)lz
x s — o0, +2,»" s—o,;
@+zucm+@wwv%&cm] 1)
§—0
= ﬂl s>
P "
(5.9)
where
Ps)= ﬁ(s—oi) (5.10)

i=1
and @ (s) is a polynomial of degree not greater thann_ — 1.
The second-order poles, corresponding to/ = j in the sums of
(5.9), cancel because of the condition detC, = 0.
Equation (5.8) may be construed as a Riemann—Hilbert
boundary-value problem for determination of D, ,(s). Since
Ny(s) = — ImD,;(5)/g,(s), the real part of (5.8) reads

D)
P(s)

4(s) = — ImD,,(s.)ReD,,(s.) + ReD;,(s.)ImD,,(s.)

= [Dyy(s.)D;,(s.) — Dy(s-)Dy(s.)1/2. (5.11)

By the rearrangement displayed in the second line of (5.11),
the Riemann-Hilbert problem'” is transformed to an inho-
mogeneous Hilbert problem'”:

D,,(s) 2ig,(s)P (5)
Dy(s)= =25 p (s) 4 ZBOPE) 5.12
. Dy(s) P(5)Dyy(s.) ¢
393 J. Math. Phys., Vol. 22, No. 2, February 1981

To solve the Hilbert problem we invoke the ubiquitous phase
integral

d(s)=exp(— s x%), (5.13)
e 2% = D, (5.)/D,y(5.). (5.14)

Notice that & (s) is the phase shift for the amplitude
N,,(s)/D,,(s), which obeys elastic unitarity and is not to be
confused with the channel-2 scattering amplitude 7,,(s). Itis
easy to see that D,,(s)/d (s), being real for s > s,, is a rational
function with poles only at s = ¢,; we may write
¥
D,y (s d
2:(8) = PO ),
where ¥ (s) is a polynomial of degree n, equal to the number
of zeros of D,,(s). Nothing prevents D,,(s) from having ze-
ros, in general, since poles of N,,(s)/D,,(s) are not poles of
the full 7 matrix. We have 6 («0) = (1. — n,), since
D,y (s.)~1and d (s.) ~6 (0 )/, s— + . Now substitute
d (s.)/d (s.) for D,,(5.)/D,,(s.) in (5.12) and use (5.15) to
obtain

[(D,,(s.)/d (s.) — D,,(s.)/d (s.)]/2i
7:(s) P

= — T s FIe

|d (s)]* ¥ ()

(5.15)

(5.16)

Thus we have the discontinuity of D, ,(s)/d (s) over the cut
[s,,00) and it is real as required. In addition we know that
D, () is analytic in the plane with cut [s,, « ), except for
simple poles at s = ¢;, and that it vanishes at infinity:

D, \(s.) = O(s'?). Since d (s) ~s™ ~ ™ at infinity, D, (s)/d (5)
obeys an unsubtracted dispersion relation if n, >n,. The
right-hand side of (5.16)is O (s ~'** "~ ") since degree (& )
<n, —1. For n,>n, we have the representation

D)= dw (- L[ L _26) &
7 Js |d, )P V() s —s
(€ 1 )
=hd(o) s—o; .
Note that d (s) may be redefined through multiplication by a
constant, but that (5.17) is invariant to such a change

(d—Ad, ¥—A"'¥). Forn, — n_ = n_>1 we must introduce
n, subtractions and replace (5.17) by the formula

D= 0o (3 220 L

if*%m o) ds
7 |[dG ) WE) QN — )
", C
" Z (Ci)a 1 )
i= IQ (al)d(ol) s — g;
where @ (s) is a polynomial with distinct roots 7, < 5,, none of
the #; coinciding with a ;. The function N,,(s)

= — ImD,, (s.)/g.(s) may be computed from (5.8), (5.9), or
by taking the discontinuity of (5.17) or (5.18). By either
method we find

(5.17)

(5.18)

P ()

Nasfs) = Noas) 25D . PODLG)

D,y(s)

(5.19)
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The representation (5.17) of D,,(s) is determined by
(C.),, and the functions @ (s), D,,(s). The latter are in turn
determined by the matrices C; and R;, through (5.9), (5.6),
and (2.19). Thus we have determined D, (s) in terms of the
input parameters C; and R, without having solved the inte-
gral equation (5.5), provided that n, — n, >0. On the other
hand, we can assert that ¥,,(s) as determined by (5.19) and
(5.17) in fact solves the integral equation, since the matrix
D (s) constructed from a solution of (2.27) satisfies all the
requirements that led to the unique function (5.17).

Inn. — n, <0 (which implies that n, >2), then D,,(z) is
not determined uniquely by the above considerations be-
cause of the unknown subtraction constants D, ,(z,)/d(z,) in
(5.18). Consequently, we cannot be sure that the correspond-
ing IV, (s) satisfies (5.5). Nevertheless, we can demonstrate
that 7 (s) constructed from (5.18), (5.19), and the other pre-
viously determined elements of D (s) and N (s) actually is a
solution of our problem for arbitrary subtraction constants
(provided, as usual, that detD (s) #0 in the cut plane). It then
follows that N, (s) constructed from (5.19) and (5.18) with
arbitrary subtraction constants satisfies (5.5), but with a val-
ue of the parameter (R, C;),, that may only be computed a
posteriori as { [T (0,) — B(c;)IC; },, from the T (s) construct-
ed. To show that T (s) [constructed with (5.18), (5.19), and
arbitrary subtraction constants] is a solution of our problem
we have only to verify unitarity, since proper analyticity is
evident and symmetry of T (s) was ensured through the use of
(5.8). Unitarity follows from the calculation (2.36) if (2.35)
holds. The first row of (2.35) is trivial because of (5.4), and
we have AN,(s) = [4, T(5)D (5)),, = 4, T5x(5)D(s) as is
usual for a single-channel N /D problem. To finish the proof
of (2.35), one has only to show that
AN, (s) = 4, T5,(5)D,,(s), and that is easily done by (5.19)
and (5.18). For s > 5,, AN,,(s) = O because N,,(s) is real, be-
ing the discontinuity of the product of two real-analytic
functions displayed in (5.18). For s <s,, (5.19) gives

AN(5) = ANy 29 _ 4, 7, (5D, (9).
D, (s)
To make contact with the solution of Gonzalez-Arroyo,
we look at the K matrix!”

K (s) = N(s)[ReD ()], (5.21)
The solution in question is such that the element K,,(s) is

equal to the K matrix for the “decoupled” channel-2 prob-
lem, namely, N,,(s)/ReD,,(s):

(5.20)

$28;.

(N,,/ReDy;)ReD, — (N, /ReD,;)ReD,
ReD,, — (ReD,,/ReD,,)ReD,,
= N,:(5)/ReDyy(s).

K5 =

(5.22)

Condition (5.22) can be met in only two ways: either
ReD,,(s) = 0or N,,(5)ReD,,(s) — N,,(s) ReD, (s) = 0. The
latter equation implies that K ,(s) = K, ,(s) = 0, however,
from which it follows that 7,,(s) = T5,,(s) = 0; i.e., that the
solution is trivial. We must take ReD ,(s) = O and by (5.7)
we see that the Gonzalez—-Arroyo solution corresponds to a
particular choice of CDD parameters such that

(€)2=0, (R, C),=0. (5.23)
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With ReD,,(s) = 0 one has
K 2(s) = K,,(s) = N,,(s)/ReD,,(s),

and

(5.24)

1

K@) = ReD. )

(N, 1(8) — N 5(9) BE_DA(;V)_) )

ReD;,(s)
(5.25)

According to (5.4) and (5.15), we may write (5.24) in the
form
K= 2 1
¥(s) Red(s)
where ¥,,(s) = N,(s)P (s) is a polynomial of degree not
greater that n, — 1. Gonzalez-Arroyo has

(5.26)

(0)
Kio(8) = [1 — ig(s)K1(5)] 2(a’_(s(s—))

D, (s.) X(O)(s) _ X(O)(S)
ReD,,(s) d(s) Red(s)’

(5.27)

where y ©(s) is a rational function thatis O (s '~ ™) at
infinity and has poles at the zeros of D,,(s) [i.e., of ¥ (s)], in
agreement with our function ¥,,(s)/ ¥ (s) of (5.26). The argu-
ment of Ref. 4 seems to allow poles of y “’(s) at other points
as well, but our generally valid expression (5.26) shows that
additional poles are not possible: we have y V(s)
= ¥,,(5)/ ¥ (s) with poles only at the zeros of D,,(s).

Next let us evaluate (5.25) using expression (5.17). With

the help of (5.15) and (5.14) we get

Ko@) = [Nn(s)+ %

P (" _g) @E) _as
X(ﬁ f ld(s' )2 ¥() s —s

& @) 1 N qz(s)tan5(3)¢(s))]

i=1 d(gl) §—~0; {d(s‘) ZW(S)
1
X ————, $>5a. 5.28

ReD,(s) 5252 ( )

The corresponding formula in Ref. 4 is
P ["  gs) (¥ils) ds
K — h <0y i f 2 ( )
n(s) ©) + 7t [dE )P \NPE) /) s —s
qZ(S)tang(f) ( wlz(s) )2, S)SZ, (529)
d@s. > \ ¥6)

where 4 (°’(s) is a rational function that has poles at the zeros
of ¥(s) and is O (s"') at infinity. In order that the terms pro-
portional to tand (s) in (5.28) and (5.29) agree, it is necessary
that @ (5) = W¥,,(s)and ReD, (s) = 1. According to(5.9) and
the condition ReD,,(s) = 0 already imposed, @ (s) = ¥,,(s)
follows from ReD,,(s) = 1. By (5.7) the latter is true if and
only if

(€)y, =0, (R.’Ci)u =0. (5.30)

With @ (s) = ¥,,(s) we still have to resolve the discrep-

ancy between the integrals that appear in (5.28) and (5.29).
Consider the function

FO=e 70 \Tawr v 1i—s
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~ne* = 172) at infinity and

1/2)

The bracketed expression is O (¢
we are assuming that n_>n_; hence the integral is O (s~

The factor in front of the integral is O (s™~ "~ '). We may
write a dispersion relation for f (s) with # subtractions, where
H,=n,,

[0, .= n, +1,

n=

n,—n,—1, n,—n,>1
Namely,

fO="3 s

n_ a;
+ s"[iZ,l —y +

(5.32)

(5.33)

where the sum over i is due to the poles of 1/¥ (s) at points 7,
assumed distinct. The bracketed factor in the integrand is
O (¢t %) so that we can remove all # subtractions in the inte-
gral by iteration of the identity

T : 5.34
—eypr ! (s_t ) (5.34)

Thus

= ¥ P T og(t) W(t) dt
Ref'(s) = v (s) 7"«[, ,d(a)}z W) t—s

_ P (" g (Pu)Y di

o7 J |d ()| ( g[/(t)) ,_S+R(s), (5.35)
where
RO= S o 0§ 0

S [T g(t) (Y)Y dr
+MZOS T J: |d (1.)]2 ( V’(t)) S . (5.36)

We see that the integrals in (5.28) and (5.29) differ by a ra-
tional function that has poles at the ¢, and which in general is
O(s" ') at infinity.
Finally, in order that (5.28) and (5.29) be compatible,

the rational function
¥,(5) 2 €)1 (5.37)
Y(s) ©id(o) s—o;

must have the properties required of # '(s). If n, = n,, n,
+1, then R (s) = O (s"") and all terms in (5.37) are O (s*") at
infinity as required. Otherwise the second and third terms of
(5.37) must cancel appropriately at infinity. Gonzalez-Ar-
royo tacitly assumed, in fact, that n, = 0. With that assump-
tion we get a solution of his form when #_ = 1 and the CDD
residues satisfy conditions (5.23) and (5.30). Even though
the solution of Gonzalez—Arroyo contains arbitrary rational
functions, it is far from being the general solution of the
problem posed.

N G)Y+R(s) —

— LA M, —ip
1 + M‘m — Tv ( 1 !
[ (M, 027 5,] M, M, —
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ir [ |32((ti))|2 (q;;z((tt)))z] t"(:i t— 5) ]

Mlzzpz) - ([l e

VI. REMARK ON A UNITARY PARAMETRIZATION
SUGGESTED BY YNDURAIN

We have shown how to construct properly analytic am-
plitudes satisfying the unitarity equation (2.2e), but the con-
struction has the disadvantage of requiring the solution of an
integral equation. For phenomenology it would be useful to
have a parametrization of T (s), analogous to the usual K
matrix parametrization, that would automatically satisfy
(2.2¢). Yndurain' has proposed a parametrization which has
the required property in the region s, <s<s,. Define T (s)such

that T,,(s) = T;(s), except fori=j=2,and
S,
Tools) = Tonls) — - | 2809 ©.1)
T Jo S — S

There is nothing special about the lower limit O in the inte-
gral; any lower limit less than s, will do. Define a matrix
M (s), which is related to T (s) in the way that M (s) = K ~'(s)
is related to T'(s):

T(s)y' = M(s) — ip(s). (6.2)
Now we may show that the unitarity condition (2.2¢) is
equivalent to the reality condition M (s) = M (s)* in the re-
gion s, <s<s,. Let us consider the region s>s,, supposing that
M (s) is real in that region. We write

T =T+ T0),
(6.3)
0 0
T(s)= o L St (s')ds'
TmJo §—3s

Since reality of M (s) implies that

AT(s) = T (s.)p(s)T (), (6.4)
we have

AT (5) = T(s)p()T(5) + 4, T(s). (6.5)
Also,

T(s)p@)T (s)) = T(s)p)T (s2) + U (s), (6.6)
where

Ulj =T_ :1p1T4 y T T :ZP2T+2J + T 11P|T4, N
+ 7T :292T+2j +T ,1P|T+u +7 nP2T+2J
—Pv(T :2T+2J + T 12T+2j + T ,zT+ 21)5,2
(6.7)

Since U (s) = O for s<s,, Eq. (6.5) is indeed the unitarity
equation for 5, <s<s,.

For s> 5,, however, unitarity is not equivalent to M (s)
being real, since U,,(s)#0 in that region. Indeed, unitarity
for s> s, is equivalent to M (s) = K ~'(s) being real, where

T(sy' = M(s) — ip(s). (6.8)
The relation between M and M is as follows:
ip)Tsy (M, — i) — M2, T, M,
p 20y /) dn 1-. . (6.9)
M, M, —ip,
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Clearly M (s) does not change continuously into M (s) at
s = §,; rather, at s = 5, we have

_ [ M? M .M.
M=pr— T [T T 22). (6.10)
1 + M22T22 12M22 M22

The matrices M (s) and M (s) are two different analytic
functions that one would try to represent in terms of a few
empirical parameters so as to meet the following conditions:

DM =M(©* s <s<s5y

@) M (s) = M(5)*, s>s55

(iil) M (s) and M (5) are related by Eq. (6.9), s>s,.

(iv) The analyticity properties of M (s) and M (s) should
reflect to a reasonable extent the correct analyticity proper-
ties of T'(s), especially the nearby singularities corresponding
to the principal particle exchanges.

It seems rather difficult to satisfy all of these require-
ments simultaneously; in particular it seems hard to satisfy
(iii) in such a way that (i) and (ii) would also hold. We would
expect Yndurain’s proposal to be rather limited in useful-
ness. The only alternative that we can think of, short of solv-
ing the integral equation (2.27), is to make a pole approxima-
tion for B (s). As is well known, the kernel of the equation is
then separable and solution of the equation is reduced to
quadratures and solution of algebraic equations. Unfortu-
nately, for a realistic representation of B (s) one usually needs
so many poles that the resulting formulas are not very
illuminating.
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APPENDIX A: ESTIMATES OF PRINCIPAL VALUE
INTEGRALS

We are concerned with the asymptotic behavior and
continuity properties of principal value integrals of the form

v f)dt

s, L— 8

g(s) = P

In the following a, 8, and & are fixed positive constants, and x
is “some positive constant” which is understood to have dif-
ferent values in different inequalities.

Lemma 1: Suppose that f(¢) obeys the conditions

(A1)

|f<z>|<-( —%Y, (A2a)
K ft,—5,\°—%} ¢t —t

) —fple = ()7 | Azl
ta t, t,

tzt, a+8<1, 6>86. (A2b)

Then the integral g(s) of (A1) is such that

lg(s)|<n /s, (A3a)

18(s,) — 82)[< 5 =% s, (A3b)
1

1

Lemma 2: Suppose that f(¢) obeys the conditions
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i i
ol G (=) (Ada)
. K t,—5o\ 8% t;,—1, |2

@ —f@le ( - ) =

t,>t, a>1, 0>86. (Adb)

Then the integral g(s) of (A1) is such that
lg(s)| </(ns)* ~; (A5a)
18(s)) — 8(52)| < —— 17517 555, (ASb)

(Ins,)*~ ! 5y

We give a proof of Lemma 2; A proof of Lemma 1 fol-
lows the same lines, but is somewhat easier. To verify (A5a),
we write

LS ]
g:PJ +f =8 +8& u>1, (A6)
4 X3
and majorize g, im‘;nediately:
Igz|<xf @k f A X (A7)
s INE(t — 5) s tIn%t  In“"'s
For g, we use the identity
LS
a0 = [ L0 Oa b= @y
o]

By introducing (A4b) and (A4a) in the first and second
terms of (A8), respectively, we see that g,(s) is bounded at
small s, say s < 2s,, and consequently (AS5a) holds at small s.
For s > 25, the logarithmic term in (A8) clearly satisfies
(A5a). The other term is decomposed and bounded as fol-
lows, with } <4 < 1:

As 145
(. +])
So As t—S

f“ dt 1
<K
W toInt |As—s|' 7°

+"st dt 1
i sl 1 —s|' 70

K (M dt « (* du
< + —
s' =0, Pt s Ja ju—11""

<—. (A9)
In‘
Thus (A5a) is proved and we see that the dominant part of
g(s) at large s is from the tail of the integral, g,(s).
To establish (A5b) we split the integral as follows:

25, o
g=p| +[ ~a+e (A10)
Sq 25,
The bound of g, is easily obtained:
a5 — 8269 <klsy =5 [ &
- S K|S —
825 &SI SR 5 2 ln”t(t~s‘)(t—s2)
’451 ~ 55|
LKS— S
1 2|j\ tzln"t s,In’,
K 1 — 5, K 5, —8, |?
T e s, s " n® s, s,
(A11)

Now put s, = s,(1 + b) and note that we may restrict atten-
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tion to small b, say b<}. For b > } the required bound is a
direct consequence of (A5a):

K
lg(s)) — g(s2)| <lg(s)| + g(s2)I < a1
In“~ s,
5 —
< kb _ K S — 5 (A12)
In s, In“ s, 5

Let us extend the domain of £(¢) to include the interval
L5, <t<Sp, putting f(¢) = O on that interval. The property
(A4b) holds for the extended function; for ¢, <5, and 1,25,

L£(6) —f@0)] = | feI< ( _ éo_)“

ma,z(l 202

n‘t ( ) ( l ) - (ALY
1 1 L
By (A8) we have

1016 5
50 dt + f(s)in ( 0/2)
= hy(s) + hz(s),

(A14)

and

ie) = hael<| 50 =7 [ (2250 |+
25 —85 ) _ 25— 5,

/)l |In (s1 —s0/2) " (s2 —sO/Z) ‘ '

The logarithmic factor in the first term of (A 15} is clearly

bounded by a constant for <} and s,>s,. For the second
term we use the mean-value theorem, noting that

d (bz—s)‘
L in(222—2
ds s — 85o/2

+ sup

(A15)

sup
5 <SS,y

<sup

1
, — S s — 8§/2 ’
= 1/s, +1/(8; — 50/2)<K/5,. (Al6)

The difference of logarithms in (A15) is then less than
xb<«b?® and the required bound of the increment of 4, is
obtained from (A15). To estimate the increment of 4, we
break the integral into three parts,

s, (1 —2b) s, (1 4 2b) 25
By =f + +f — s+ o + s A17)
50/2 si(1 —28) si(1 +2b)

The separate terms in the increment of j, are so small that we
need not consider their difference:

| j2(s1) — Ja(s)
<Ij2(51)( + ‘jz(sz)’

s, (1 +2b)
<—= f dt( L, )
S In%,; S —26) ff—slf‘s {t—sﬂ‘s

1+26
_ _k J‘ du( 1 n 1 )
In°s, Ji —2s lu—1|'7° lu—1—5b]|""°
&
wb_ (A18)
In“s,

Next we estimate
J1(82) +jas3) — ji(s) — ja(s)
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s, (1 —28) 25, dt
—e—ren ([ j ) )):

4 q ( - | ( +2b)>‘” LF(6) —F(6D)]

x(t ls - - ls)r_k,+k2. (A19)
92 — 91
The part k, is easily disposed of:
—s K s
= 1760~ 6l [ (Z28 ) [« vt a0
1] 1 2 ) Ins,

For the first integral in k, we need a further decomposition
to handle the combination of two poles and a logarithm:

Sl =200 gy 1 1
t%In’ |t

lkai| <klsy — 55|
—5|' 7% Jt—s)

S 1 1
=«b
so2s, WIn%syu ju—1—561""°% |u—1|
1/2
<Kb(f du
so2s, u0InCs, u
1 1-2b6 du )
lnsI 172 lu—l— ' %lu — 1]
5,/2 1—-2b
<Kb(; f 1 J‘ du )
o2 t‘sln"t In%, Jiz  Ju—1P"°%
51 Kb&
(1 +b )< — (A21)
ln S, In‘s,

To complete the proof of Lemma 2 we treat the second inte-
gralin &,:

2s,
Kls,—s ’ dt 1
ko | < |§1 _ 2 -

s5Ins,  Js a2y | — 5, |t — s,

_ K|s; — sy mew du 1
s5si %%, Jivas  lu—1—06|""° lu—1|
ih 2(1 + b) du Kb‘s

< f 2
Ins, Jivas  Ju—1—=56|"" In‘s,

Notice that if two functions f,(¢ ), f5(¢ ) satisfy (A4), then
the product f(¢ )f5(? ) satisfies (A4) with the exponent a re-
placed by 2a. Consequently, when we estimate the integral in
(2.3) using (2.2f) and the definition (1.2) of p(¢ ), we find that
it obeys conditions like (A5) with ¢ = 2a, § = . Since
2a —1 > a, we thereby establish conditions (2.4d) on B (s).

APPENDIX B: FREDHOLM THEORY OF THE INTEGRAL
EQUATION

We show that the integral equation (2.27) may be treat-
ed by Fredholm theory”® under conditions (2.4d) on B (s).
We map the interval [s,, 0 ) onto (0,1]. The choice of the
mapping is not crucial; we take r = 5,/s for convenience. [In
anumerical calculation of the Fredholm solution it is usually
best to choose the mapping # (s) so as to make the integrand
finite and nonzero at the point corresponding tos = «.] We
multiply the equation by (Ins) %, @ > 1, and seek a solution
& (1) = (Ins) “N (s)in a Banach space U consisting of real ma-
trix functions ¢ (¢ ) continuous on the closed interval [0,1]
with norm

Il = sup (4,1 ®1)
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Let us define the operator K by the formula

Ko )= ooy TO—ZE0 o) £ a8

As we shall see presently, X maps U into itself if K¢ (0) is
defined to be zero. According to the Ascoli-Arzela crite-
rion,* K is compact (completely continuous) if the sequence
{K¢, ()} is bounded and equicontinuous, where {¢,(2)} is
any bounded sequence of functions in U.

Let {¢,(¢)} be a bounded sequencein U, ||¢,|| <«, and
check boundedness of | K¢, || as follows:

IK¢.|| < sup }_‘,(lns)"

f l 'B,(5) — B,,<s) 14,

p;(s") s’y ds'. (B3)
An analysis like that in (A6), (A7), and (A9) (but not requir-
ing subtraction of a logarithim) shows that the integral in
(B3)is O(ln—** *'s), thus ||K@, || <k, since a > 1. Inciden-
tally we have shown that K¢ (¢ )—0, +—0. With the definition
K¢ (0) = 0 the function K¢ (¢) is continuous on the closed
interval [0,1]; K maps U into itself.

The requirement of equicontinuity of the functions
K¢, (¢)is that for any € > 0,

max | [K8, () — K8, ()], <e (B4)

when |t; — t,| <& (€), where § is independent of n. With
J.(#,,8,) defined as the left side of (B4), {4, } any bounded
sequence, and 5,<s,, we have

£, (tuty) <k](lns,) a—unsz)“|
u(s2 a
<3, PSR | s
q(sl) y(s) BU(SZ) zj(s)
7 Sy, —§'
Xp,»(s')d—s,=g+ h (B3)
(Ins)*

The right side of (B5) is independent of # and we have only to
show that it vanishes with |7, — 2,|. The analysis of (A10)-
(A22), simpler now because we needn’t bother with subtrac-
tion of logarithmic terms, shows that the second term 4 in
(B5) has the bound

51— 8, "

h(,0)<

#o K ' t,— 1,
(Ins;)* ! I

@ -1

(Ins,) Sy

(B6)
Also, we may bound the two terms in 4 separately to get
K " (Ins,)” < M
m])a 1 (11'152)2“ -1 (lns])a -1

For any € > 0 let us divide the interval of ¢, into two parts,
t,<7(€) and ¢, > n(€), where 7(€) is chosen to make

M /[In(sy/ 2] ' < g, (B8)

with M as in (B7). Then if t,<7(€) and |1, — 1| < 7(€) we
have by (B7) that / (¢,,¢,) < le. On the other hand, if 7, > 77(€)

(B7)

h(t,,12)<
(1) (1
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we have by (B6) that
K t,— 1, |#
ht),6)< Ty ] ‘77@) 2| <le (B9)

for |1, — £,| less than some & (€). Hence for

£, — £ < min[7(€),& (€)] = 8,(€) we have h (¢,,1,) < Le. To
majorize the first term g in (B5) we apply the mean-value
theorem to the difference of logarithms and bound the inte-
gral as usual to obtain

Si =%

(tl!t7)<

B10
l)(, (B10)

Altematively, we may bound the two logarithmic terms sep-
arately and find

8t 1) <w/(Ins)“ . (B11)

The argument used above then shows that g(z,,#,) < e for
[t, — t,| less than some §,(¢). For

[t, — t,] <min[8,(€),6,(6)) = & (¢€) we have £, (1,,4,) < €, and
the proof of equicontinuity and compactness of X is
complete.

Our hypothesis B (s) = O ([Ins] ), a> 1, is close in
some sense to being the weakest asymptotic condition on
B (s5) that leads to a Fredholm equation in a classical Banach
space of continuous functions. With B (s) ~ (Ins) "' the oper-
ator K is noncompact in a space analogous to U, but may be
regularized by extraction of a noncompact part in such a way
that the problem is reduced to a regular Fredholm prob-
lem.?' Under still weaker conditions on B (s) a regularization
is possible, but only at the expense of new arbitrary constants
entering the equations.*”

Since Eq. (2.27) entails a compact operator, it may be
solved numerically by various well-developed methods; see,
for instance, the review of Atkinson? and the book of Anse-
lone;** the latter deals with the rigorous justification of
discretization.

The operator of Eq. (5.6), multiplied by s“, is compact
on a Banach space ¥ under conditions (5.2) and (5.3) on p(s)
and B,,(s). Here V consists of real continuous functions
& (1) = 5 "N,,(s) with

¢ || = sup|d (1)]. (B12)

The proof of compactness is the same as that above, but with
the estimates of Lemma 1 of Appendix A replacing those of
Lemma 2.
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Representation matching and the gauge invariant energy-momentum tensor
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We atttack the problem of finding appropriate representations of symmetry groups so that a
conserved quantity derived by the Noether theorem from one symmetry of a theory preserves the
other symmetry. This representation matching problem is well solved in two-dimensional gauge
theory where we find a new representation of the translation group which leads straightforwardly
to the symmetric, gauge-invariant energy-momentum tensor.

PACS numbers: 11.30. — j, 02.20.Qs

I. INTRODUCTION

The success of gauge theory has revived interest in some
old problems. The connection between constants of the mo-
tion and symmetry is one of them. It is well known that a
conserved physical quantity is deeply related with symme-
try. The Noether theorem'? provides the connection be-
tween a physical observable and its symmetry source. But
when a theory simultaneously possesses several kinds of
symmetry, a conserved quantity derived from one symmetry
by the Noether theorem may not preserve the other symme-
try; this leaves some ambiguities in interpreting this quantity
as a physical observable. A gauge theory is one such case.
The energy-momentum tensor and the angular momentum
tensor derived from space-time symmetry are not gauge-in-
variant. The problem exists in the gauge field sector which is
described by a Lagrangian of the form

Leoft = =\, F4 = —WeF, F" (1)
Here

Fo =T Fi =0, 4, =3, 4, + [4,4] ()
and

A, =T°45. (3)

The generators of the gauge group are normalized by

trT TP = 15°. {4)
Under the translation

X,—x, =x,+0b, (5)

the field 4, is usually assumed to transform as a derivative
or a “*scalar”

A, (x)=A,(x). (6)

With the continuity of 4,,, one obtains an infinitesimal
form of “local variation’?

8%4, =4 ,(x)—A4,(x)

= ~bv0d, 4,{x) (7

Then the conserved current is
J,~ —(—=2aF;6%4, + Lb,) (8)
= —bF2uF} d, 4, + .28, (8

40n leave from the Department of Modern Physics, China University of
Science and Technology, Hefei, The People’s Republic of China.
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Thereby we derive out an energy-momentum tensor
T, = —2uF;d,4, - .2g,,. {9)

uv
Obviously it is not invariant under the gauge transformation

A, =U, +U"'9,U)\U"",F,, =UF,U"" (10

(Furthermore, this energy-momentum tensor does not cou-
ple to gravity*.) The same thing happens when one deals with
the Lorentz rotation and angular momentum tensor.

A conventional way to remedy these undesirable fea-
tures is to add a divergence free term (superpotential®) to
T,,, making it symmetric and gauge invariant. For (9), one
defines another quantity

0, =T, +218F,, A,)=2F,F, —Lg,,. {11
Here we have used the equations of motion
[D,.F*]=0, (12)
D, ,=d, +4,. (13)

Because this method is a bit artificial and obscures the
connection between the conserved quantity and symmetry,
it is interesting to find a way showing {11) as a natural infer-
ence of the Noether theorem. From the above process we can
see that the form of a conserved tensor is related to what we
choose for the representation of a symmetry group. The non-
gauge-invariant energy-momentum tensof is a consequence
of choosing thefield 4, to generatea trivial representation of
the translation group. Obviously, it is not necessary to re-
quire an unphysical vector field transform in this way.

Thus the problem is to find a suitable representation of
the translation group which makes the energy-momentum
tensor gauge-invariant. This is a representation matching
problem. It can be more precisely stated as follows: When a
theory possesses two kinds of symmetry, can we find appro-
priate representations of the symmetry groups so that the
conserved quantity derived from one symmetry by the
Noether theorem preserves the other symmetry?

Recently there has been some work along this line.*?
The authors of Ref. 5 found that the discussion of the closure
of the supersymmetry leads to the concept of a gauge-invar-
iant translation from which one can obtain the gauge-invar-
iant energy-momentum tensor. Using a gauge transforma-
tion to eliminate the asymmetric, non-gauge-invariant part
while making coordinate transformation, the author of Ref.
6 modifies the translation law (7) into
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5*A=b"F,,. (14)

Then the desirable tensor follows. Unfortunately, as the au-
thor has pointed out, the transformation law (14) cannot pre-
serve the integrability condition. This transformation does
not give a representation of the group.

This paper attempts to deal with this particular repre-
sentation matching problem. We find that this problem can
be well solved in two-dimensional gauge theory. In Sec. Il we
provide a new representation of the translation group in the
Hilbert space of a U (1) gauge field. We obtain the gauge-
invariant tensor straightforwardly with the Noether theo-
rem after using the Lorentz condition. To discuss the alge-
bra, we also derive a new representation of rotations. In the
light cone system the new transformation law gives an eigen-
form of the translation. Then we generalize this method to
the nonabelian two-dimensional theory in Sec. II1. Finally,
Sec. IV is a discussion of the problems encountered in the
four-dimensional case.

{i. REPRESENTATION OF 2D TRANSLATION

Two-dimensional (2D) gauge theory is a good testing
field where many ideas can be examined.'® Now we provide
another example to show the special advantage of 2D theory.
In this section we only discuss U(1) gauge theory.

It is well known that the translation group only has one
trivial finite order irreducible representation® induced from
Eq. (6). But one can nontrivially represent this group in the
Hilbert space. In the U(1) case, (5} and (7) can be written as

(15)
(16)

X,

5*4, =ib“P,,"A,.
The infinitesimal operators P, are
P, =1i,8.%

o

— g a v
=x,—ib"P,"x,,

(17)
they satisfy the abelian algebra
[Po.Pp]=0. (18)

Nevertheless, it is not necessary that every component
of a vector field transform uniformly. Actually (5) also can be
written in the form

X, =%, ~ib*Q,,"x,, (19)
Q(z,,u V= — i(g(z v a,u - gau a"), (20)
or using a matrix notation
x' = B(b)x, (21)
x= "0), (22)
1
Bip)=e"b"Q,, (23)
Q.= —iec,” d;, (24)
e—e")—(o I) 25

It is very easy to verify that the Q_ s satisfy the same
algebra as the P_ s,

[Q..0s]1=0. (26)

Now we suppose that under translation the vector field
A,, transforms in the same way as x,,
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A,xY=B(b),"4,. (27)
We obtain a complete variation in the infinitesimal form
64, =ib* [Q,,"4.]
=—b%d,4, —8,,9"4,)
and a local variation
5*‘4# =ib” [Qa.uv + Pa.ﬂ A, ] (29)
=b"F,, —~8..0"4,) (30)

Substituting this back into (8), we obtain the right form of the
energy-momentum tensor

(28)

., =F’F, —.%g, (31)
providing the Lorentz condition
y=84,=0. (32)

Under transformation (29), the field strength and the
Lorentz condition are not changed
5va = F’yv(x') - F[AV(X)
:ba( ,ua_gva)a)Ap=Ol (33)
8FA, =b"F,, =0. (34)

So the theory is translation-invariant.

Equation (29) generates a representation of the transla-
tion group. The infinitesimal operators are Q,, ’s. To see their
position in the whole Poincafe algebra, we need to study
them together with rotations. Using the same method one
can obtain three forms of 2D rotation

X, =x, +w,"x, (35)
=x, +{— §{©P/93,.," x, (36)
=x, +(—i/2w¥L,g," x, (37)
=X, +(—i/2wP N,z " x, . (38)
Here

2opn" =80y 85" — 8" 8pu)s (39)
Lapu”= —ilx, 05 — x5 908" = x4 P, " — x, Pp," (40)
Neg"' =x5 Qo — %, Op,." 41)
In the matrix notation these operators have the forms

5= — l€€,p, {42)
LaB=xBPa_xa PB’ [43)
Nop = i€lx, €5¥ — x5 €,7)0,. (44)

Then we have the following commutation relations:

B =P, P, Ly, O O No 2,
A=P|[4B]=0 0 —iP, O 0 —iQ, O
P, 0 —-iPp, 0 0 —iQ, O
Ly, 0 iQ, iQ, 0 0
9 0 0 —iP, O
o8 0 —iP, O
Noy 0 0
2y, 0

This algebra is larger than the Poincafe algebra."! But we
can define some appropriate operators

T, =3P, + Q) (46)
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MaB = %(LGB + Naﬂ + Eaﬂ)
=4xp Ty — x5 Tp) +142,p (47)
which satisfy the usual Poincafe algebra
[anv]:O (48)

{T,u ’MaB] = ig#B T, — 8ua TB

Using T, as translation generator we achieve the right
energy-momentum tensor; likewise, the generator
L,; + N,z provides the correct gauge-invariant angular
momentum tensor.

This infinite-dimensional representation (46) of the
translation generator is “reducible”. Actually, when we turn
to the light cone system'*

X . =(1/V2)(inxl)9 (49)
* = (1/V2)6 £ ), (50)
4, =(1/V2)4, £ 4), (31)

the transformation law (29) becomes
6*A, = —2(b9_M,
S*A_ = —24b¥3, )4

(52)

These equations are more likely showing the characteristic
of the translation and we notice that in the light-cone system
the different degrees of freedom under transiation are
separated.

IIl. NONABELIAN CASE

Turing to 2D nonabelian gauge theory, we first rewrite
the curvature matrix in the form

Iiuv = [‘D~;HAV] - [D~V’A# ]’ {53)

D,=d, +,. {54}
Comparing to the U{1) curvature

Foo=[0,4,]—[3.4,], {35)

we find that we only need to make a replacement of d,, —»15#
when dealing with the nonabelian case. So we change the
transformation law (29) into
8*A, =ib* [T, "4, ]
= —b"F,, —b,0"4,. (56)
Here
T V:i(g;tvﬁp -

Dt

gp VD‘.H + gp,u D~p v)' (57)

In the matrix notation, the T, have the forms

N D - D
P ( o - 1),
o=1 - D, D,

. D -D
7o ( T & o)‘ 58
V=0 b, D, (58)
They also satisfy the Lie-Cartan integrability condition
[T0,T,]1=0 (59)

and so we can get a finite form of the representation after
exponentiation.

Using this representation we soon obtain the correct
energy-momentum tensor
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6, = —tr{F °F, ) —7g,, {60)
with the condition

[DrA4,1=0, (61)
which implies the conventional Landau gauge

F#4%=0. (62)
V. DISCUSSION

We have shown that in the 2D case the representation
matching problem can be well solved. This is because in this
case the antisymmetric tensor €, is just an exchange opera-
tor. In the 4D case the above trick does not work. We may
write the translation in the form

X, =X, +b,

=X, +{b°/(4c + a))lag, ', + ¢, 0" + de,,, “F)x,.
We define a set of operators
T " = 08,00 + 08,3y, + 8., 0" + de,,, ). (63)

The commutators among them are

(7,71 = — [lac + 4 7)8an8s" — 8a "853,
+{a®—d 2)(g3”5” 3. —8,70,95)
+(* — d%)8,,.959" — 83,0,
—2d (€€ 4,50 + a€,5,7d, *]. (64)

Whatever one chooses for a,c, and d, except all zeros,
will not make the T, satisfy the abelian algebra. So it does
not provide any representation of the translation group oth-
er than the usual one. But there is a possiblity that they may
form a representation of some sort of larger group. So for the
4D case the representation-matching problem is still open.
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Motivated by previous work on relativistic quantum dynamics expressed in algebraic terms, we
introduce a fully relativistic generalization of the Hooke group. The mathematical properties,
relation to other proposed quantum dynamical groups, and the unitary ray representations of this
group are studied. Hadrons are viewed as de Sitter type microuniverses, where the quantum
dynamics is then determined by the relativistic Hooke group. Wave equations are studied, a mass
formula is derived, the emergence of a Regge type formula is deduced, and correspondence with

other extended hadron models is noted.
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1. INTRODUCTION

During the past few years, we attempted, in a series of
papers, to establish and study relativistic quantum dynami-
cal groups suitable for the description of subnuclear phe-
nomena. The prototype of such an enterprise is, naturally,
the central extension of the nonrelativistic Galilei group,'
% ,, which contains a complete account not only of quantum
kinematics but also of the inertial dynamics of a free particle
and which also supplies the Heisenberg rules of quantiza-
tion. If was shown? that & , can be rigorously motivated and
deduced from a locality postulate (gauge principle). It is easy
to show® that an analogous line of arguments, employing the
(flat) Minkowski space (rather than the Euclidean 3-space) as
the event-space, leads to a relativistic generalization & ; of
the Galilei group, which has been established earlier on intu-
itive grounds* and studied in several papers.’ The group &
contains the Poincaré group as a subgroup. Its generators
correspond to the (Lorentz) rotations and boosts, energy-
momentum, event localization, and a relativistic develop-
ment operator (Hamiltonian). One of the Lie brackets pro-
vides a relativistic generalization of the Heisenberg commu-
tation relations and two other Lie brackets correctly render
the inertial free motion of a relativistic quantal particle. The
irreducible unitary representations lead to spin-towers. The
Newton-Wigner position operator emerges in a natural
way.?

Since & ; describes only free motions, we must search
for a generalization which would account naturally for the
emergence of force-effects. The hint in this direction can be
found in the interesting work of Bacry and Lévy-Leblond,®
who introduced, by the method of group contraction from
the de Sitter group, a nonrelativistic but “cosmologic” quan-
tum dynamical group ¥, which nowadays is usually called
the Hooke group. This algebraic system is a simple general-
ization of the nonrelativistic Galilean structure with the es-
sential difference that the “inertial motion” now corre-
sponds to the behavior of a quantal particle under the
influence of a harmonic oscillator force.” Some time ago we

“Permanent address from September 1978: Office of the Dean of Graduate
Studies and Research, State University of New York, Plattsburgh, New
York 12901.

"Mailing address: ¢/o Department of Physics, Boston University, 111
Cummington Street, Boston, Massachusetts 02215.
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showed® that this Hooke group arises in a natural way (simi-
larly as did the Galilei groupj if one applies the locality prin-
ciple, this time not to a flat Euclidean event space but rather
to a uniformly curved three-dimensional event space.

Before engaging in a project aimed at the relativistic
generalization of the Hooke group, we found it necessary to
study whether this structure is capable of giving a low-ener-
gy (low excitation) approximative description of hadrons. In
order to make the application of #, to hadrons sensible, we
first must ask: why should the event space for hadron-phys-
ics be curved? In a recent paper® we demonstrated that the
required large curvature of space in a small region may arise
from a vacuum contribution to the hadronic energy-momen-
tum tensor within the framework of completely unified
spontaneously broken gauge theories of the Yang-Mills—
Einstein-Higgs type.'® In a sense, in such a theory a hadron
may be characterized as an oscillating, topologically open de
Sitter type “microuniverse,” a ‘“bubble” embedded in the
external overall flat Minkowski macroscopic world. Since
the low-speed, small spatial distance approximation® (i.e.,
the space-speed contraction) of SO(3,2) is 7, it follows that
the low-lying, nonrelativistic collective excitations of a ha-
dron will be indeed described by the Hooke quantum dyna-
mics. We pursued this line of argument® and established a
relation between our (nonrelativistic) microuniverse model
and the nonrelativistic SU(3) quark model with harmonic
forces.'!

In this paper we address ourselves to the question: what
might be the exact, fully relativistic quantum dynamics in-
side the de Sitter microuniverse that corresponds to ha-
drons? Mathematically, this requires the establishing, via
the locality (gauge) principle, of an algebraic structure that is
based on an event space that has the geometry of the (homo-
geneous and isotropic) de Sitter space. Once we, in this man-
ner, are motivated to deduce the relativistic generalization,
., of the Hooke group, we shall study its properties, its
representations, the wave equations that follow, and their
basic applications to hadron physics.

2. DERIVATION OF THE RELATIVISTIC HOOKE GROUP
FROM LOCALITY

The procedure followed in this section is analogous to
our method used for deriving the nonrelativistic Hooke
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group® and the reader is referred to that paper for some de-
tails and for motivations of certain assumptions and steps.

We first wish to construct relativistic quantum kine-
matics in a curved 4-space of maximal symmetry. Accord-
ingly, we adopt

Assumption 1: The space of events is the (uniformly
curved) topologically time-open'? four dimensional de Sitter
space ./

This space can be embedded in a five-dimensional fiat
space E, , asthesurface S, , of a pseudosphere with radius
r which is described by

R P 2.1)
The group of symmetries of * is then equivalent to “‘rota-

tions” of S, ; ; hence it is isomorphic to SO(3,2) with the Lie
algebra

[Mab!Mcd] =g, My +8oaM, — guM,. — g, M,,),

2.2)
(a,b =0,1,2,3,4),
wheregyy = — g,, = — 8= — g33 = g4 = 1. Itisconve-
nient to introduce the notations
J,UVEM/,LV’ H‘u Er_lMliy (l‘L’V = 091)293)’ (2'3)
and then (2.2} becomes
[J;lv ’Jpo ] = i(gpp‘]vo + gvD'Jpp - gﬂD']Vp - gvp‘]pof}’ (2.4&)
[JNV’HP ] = - i(g;;p ”v - gvp H,u )9 (2'4b)
(1,,1,] =igyrJ,,. (2.4¢)

This algebra can be realized in the Hilbert space of square
integrable functions ¥(x) on S, as follows'*:
I, ~ —ir (@ — g, xx)""* —x,8,x"® +8,,xxd,
—r3,), (2.5a)
Jp~ —ix, 8, —x,3,). o ~ {2.5b)
As wedid in the derivation of ¥ ,, 9 5, and 7, we now
formulate the crucial locality postulate: We demand that a
local phase transformation be a globally, unitarily imple-
mentable automorphism of the Hilbert space. More formal-
ly, we introduce
Assumption 2: To every transformation
Plx}—expliolx)]¥ix) (2.6)
with a differentiable wix) there corresponds in the Hilbert
space a unitary symmetry operator U such that
(Ud)(x) = expliw(x)]¥ix). (2.7)
Using the realizations (2.5), we calculate
(UIT, U ~')(x) = explio(x)]( — ir~ ' — g, x"x*) "7
X(— x,8,x"F + &,,X"x°8, — r'd,) exp| — iw(x)],

i.e.,
-1, + (x,x,0 — x,x°0,0 + r'd,o)
X [rm P~ x, X1 2), (2.8)
Similarly we find
J—=d o —x,0,0 +x,0,0. (2.9)

AsinRefs. 2, 3, and 8, we insist that the local phase transfor-
mation (2.6) be unitarily implementable, i.e., setting
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U =exp(iF) with a self-adjoint F, transformations (2.8) and
(2.9) be implementable as

1, —exp(iF )1, exp( — iF), (2.10)
J—eXpF ), exp( ~ iF), @.11)

where F should be constructed from the algebra of observa-
bles. In other words, we adopt

Assumption 3: The algebra of observables is large
enough to guarantee that local phase transformations (2.6),
giving the changes (2.8) and (2.9) of the event space symme-
try generators, can be realized in the form (2.10) and (2.11)
with F being a self-adjoint function on the algebra of
observables.

Similar to the case in Refs. 2, 3, and 8, it can be seen that
£ cannot be expressed as a function of /7, and J,,,. alone and
thus we must enlarge the algebra of observables. To see how
to do this, we note that from (2.5), (2.8), (2.9) it follows (in

lowest order) that

ik, ]
=r'(r - x,.x)"(x,x,F0 — x,X"d,0 + rd,0),
(2.12)
iWFJ, 1= —x,0.0 +x.0,0. 2.13)

Equation (2.12) shows that (unless @ = const.) the commu-
tator [F,/1, | must contain at least a c-number term and an
operator whose realization in Hilbert space is x,, x,, (no sum-
mation). To gain insight, we take the flat space limit »—
and use the notation

v

imil,=/l,, YmJ, =J,,

"
rorec

Then (2.8) and (2.9) become simply

1,11, + 9,0, (2.14a)

v

‘] "'];1\' - 'x,uava) + x\'a,uw'

ey

(2.14b)

Let us now write the generic form of the gauge function as

oL
w(}t) =4, + auxﬂ Z (auxa)” - »

n=1
(no summation over 1) and denote the corresponding gener-
ator by F,,,. The flat space limit of this we denote by F,,,.
Then from Eqgs. (2.14) it follows that

[Eu) ’”v ] = ig.“‘"
L. 5 y (2.15)
[F( ) ’J;l\'] = i@va( ) - gp;zF(x'))'

One would expect that similar relations hold for the curved
space quantities. However, as in the nonrelativistic case,”
one can show that this is not possible. But again the argu-
ment used in Ref. 8 applies: We are concerned with local
transformations w(x) and thus it is consistent to only consid-
er local displacements that are small compared with r. Equiv-
alently: The appropriate generators can be taken to be the
limits (2.14a). From now on we shall write P, for 7/, (and
J,. for j,,v) and also set Q, =/"'F_,, where the constant /
has dimension length. From (2.14a) the gauge behavior of P,
is

P,—P, +d,0.
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From (2.4¢) it follows that [P,,P,] = 0. Also, Eq. (2.4a) is
unchanged and (2.4b) holds with P, instead of /7,. Finally,
using (2.15) and the discussion above, one establishes, in a
manner completely paralleling the proof of Theorem 1 in
Ref. 2, the Lie brackets for Q,,. The complete Lie algebra
reads as follows:

[P,.P,]=[0..0.]=0, (2.16a)
[uvBol = —~ i8upP — 8P, (2.16b)
[J;nNQp] = - i(guva _—gvay )’ (2'160)

[J;w 'Jpa] = - i(g,up‘]va + gvDJ,up - gyo‘]vp - gvapo')’
(2.16d)

[P,u’Qv] = _il_lgyv' (2166)
For this we see that the structure of our kinematic group is
K=SL2,CYe [TFe(TE¢XT! ], (2.17)

which is identical to the one for flat Minkowski event-space,
cf. Ref. 3. The realization of the algebra K is given by

P, ~id,, (2.18a)
Q‘~—l_’x”, (2.18b)
']/LV Ni(xy a,u - xvaﬂ) + Z,uv; (2180)

where 2, is an SL(2,C ) spin matrix. At this point, the read-
er is advised to consult, for interpretation and further com-
ments, p. 2054 in Ref. 3.

We now proceed to introduce dynamics, as was done in
Refs. 2, 3, and 8, via

Definition 1: A development transformation of an iso-
lated system is a kinematical symmetry'* characterized by

Jo=dpr P,—8QP, T 0), Qu—f(QusPu ). (2.19)
The motivation is that the geometry of the event space re-
quires that the generator(s) of intrinsic development trans-
formations be invariant under Lorentz transformations but,
unlike the case for a flat space, they need not be invariant
under arbitrary large translations.

Motivated by obvious arguments fully analogous to
those in Refs. 2, 3, and 8 we make the following postulates:

Assumption 4: Development transformations form a
one-parameter Lie group 7’7 and thus they are represented
by U, = exp(ioS).

Assumption 5: S'is contained in the algebra generated by
P “ ’Q# ’Jpo

These assumptions, together with the invariance re-
quirements implied by Definition 1, determine the form of
the development operator,

S=S5(PQ%QPTP,TQ.I), (2.20)
where, as in Refs. 3 and 5, the SL(2,C )-spin T'is defined by'*

T,,=J,, —1Q.P —Q.P). 2.21)

The development transformations give rise to an equiv-
alence relation on the algebra of observables generated by K,
so that, as in our previous work, we can define a dynamical
group G by

Assumption 6: The kinematical group K is isomorphic
to the quotient group modulo T'{ of some Lie group G.

From K~ G /T it then follows that .S and the gener-
ators of X must form a closed Lie algebra. Therefore the
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form (2.20) will be restricted to have the following structure:

S=4P?+ BQ*+ C(PQ + QP)+ D, (2.22)
with 4, B, C, D being real constant c-numbers. We then see
that the Lie algebra of G has [in addition to (2.16a)-(2.16d)]
the commutators

[S.P,]1=i2l ~}BQ, + CP,), (2.23a)
[8.0.1= —i217YCQ, +4P,), (2.23b)
[SJ.,]=0. (2.23¢)

In order to fix the as yet undetermined constants in
(2.22) we posit, motivated by the same intuitive ideas spelled
out in Ref, 8, the following:

Assumption 7: The transformation 7 corresponding to
inversion of dynamical development,

ru,-U_, (2.24)
is a kinematical symmetry.'*

Assumption 8: The operator T of development inversion
is invariant under local phase transformations,

explia(@)]T exp[ — iw(@)] = T. (2.25)
From (2.24) and Assumption 4 it follows that
((SY=T(iS)T ~'= —iS. (2.26)

Transforming (2.23) with 7 and using (2.25) for the case of a
linear gauge transformation, we find, by arguments in com-
plete analogy to the work of Ref. 8, that

A= -1, B= —iI*% C=0,
so that (2.22) becomes

S= —UP*—1%*Q? + D, (2.27)
where v is a constant (determining a scale of units) and D is

an arbitrary constant.'® Furthermore, the final form of the
Lie brackets (2.23) will now be

[S’Pu ] = — lel ZQ,u ’ (2288)
[5.Q.]1=iP,, (2.28b)
[SJ.,]=0. (2.28¢)

In summary: the Lie algebra of the dynamical group G
is given by (2.16) and (2.28). Thus, its structure is

G=275

=T{ek=Tie [(SLR.CYeT2)e (TIXT/ ")].
(2.29)

Clearly, this is @ relativistic generalization of the centrally
extended Hooke group and we shall denote it by 5. We note
that the only difference between the algebra of 3 Z, and
that of 77 is the commutator (2.28a).

We call the reader’s attention to p. 1667 of Ref. 8 and
point out that entirely analogous remarks now hold for the
relativistic case as well. In particular, we see that “relativis-
tic cosmologic time” can be interpreted, via our construc-
tion, in a purely group theoretical manner. Finally, we note
that 7 has the meaning of cosmologic time reversal. Its ac-
tion is characterized by

0,=70,T '=Q,, P,=TP,T ‘= —P,

(2.30)
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and it is antilinear. Thus, from (2.26) it follows that!’
S'=TST-' = . 2.31)

We conclude this section by presenting a realization of
the Lie algebra (2.16), (2.28) of F s, given on a Hilbert space
of square integrable functions defined on E; , ( p) X E (7).
Here E, , (p) is the Fourier-dual (momentum space) of the
kinematical group K. The additional variable 7 labels the
sequence (“‘slices”) of Hilbert spaces that are strung together
in the big Hilbert space by means of the dynamical develop-
ment 7'}, We find

P, ~cos(vr)p,, - — il 'v sin(v7)d, (2.32a)
Q, ~il"" cos(vr)d, +v'sin(vrp,, (2.32b)
Juw ~U8, Py — Op ) + 240 (2.32¢)
S~id,. (2.32d)

3. DISCUSSION AND REPRESENTATION THEORY OF
THE RELATIVISTIC HOOKE GROUP

3.1 Group properties and Casimir invariants

It is convenient to expresses the structure (2.29) of the
locally compact 16 parameter group &5 in the isomorphic
form

Fs=(T$xSLQ,CY)e [T (TixT! H]. B.1
The generic element of 57, can be written as

h=(6;h) = (B;0,a,b,A), (3.2)
where O is a phase parameter [associated with the central
extensionby 7' ', cf. Eq. (2.16)] and 0,a,b,A are the param-
eters associated with the generators.S of dynamical develop-
ment, P of translations, Q of ““relativistic Hooke boosts,” and

J of Lorentz transformations, respectively. The composition
law is

};I ~2 =(6,+6,+ §(h1’h2)§h1h2) (3.3)
with
hh, = (0, + 05, a, cosvo, + v~ 'b, sinvo, + A ,as,
b, cosva, — va, sinvo, + A b,, A,A,) (3.4a)
and
§lhuhy)
=1 -Y[(2v)" 'b7 — Wva} Jcosva, sinve, + a;b, cos*va,
+ Aa,{b,cosvo, — av sinvo,)}. (3.4b)
The Casimir invariants are
Ry=1"1, (3.5a)
R, =T, T, (3.5b)
Ry = Ae,0pe THT?, (3.5¢)
Ry=Pr4+V1?°Q* +21°'S. (3.5d)

The first three coincide with the Casimir invariants of &  (cf.
Refs. 3-5), because only the [S,P, | commutator of % dif-
fers from those of 7 . The mvanant Z 5 can be inferred from
contraction arguments (cf. Ref. 18, Appendix C) and it dif-
fers from the & , invariant of & 5 only by the presence of the
Q2 term. From (3.5d) we see that now S will have a discrete
spectrum, in contradistinction to the case of Z ;. This has
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crucial physical consequences, to which we shall return in
Sec. 4.

3.2 Relation of 7 to other relativistic groups

It is known® that the nonrelativistic Hooke group can
be considered as a particular contraction of SO(3,2), with
respect to the rotation group SO(3). Similarly, it is expected
that the relativistic Hooke group can be viewed as some con-
traction of a larger homogeneous pseudo-orthogonal group,
with respect to its SO(3,1) Lorentz subgroup. As was shown
in Ref. 18, p.46, the well-known group extension method of
Rosen'® shows that the parent group must be a pseudo-or-
thogonal group of dimension six, i.e., SO( p,q) with
P + g = 6. In order to study the relation of 775 to other
quantum mechanical and possible dynamical groups, we
consider below the entire family of groups arising from sys-
tematically performed contractions of SO( p,q) with
P + g = 6, all done with respect to the Lorentz subalgebra.
Let M, (a5 = 0,1,2,3,4,5) denote the generators of
SO( p.q), and write

M, =P, M,,=0Q, M,;=S. (3.6)
Then the SO( p,q) algebra reads®
(M. M, ]| =ilg, My +8,0cM,, —8uoM., — 8, M,.,),
(3.7a)
[ PP, ] =iguM,,, [Q;UQV] =igssM,,,,, (3.7b)
[(£..0.]1=1g.,S, (3.7¢)
[SQ l= —igssP,, [SP ]=ig44Qw (3.7d)
(M,,.P,]=1ig,,P, —g&,P,) (3.7¢)
(M,...Q,]1= l(g,,p — 8, Q) (3.79)
[M,...$]1=0, (3.7g)

where u,v =0,1,2,3.

If we are interested in Lorentz subalgebra-preserving
Wigner—Indnii contractions that also preserve the Lorentz
transformation character of P,Q,S, then we have three dis-
tinct choices®':

(a) Speed-Space contraction: Replace Q by €Q, Pby €P,
and take the limits

limeQ=Q", lin(l) eP="P'.

€ >0 €—

(b) Space-Time contraction: Replace P by P, S'by €S,
and take the limits

limeP=P’,

€0
(c) Speed-Time contraction: Replace Q by €Q, S by €S,
and take the limits

limeS=S".
€ »0

limeQ@Q=0Q', limeS=S"

e—0 e—0

Explicit calculation then gives the following P,O,S
subalgebras.?*

1. Speed-Space contraction gives™*:

[ F1%4 ] [Qy’QV]Z[P;L’Qv]ZO!
[S7Q;t ] = - igSSP;A’ [SYP;L ] = ig44Q,u' (38)
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If we take g4, = 855 = 8op = 1, corresponding to
SO(3,3), or alternatively — g,, = — gs5 = goo = 1, corre-
sponding to SO(5,1), then we have (two possible isomorphic
versions of) our oscillatory relativistic Hooke group™ 3¢ .
Naturally, we now have only the “geometrical” group (with
[P,Q] = 0) and not its central extension . (To obtain 57,
one must use a contraction procedure where the rhs of [P,Q ]
contracts to a constant. The way to do this has been done in
‘Appendix C or Ref. 18.)

If, on the other hand, we take g,, = — gss =800 = 1,
corresponding to SO(4,2), then (3.8) becomes the algebra of
Castell’s “preferred algebra 11, which he calls the macro-
scopic group.” To fully appreciate the difference in interpre-
tation between our %5 and Castell’s group 11, one must note
that Castell considered the conformal group with the phys-
ical generators P, ,Q0,,,D,J,,,, and the SO(4,2) generators
contracted over are linear combinations of these. The corre-
spondence between our P,,Q,..S' and the conformal (or
SO(4,2)] generators is as follows:

M, =P, =¥P, +K,), M, =Q, =}P, —K),
M,=S=D, M, =J

oy Yy
2. Space-Time contraction gives:
[ 1" ’P ] - 0 [Q/t ’Q\'] = igSSMu" [ ;L’ ] lg;u
[SQ. 1= —igssP., [SP.]= (3.9)
This structure is 1somorphlc totheal gebra of the inhomoge-

neous para-de Sitter group.?’
3. Speed-Time contraction gives:

(7, 1 P )= i843M,,.. [Q,,,QV] =0, [P#,Q,,‘] = ing,
[S’Q;l ] = 0’ [S’P/l ] = ig44Q,u . (3 10)
This is isomorphic to the inhomogeneous de Sitter algebra.

P time
R _< ______ speed-space
...... Goerrernnenn speed-cime

FIG. 1. Results of contractions.
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One can now perform further contractions of appropri-
ate type (a), (b), {c). The results are represented in Fig. 1.
{(Notation: deS = inhomogeneous de Sitter; C; = relativis-
tic Carroll; Sty = relativistic static. The prefix “‘p” on deS
and ¥ s is short for “para.”*” The Roman numerals I-V cor-
respond to Castell’s notation.?’) The corresponding subalge-
bras are

Relativistic Galilei group % 5:

[ n* ]= [Q/L’QV] [ ;L’Qv]=O9

(3.11)
[S’Q,u ] = 09 [S’P,u ] - ig44Q,u'
Relativistic para-Galilei group p % :
[Pu,P‘,]=[Q#,Q‘,] [ ;L’Q']zo’
[S’Qp] = _igSS});H [ > ;z] :0' (3'12)
Relativistic Carroll group Cy :
[P/.l 5Pv] = [Q;; 7QV] = 09 [P,u 9Q1f] = l‘gva’
[s.2.1=1[s.P,1=0 (3.13)
Relativistic static group Sty :
[ ny ]=[Q;L’QV]=[P;L’QV]=01

{3.14)

B.Q.1=[SP.]1=0

3.3 Representations of 7

The irreducible unitary ray representations of 7 s can
be obtained by Mackey’s method of induced representations.
The quickest specific approach is to find a relativistic gener-
alization of the work by Dubois** who constructed the repre-
sentations of the nonrelativistic #°,. We sketch? the meth-
od as appropriate for F, 5.

We write

Fs =T3S, (3.15)
where

I'=SLQ,CY & [T2e(TixT! "] (3.16)

is the maximal invariant subgroup. We can induce the irreps
of %, from those of I'; the i irreps of I, in turn, can be in-
duced from those of the Abelian subgroup

TP=T! 'XT?I, 3.17)
i.e., we consider /" in the form
= [SLR,CY e TE]e Tt (3.18)
The irreps of T'7 are, obviously, of the form®
U (6,a) = expli(nf + pa)], (3.19)

where 7 is a real number and p a 4-vector.?' Let us denote
SL(2,C)’ ® T ¢=4 and label 8e4 by the pair (A,b). If we
define the linear functional

(m.pl6,a) =n6 + pa,
then the homomorphisms of 4 in the group of automor-

phisms of 7' ¢ are associated with the action of 4 on T ; by
the rule

(6 (m.p)|6.a) = (n,p|6~"(6,a))
for every 8ed, (17,p)eT . The transformation induced by é
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[n,p) is given by

Slpp)=1(m,A "p—nl "'A "'b). (3.20)
For each value of % the induced automorphisms of 77 yield
an orbit. Their collection provides a partition of 7' 2. We take
a point (7,,p,) on the orbit 77, and wish to construct the irreps
of the little group 4 5, associated to that point. Since the
structure of the little group does not depend on the orbit nor
on the particular point chosen on it, we may take % = 1 and
chose pg = 0. We then find that the little group is isomorphic
to an SL(2,C) group.” Thus, putting things together, the
representation of I” can be described, on a suitable function
space, as follows™*:

[U(6.a,0,4 15" p)

= explil6 +pa))D*(A),

XY = (p 1)),

Here D * is the well-known matrix representation of
SL(2,C)".

To induce now the irreps of %’ from those of I, we
must find the orbits in the space I of equivalence classes of
irreps of I, which arise under the action of 75 Denoting by

¥ an element of I, it can be shown that there exists an equiv-
alence operator W such that

Ulo(] = W(@U W' (o),
with W given by

W (o) = exp(iE '0),
where

E'E%/:Dz + %13V2q2,

(3.21)

(3.22)

and where ¢ is a 4-vector. Therefore, every point of I"is an
orbit in itself, whose little group is (isomorphic to) T'5. The
irreps of the Abelian 7'} are, of course, of the form

(3.23)
where u is a real constant. Putting all these results together,

we finally obtain the explicit action of #°5 on a suitable func-
tion space over the variables p and u as follows:

U(0) = exp( — iuo),

[U(6;0,a,b,4 2*<( psu)
= exp{i[6 + (}p* + 4 *V'¢> — u)o + pal)
XDMAN, WA =17 T ). (3.24)
The ““g,, " in the exponent must be interpreted as the differen-
tial operator i/ ~'(d /dp,, ) acting on y( p).

There exj_sts another, alternative procedure to derive
the irreps of . This constuction, based on the generaliza-
tion of the representation theory of ¥ ; as presented in a
previous work,** has the advantage that it gives a deeper
insight; a detailed account of it can be found on pp. 53-65 or
Ref. 18. In this approach the starting point is the
decomposition

%5 = N® H,
with

N=(T! 'XTHeT? H=SLQCYXT; (326
and the irreps of & are induced from those of N. Here we

(3.25)
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want to use this approach only to discuss the classes of irreps
that 77 can have.

The automorphismsin N given by n—>hnh ' (with heH )
define orbits in N characterized by

P’ + v*1%q? = const. 3.27)

One then finds that the little group is isomorphic to
SL(2,C) "X T'¥. Under its action, all points of the orbit can
be reached, Examining, in particular, the action of the T3
subgroup on points of the orbit, one can show that

p—p cosvg — [ g sinvo.,

In particular, taking o = 7/2v, we havep—/{ ~'q. Thus, ifon
acertain orbit p” > O everywhere, then also¢” > O everywhere
on the orbit, and similar statements hold for p> <0, p* = 0.
Because of the disconnectedness of SL(2,C ), timelike vectors
cannot be transformed into spacelike vectors, etc. Taking
these comments into account as well as the fact that, because
of ray equivalence, one can always choose %7, = 0, Eq. (3.27)
easily leads to the following classification of the irreps>>:

ClassL: u>0, p*>0, ¢*>0,
Class II: u <0, p*<0, ¢*<0,
ClassIl: u =0, p*=¢" =0, p#0, ¢#0,
ClassIV:u =0, p’=¢"=0, p=0,¢=0.

Here u is the eigenvalue of §. For physical applications, we
are interested only in Class I.

4. PHYSICAL CONSEQUENCES OF 57
4.1 Wave equation and mass spectrum

In conformity with Section 1 of this paper and in the
spirit of Ref. 9 we consider now the relativistic hadrons as
bilocal objects: a microuniverse bubble embedded in the (flat)
external Minkowski world. As in most bilocal models, the
relationship between the external and internal dynamical en-
tities is not obvious and is expected to be model dependent.
There exists, however, an algebraic approach, due to
Nambu,*® which yields a general, plausible, and easily appli-
cable prescription to combine the internal and external sym-
metries. We shall use this approach to determine the internal
symmetry group in terms of the Hooke generators.

Nambu’s procedure entails two essential criteria for the
internal group:

(a) it contains a subgroup characterizing internal
symmetry.

(b) it is large enough to contain within its generators
elements that are fourvectors or tensors under the Lorentz
group.

In general, one will then have infinite multiplets, and
one can construct Lorentz invariant wave equations with the
internal generators coupled to the external momentum.

In the spirit of requirement {b) we see that the 7’5 gen-
erators available for the internal symmetry are the fourvec-
tors P, Q,,, and the scalar S. To meet condition (a), it is
convenient to define

Al=v/Vv2Q, —iv_'P,),
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A =w/V2UQ, +iv” 'P,). 4.1)

Then it is easily checked that the sixteen bilinears 4 LAV in
the enveloping algebra form a U(3,1) Lie algebra. In order to
have a semisimple group, we fix the eigenvalue of

N=A]A4" 4.2)
Actually, the eigenvalues of ¥ are
n=n, + n, + ny — N, 4.3)

where n,, are nonnegative integers. Fixing N leads (via the

elimination of trace) from U(3,1) to SU(3,1). This is our in-
ternal symmetry. We note that fixing V is equivalent to fix-
ing S since from (3.5d) we see that (in a given representation)

S= — N +1) + 4R, (4.4)

The SU(3,1) generators A | 4, form a tensor, the 4 | + 4,
behaves as a (self-adjoint) vector, and .S (essentially 4 LA ]
behaves as a scalar under Lorentz transformations. Thus,
the most general Nambu-type equation will be

[A LA,,PFPV+ a(AZ +Au)py +BP2 _ yS ]W"'b(P)
=0 (4.5)

Here P* denotes the external fourmomentum of the system.
The wave function is an (infinite component) multiplet
member, with level-label n and degeneracy label b, and ex-
ternal Poincaré label suppressed. Since, by our above argu-
ment, the eigenvalue of S is fixed,’” we can identify [because
of (4.4)] the label n with the eigenvalue (4.3) of V.

The action of 4 |, 4, is simply to transform the degener-
ate eigenvectors of S among themselves, for a given level. But
A and 4, being raising-lowering operators, will transform
eigenvectors of § with a label n to those with labels n +1 and
n —1, respectively. Thus, (4.5) will be an eigenvalue equa-
tion for S eigenstates only if & = 0. Then we have, finally, the
wave equation

(A4)A4,PP+ BP? — 7S ¢ (P) =0. 4.6)
To extract physical information from (4.6), we go to the rest

system, P, = 0, P, = m, where m is the hadron mass. We
have

(A §Agm* + pm* — yS)¥"*(Pg) = 0. CN))
Because of ray equivalence, from now on we will take, with-
out restricting generality, %, = 0. Then from (4.7), (4.4),
and (4.3) we obtain

[(ny + BYM? + ylv(n, + ny 4+ ny — ng + D J¥" =0,
i.e., we have the mass spectrum

m?= —ylv(n, + n,+ny —ny +1)/(n, + B).

We are interested in Class I representations with
m? = P?> 0, where, according to the discussion at the end of
Sec. 3.3 the eigenvalue u of S is positive. From (4.4) (with
A, = 0) it follows that this is the case if*®

(4.8)

no<ny+n,+n;+1. 4.9

Therefore, if ¥ > 0, we must have §> — nyand, if y <0, we
must have 8 < — n, in order to have m?> 0.

Clearly, we now have a discrete mass spectrum. Howev-
er, even though the restriction to Class I avoids the emer-
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gence of m*<0 solutions, the timelike oscillations still lead to
a feature of the spectrum which is contradicting even quali-
tative experience: taking in (4.8) the maximum possible val-
ues ny = n, + n, + n,, the spectrum of m* has an accumula-
tion point at m? = 0. Hence, even though our general
analysis does not explain it on theoretical grounds, we will
assume that timelike oscillations are suppressed, ny = 0.
Equation (4.8) then gives the reasonable mass spectrum

m? = const(n +1),

n=n, + n, + n,, 4.10)
n, = non-negative integer.

4.2 Relations with other hadron models

The (degenerate) eigenfunction ¥ ™’ in the Nambu type
Eq. (4.6) is, in general, a member of an infinite dimensional
multiplet in the internal space, and each member of this mul-
tiplet is an irrep of the Poincaré group. We can write

¥ (Pl=¢ "¢, (P) (4.11)

where ¢ " is an internal state vector and ¥, is a wave function
in external space with Poincaré label “a”. Furthermore, we
can express ¢ " as some wave function in the internal (Hooke)
momentum space,

¢"=¢"(p).

It is essentially a product of four Hermite plynomials. Since
n reflects the eigenvalue # of S, we may conveniently write

¢" = ¢ (up) (4.12a)
where,® from (4.4),
u= —Wn,+n,+n;—ng+ 1). {4.12b)

The composite, bilocal wave function of the entire
“hadron” = Hooke bubble in Minkowski space can now be
written

D" (p.P)=¢(upiy,(P). (4.13)
For simplicity we assume that the external wave function
belongs to the scalar representation of the Poincaré group,

(P2 — m?)y, (P) = 0. (4.14)

For the internal space part we obtain, when using the realiza-
tion P, ~p,,,Q, ~il ~'d, oftheCasimirinvariant**(3.5d)

(p? -szp +217'w)¢ (u;p) = 0. (4.15)

The general relation between m? and the eigenvalues u and S
as given by (4.12b) is expressed by the formula (4.8), i.e.,

m? = yu/n, + B. (4.16)

The Equations (4.14) and (4.15) are identical in form to
those which emerge in the relativistic harmonic oscillator
model of Feynman et al.*° and which were further developed
(connected to the parton model) by Kim and Noz.*' In the
work of these authors, the starting point is a system of
“quarks” which are assumed to interact via relativistic har-
monic forces. The equations in question are then obtained by
introducing center-of-mass and relative coordinates, but to
obtain Poincaré invariant c.m. motion equations it is neces-
sary to forbid oscillations of the center of mass (“‘spurious
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oscillations”). In addition, timelike oscillations must be sup-
pressed in order to avoid tachyon solutions. In our approach,
we do not have c.m. oscillations, so that there is nothing to
artificially forbid. Also, the m” is positive in our model with-
out suppressing timelike oscillations (but in order to avoid
an accumulation point at m? = 0 we also have to use the
device of suppression). It is clear that, because the emer-
gence of Eq. (4.15), all results and conclusions of Refs. 40
and 41 will also hold in our framework.

We now use (4.15) to study the degeneracy of the mass
levels. As before, we assume that timelike oscillations are to
be suppressed, which means

Apd o4 (u3p) = ApAd 36 (u3p) = 0.
Then (4.15) becomes
(P> = V'V, +21 " 'w)p (uip) = 0, (4,17a)

which is, of course, a three-dimensional harmonic oscillator
wave equation and which in configuration space reads
') (u;x) = 0. (4.17b)
Introducing spherical polar coordinates and separating, the
radial wave equation becomes

> jj+1) > -

— -4 L AP U (R () =0.

dr » )

{4.18)

The Laguerre polynomials R, are characterized, for givenj,
by the integer kK = 0,1,... and the value of ». The physically
acceptable (normalizable) solutions are those for which

— 2l T 'u =2k +j+ 1)
Since, from (4.12b) (with n, = 0) we have
27 = —-2vin+1)
we see that
n=k +j/2.

(— V2 4242/

(n=n, + n, 4+ n,),

(4.19)

Substituting this into the mass formula (4.10), we get

m? = C\(j+2k +2), ie.,

j=Cm? =2k =2, k=0,1.2,., (4.20)

where C is a constant. Thus, interpreting j (which is the “in-
ternal orbital angular momentum™) as the spin of the phys-
ical hadron, we have a family of Regge trajectories with re-
currences at intervals of 2j. In particular, trajectories of
opposite signature coincide. However, the above formula
cannot be directly compared with experiments, because, by
its derivation, it refers to a single collective excitation of the
de Sitter microworld bubble whereas, as we discussed in de-
tail in Ref. 9, hadrons correspond to multiple excitations.
The nonarbitrary value of %, for irreducible terms in the
direct product of representations will then be reflected in the
modification of the intercept of the trajectory, i.e., instead of

(4.20) we would have
j=Cm> -2k + B, 4.21)

where, together with C, the B is also an undetermined con-
stant.*? It is possible, but perhaps not too profitable, to com-
pare (4.21) with, say, the known meson spectrum.
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The Poincaré group is represented taking as a complete set of commuting observables

{Pr,K3,.7 3}, where K} is the boost along the third axis and .7, the third component of the null
plane spin. We name it K;-representation. There appears in it a parameter K, with dimensions of
momentum, from which the infinite momentum limit can be implemented in a natural way as the
contraction k— . K;-states and wavefunctions are well defined in the infinite momentum limit.

They are related to null plane states and wavefunctions by a Mellin transformation. The
convergence properties of null plane functions translate into analyticity properties of K ,-

functions in the complex A (eigenvalue of K;)-plane.

PACS numbers: 11.30.C_p, 03.65.Fd, O2.20.Qs, 02.20.Rt

. INTRODUCTION

The present work is a first step towards a rigorous anal-
ysis of the group content of the limit p;— oo in relativistic
quantum mechanics. This limit has usually been handled in
the literature through the infinite-momentum frame (IMF)
construction,® where the Poincaré group is boosted along the
third axis as

O = lim ¢“X'0e ~ K-, (1)
This framework has been very fruitful in the description of
high energy processes’ but it is not entirely satisfactory from
a theoretical point of view. Two main features of the trans-
formation (1) support this assertion:

(i) As regards the Poincaré group, the transformation (1)
is an inner automorphism, as has been pointed out by Bacry
and Chang,’ so that no mathematical simplification is ob-
tained from it,

(ii) The IMF states are ill-defined because the transfor-
mation exp{iwK) is obviously singular in the limit @— 0.

The aim of this work will be to introduce an approach over-
coming the two difficulties we have just mentioned.

It is usually thought that a kinematic approximation is
described by an Inonii-Wigner-Mickelsson-Niederle*’
contraction of the Poincaré group and its unitary irreducible
representations. As an example to illustrate this assertion let
us note that the nonrelativistic kinematics, |v{/c small, and
the covariance group in this region, the Galileo group, are
obtained by the contraction c— « of the Poincaré group. In
particular the rigorous link between relativistic and nonrela-
tivistic wave functions, for free and interacting particles of
arbitrary spin, has recently been established® by the present
authors using the theory of contraction of Lie groups and its
representations.® In this case the contracted group, the Gali-
leo group, is simpler than the original group while the con-

0n leave of absence from Instituto de Estructura de la Materia, Serrano,
119, Madrid-6, Spain.
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tracted states are the nonrelativistic states and, thus, well
defined.

In general an Inonii-Wigner contraction* of a Lie
group leads to a contracted group which is not isomorphic to
the original group. On the other hand, representations of the
original group can be contracted leading to well-defined con-
tracted states.

Therefore, it is possible to overcome the two difficulties
mentioned above by means of a contraction of the Poincaré
group, and we shall keep in mind this philosophy in this
work, so that the final scope of it will be to introduce a well-
defined contraction procedure over the Poincaré group, and
its irreducible representations, implementing in a natural
manner the limit P,— 0 and leading to an ultrarelativistic
covariance group and well-defined ultrarelativistic covar-
iance group and well-defined ultrarelativistic states.’

Now, the consistent definition of a contraction proce-
dure for representations requires us>® to find a Hilbert space
where both the Poincaré and the contracted group are simul-
taneously realized. In other words, we need to find a com-
plete set of commuting observables (CSCO) remaining unal-
tered in the limit P;— . The search of this CSCO and the
study of their properties as well as the representations of the
Poincaré group in the corresponding basis of eigenstates is
the main purpose of this paper.

In order to illustrate this point let us clarify why the
canonical basis is not appropriate to our end. For massive
particles, irreducible representations of the Poincaré group
with P 2> 0, the canonical basis is made up of states defined
by

Ip,o) = B,|;0), (2)
where B, is the pure Lorentz transformaiton connecting
P = (m,0) with (w, p). given explicitly by

B, = exp[ith LI p-k]. (3)
P, |p|

The canonical states (2) are common eigenstates of the CSCO
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(P,S5(p)}, where Sy(p) is the third component of the canoni-
cal spin

Sip)=B,JB, . (4)
An arbitrary state |¢ ) can be expanded in terms of the ca-
nonical basis (2) as

=3 -‘%‘icp(p,onp,v), 5

in such a way that its projection over an element of the ca-
nonical basis gives the Wigner function

¢ (D,U) = (p’0|¢ )‘ (6)
However the space of Wigner functions ¢ (p,o), that is the
canonical basis |p,0), is not appropriate to describe the high
momentum limit because these functions, or states, are not
well defined in the limit p;— 0.

Thus the problem to be solved is three-fold:

(i) To obtain a CSCO unaltered in the infinite momen-
tum limit;

(i} to obtain the common eigenstates of the CSCO and
to project over them the state space;

(iii) to study the representation of the Poincaré group
over the Hilbert space subtended by the new states.

In Sec. 2 we shall show that the suitable CSCO for spin zero
representations is { P, K }{/ = 1,2} while for nonzero spin re-
presentations we shall choose to add, as fourth operator, the
third component of the null plane spin .7 ;. In the following
of this introduction, we shall briefly review the main features
of the null plane basis which will be often used throughout
this paper.

In the null plane basis the Poincaré generators are di-
vided into two classes®:

(a) The kinematical generators

E\ =YK\ +J), E,=}K,-J))

P, =Py + Py, K Jy PP, (7a)
leaving invariant the null plane initial surface
x™ = §{x, — x%) = O: generating the stability group of the
null plane considered as initial surface;

{b) the dynamical generators

P_=P—P, Fi=K U1, F,=K,+J,, ()
which do not belong to the stability group (P_ translates the
null plane while F, and F, rotate it around the light cone
x? = 0), describing thus the dynamics of the system.

Basis vectors are defined as

lp+,Pr,P> =Kp[%m’07’)p>) (8)
where K, is the Kogut and Soper boost, defined as®

| o
K, = exp{ -~ i-——T-ET}exp{ —in 2+ 1@} ) (9)
P, m
The null plane states (8) are common eigenstates of the
CSCO {P,,P,P,,7 ,}, where 7 ; is a Casimir operator of
the stability group of the null plane, given by
T =d,+ L2 = Epy (10)
P,
which is the third component of the null plane spin, defined
by
T =KJK;]". (11)
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The choice (8) for the basis vectors fixes the representation of
the Poincaré generators (7) as

. a "
K3jp1’pl'/)>: lP+"‘— P+yp7‘yp>y
ap.
, d J
Llpprp) = [’(Pl - — —) + ‘7—3] Py ,l’> ,
dp; dp,
P |pesprp) =p.|PisPrip)s
my
P~[P+’pT»p) = —1{PusPrP/,
2p,
my =p; +m’, (12)
P, |P+’stP> =P |P+,Prap> (= 12),
, ad
Eilp+’pT’p>=lP+a_ P+’DT’P>’
D;
ad mr 9
F, P> ) = [l‘ T 1 -
20 T s . o,
i m
— €y (—73+ —7;)] p+,pr,p>,
Py Py

where.7 are the (2f + 1)-dimensional matrix representation
of the SU(2) algebra acting on the index p.

It goes without saying that the null plane basis is not
appropriate to perform the high momentum limit for the
same reasons applied above to the canonical basis. However
the prominent role played by the null plane basis lies in the
fact, as we shall see later in this paper, that the appropriate—
new—basis is related to it by a Mellin transform.

I. STATES AND WAVEFUNCTIONS IN THE K;-basis

In this section we shall develop points (i} and (ii) of the
program presented in Sec. 1.

First of all we shall obtain a CSCO which is not altered
by the infinite momentum limit. We shall begin with the
simple case of spinless particles whose physical degrees of
freedom are described, in the null plane basis, by the CSCO
{ P, ,P,}. Obviously, as we have mentioned in the introduc-
tion, this set of operators is not appropriate to describe the
high-energy limit p , —oo.

Therefore, we must replace the operator p, by another
one, commuting with p; and having a finite, smooth limit as
D+ . Then if we choose this operator belonging to the
Poincaré algebra, we are led, in an unambiguous way, to the
pure Lorentz transformation along the third axis K. In
short, for spin zero representations the new CSCO we get is
(K, P,}.

In the more general, arbitrary spin, case we must com-
plete the set { K, P} with another operator, describing the
spin degrees of freedom and commuting with {K;, P,}. The
simplest choice'? is to take, as fourth operator, the third
component of the null plane spin .75, Eq. (10).

The common eigenstates of the CSCO, {K,,.7 5, p, ],
will be denoted by |4,p;, p), the eigenvalue corresponding
to the operator K and, thus, satisfying the equation

KSIA’DT’p> ='{ M,PT’P)- (13)
The basis of states |4,p;, p) will be called, hereafter, the
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K, basis.
The relationship between K; and null plane states can
be shown, from the action of K, over the null plane states,
Eq . {12), and the defining property of K ,-states, Eq. (13), as
© dp+ (!,—t) — A

P+ypr, p)r

1
lz,pr,m - L .

\/217- 0o Py

(14a)

so that the K;-basis is nothing else than the Mellin transfor-
mation'’ of the null plane basis. In Eq. {14) we have been led
to introduce, for dimensional reasons, the constant X with
dimensions of momentum. We shall see later that this di-
mensional constant, which appears in a natural way when
we change the basis, is able to implement the limit p, — o0,
through the redefinition P, = xn and the limit K— 0. In
this way K is only a scale for momenta so that it plays the
same role as C did in the nonrelativistic limit which, we ~e-
member, was implemented through the limit C— 0. We
shall come back to this point in the following section.

The inverse Mellin transformation of (14) is given ex-
plicitly by

1 )
p—HPT’P): — di (p+/’")+u1

‘/272' —

Using the orthogonality of the null plane basis

@obrplo’y 10" =p. 80, —p )% 0r — 975,
{15a)

A"DT! P>
{14b)

we get the orthogonality relations for the K,-basis
(Ap7s Pl " 07, 0') = 84 — 418Dy — P78, , {15b)

while the projection of the K;-basis over the null plane basis
is given by

1 —iA ,
<p+,pT7 PM»P’T; P’> = == ("i't) 6(2)([)7“ - pT)(spp' .
2 K
(16)

The completeness relations of the null plane basis

1=2J“1;&_d2pr |P+’pT’P><p+’pT’p' (173)
4 +

translates into the completeness relation of the K;-basis as

1=3 J. dAid%py |Apr, p){Aprp| - (17b)
P

We can alternatively use the language of wavefunctions. Let
é (p.,pr,0) be the null plane wavefunction, or projection of
the state |¢ ) over the null plane state |p , ,p7,0)

$Dp7:0) = P Pr,ol B) - (18a)
We define the corresponding K,-function as the projection
¢ (’l’pT’U) = </’LypTa0'| ¢ ) .

The relations between null plane and K,-functions are ob-
tained from

(18b)
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b b, p) = ﬁ:fw ‘jf’—: (B) ¢ (19

and

1 = )
¢ B p)= —== dA (p\/k) " (A,pr, p) -
\/2n' -

(19b)

The scalar product over null plane functions
“ d
bubd= 2 [ L4t pro)p w0l (208
PJo Py

translates into the following scalar product for K;-functions:

AR f A d %y ¢ % (Apya) SaiApr)

Let us finally remark that convergence properties of null
plane functions translate into analyticity properties of K ;-
functions in the complex A-plane. For instance, if the space
of null plane functions is restricted to functions of finite
norm, or square integrable functions,

618 = | Ly 3 g oprolf <, 1)

as was implicitly supposed throughout this section, then the
corresponding K,-functions are analytic in the complex A-
plane, on an infinitesimal strip around the real axis, defined
by (14)

[ImA | <€,

(20b)

(e>0),
(21b)
— 0 <Rd < 00,

so that the inverse Mellin transformation (19b) makes sense
when the integration contour C is taken along the real axis,
as was initially assumed.

Stronger convergence properties, or a more restricted
space of null plane states, translate into analyticity proper-
ties on wider strips for K,-functions, as we shall see in the
following section. In fact there is a one-to-one correspon-
dence between convergence properties of ¢ (p ,pr, p) and
domains of analyticity, in the complex A-plane, of

&P .Prs )

Nl. REPRESENTATIONS OF THE POINCARE GROUP IN
THE K;-BASIS

In this section we shall develop point (iii} of Sec. I and
compute the representation of infinitesinal and finite ele-
ments of the Poincaré group over the K;-basis.

A. Representation of algebra generators

The representation of the algebra generators over the
K-functions, {18b), is easily obtained from the action of
Poincaré generators over null plane states, (12), and the rela-
tions, (14} and (19), between K, and null plane states and
functions.

Let us denote the action of the generator O over K ;-
functions by the same symbol O. We get the following
representation:
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K3p (A.pr, p) = Ad (4,07, 0},

Jyb (A.pr, p) = [ (P1 ’aiz‘ — P2 a;) + 3'3] ¢ A.pr.p),
P.¢Apr,p)=K$(A ~ipr,p),

P.¢ (2,01, p)=p:${ABr, p),

P_¢Apr,p)= (m2T/2K) ¢ A +ipr,p),
Edlpr.pi= ’K5p—'¢(£ ~ P p)s

m? a
FdlAprpl=—{A+i+i——
@ (Apr, p) K[( +i+i 2 .

— €,-,»(P,«7-3 + mZ)} ¢(/{ + t.’pT’ P) . (22)

Thus in the representation (22) of the infinitesimal gener-
ators of the Poincaré group we can aiready see the two main
virtues we had required for a representation to be appropri-
ate to describe ultrarelativistic situations:

(i) In the K,-representation, unlike in the canonical or
null plane representations, there appears explicitly a param-
eter K making it possible to implement the limit p , —~ o by
means of the dimensional contraction k~— o0 . In this way the
K ;-representation plays, with respect to the infinite momen-
tum limit, the same role that the canonical representation,
where the parameter C appears explicitly,’® plays in the non-
relativistic limit

(ii) We shall take the view that the K;-functions do not
depend on the parameter K, thus being well defined in the
infinite momentum limit. Accordingly the canonical and
null plane wavefunctions do depend on K (Eq. 19b).

B. Equations for matrix elements of group operators

In this section we shall compute the equations satisfied
by the matrix elements, between K;-states, of group elements
expliaA ) of the Poincaré group, where A4 is some generator of
the Lie algebra and a the corresponding parameter. We shall
denote these matrix elements by

) e Al r pY=(Apr ple“ A DT, p') . (23)

As we shall see, the fact that we are taking states diagonal in
K will enable us to compute the matrix elements (23). The
boost K plays a very singular role in the null plane decom-
position of the Poincaré aigebra. Any operator A obeying
[Ky.4]=iy4 (24)

is referred to as an operator of goodness 7.* Thus the Poin-

caré generators can be classified according to (24): P ,E, are

“good” generators (y = + 1); K,J,,P, are “bad”generators

(¥ =0)and p_, F; are “terrible” generators (y = 1).
Equation (24) can be generalized to

[Ksud ") = inyA ", (25)
so that we get the following operatorial identity:
(K5 + yad Jexp(iad } = exp(iad )K , (26)

from which, by taking expectation values between X j-states,
we immediately obtain

A ~AWe,, A ey p)
= —yald'.pr, p'|dexpliad )|A, pr p) . (27)
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The a-dependence of the function ¥ *) can be factorized,

writing Eq. (27) as

, . a P s
{(/1 ~A)—iya E{}wﬂ’””"u P p)=0, (28)
so that we can cast the general solution of (28) as

oA BT, p)=a " T G Ay, o) (29)
The equation satisfied by ¢ “*! depends on the particular re-
presentation of the generator A, given by (22), and the differ-
ent cases will be studied in the following section.

A general property satisfied by the function ¢**' is

S;A?;,,p(l ,’p:l“’ pl) = —alp,»p(i ’!pT) ) (30)
which comes from the very definition (23) and the Hermiti-
city of 4. This property will be widely used.

C. Representation of finite group elements

The aim of this section is to compute the action of finite
group elements exp{iad ) over K,-functions ¢ (1,p, p) as giv-
en by

(e“'¢ YA, prip) = (4, pr, ple“* | 9 ) . (31)
This action can be written in two ways:

{i) Series representation, obtained by expanding the ex-
ponential in a power series as

S LA ihprp).

n=0
where the action of 4 " over ¢ is known from the iteration of
Eq. (22).

Let us remark that if we want the series (32a) to make
sense we must require, over the space of functions, stronger
conditions than those postulated in (21a) and (21b) for square
integrable functions. In particular, if we restict ourselves to
the subspace of square integrable functions such that the
expectation value of p”, is finite,

<¢ (Pn+ |¢) < ®© (n = 091’21-")’ (338)

then the space of K;-functions ¢ (4,p, p) is restricted to ana-
Iytic ones, in the complex A-plane, on the finite strip defined
by (15)

— o <Red < w03

[e*d 1A, pr.p) = (32a)

—n/2—e<Imi <e€. (33b)

Similarly, if the space of square integrable functions is
restricted to functions with finite expectation value of p I

BIP"d)<—w (n=0,1,2,.), (34a)
then the K ;-functions must be analytic on the strip (15)
—w<Red<cow; —e<Imlcen/2+e. (34b)

(iii) Integral representation, obtained inserting the com-
pleteness relation (17b) into (3.1), as

[e“8 14,p;, p)
-3 f dl'd ) . (A By P (A 0 p'), (320)

where the function ¢! is given by (23). The integral repre-
sentation is more general than the series representation be-
cause we only require the function ¢ to be square integrable,
or analytic along the real axis, as in (21b).
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It goes without saying that both representations must
coincide in the cases where the series representation makes
sense.

In the remainder of this section we shall compute the
(general) integral representation (32b) for the finite elements
of the Poincaré group and prove the coincidence with the
series representation. Because finite elments are obtained by
exponentiation of Lie algebra generators, exp(ia4 } with
AelP  J,K,, P, E,F, ), we can divide the calculation ac-
cording to the different algebra generators. We shall proceed
by grouping the generators which share similar features,
goodness zero generators, {P,, P_|, [E;}, and | F,].

1. Goodness zero generators
Goodness zero generators K,J,,p;, are represented
over K,-functions in a local way. Verification of the follow-
ing equations is immediate:
[e "¢ Jidpr. p) = "8 (A0, p)
[em_,.l,¢ ]{A’P'r: p) — eia,lt(p‘i}/c?px — p,8/0p;) +p]¢ (/z,p'r, p}
=e““¢ (LR “'p., p), (335)

(%8 YA/ p) = €™ 41, ).

2. The generators P, and P._

Using the general Eqs. (27) and {29)for 4 = P, together
with the action of P over the K;-basis we get the following
functional equation for ¢ '*+), (hereafter we shall omit the
superscript (4 ) of the functions ¢**' and ¢ ' when there is no
danger of confusion):

A =A)bip, A0+ Kby, AT — D7, p) =0.
(36)

The solution of the functional equation (36) together
with the general property (30) gives the function

v 1 s
Vo spnph P p) = — 2—7';1“(1(/1 —4)
X(—ia_w) =~ P8p, — P70,
7
and the integral representation (37)
. 1 “ r M 7
[ Mo prp) = — o [ aa'ria -2
2 J - o
X(—ia_&)"* =14 pr,p).  (382)

The series representation = */")p"  acting over K,-func-
tions makes sense only for states such that (", ) < o, for
any n>0, so that the functions ¢ (4,p, p) are restricted to be
analytic in the lower half-plane ImA < € in agreement with
(33b). Under these conditions of analyticity we can write
e “ o1 prp) = S Lot —in ).

n=0

[38b)

The integrand of (38a) has a singularity at 4 ' = A, due to the
[ function, so that the contour of integration in (38a} must be
understood as going from — o to + oo along the real axis,
but avoiding the pole at 1 ' = 4 by means of a small semicir-
cle, of radius 8 < ¢, in the upper half-plane. This distortion is
possible because the function of (38a), ¢ (1 ', pr, p), is sup-

posed to be analytic on the strip [ImA '| < €. Furthermore, if
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the function ¢ (4 ', p, p) is also analytic on the lower half-
plane, ImA ' <, the only singularities of the integrand of
(38a} are the polesof ' (i{{A — A '), at A = A — in

(n =0,1,2,...) with residues ( — 1)"/n!, and we may displace
the contour of integration downwards, to “‘minus infinity”,
and parallel to the real axis. The integral over the displaced
contour will vanish while a series of contributions is obtained
from the poles of the I" function which has been crossed over.
This series reproduces exactly the series representation
(38b), as was required. In fact, the normalization factor

— 1/24ri was chosen in (37) so as to cancel the factor — 27/
from the Cauchy theorem.

A straightforward application of the methods just de-
scribed enables us to compute expfia_ p_ | ¢ with some
modifications which will be pointed out. The series
representation

le“? ¢ YA, pr.p) = i [

. 2 Nn
w+mr] L s rinprp)
2K n!

{39a)

requires the function ¢{4 ’, py, pito be analytic in the upper
half-plane ImA > — €, in agreement with (34b).
The integral representation can be written as

ia P ____1_ - v 1
[ ¢m,pr,p>—2ﬂf_wd1 ra -1y

. 2 \jA ~ A
X( a+mT) ¢(’{ I’ DT,P),
2K

(39b)
where the contour of integration avoids the pole A ' = A of
the I” function by a small semicircle in the lower half-plane.
Again, if ¢ is analytic in the upper half-plane, we may dis-
place the contour of integration upwards, and the seties of
contributions from the poles of I" (i1 ' — A ))atA ' = A + in
which are crossed over reproduces the series representation
(3%a).

3. The generators F,

Using the action of the generators E; over K;-functions,
Eq. (22), the series representation for exp{ia,E;} ¢ can be
evaluated as

[ Wt pro)= S {Ii"') (ik 5%—)"¢ A —ni,pr.p),
n=0 . i
(40a)

where the function ¢ is supposed to be analytic in the lower
half-plane ImA <e.

In order to compute the general integral representation
(32b) let us first evaluate the matrix elements (23), satisfying
Egs. (27)~(29). Using (12) we can see that the function ¢, Eq.
(29), satisfies the following differentiofunctional equation:
i . 8 ’ . ’ ’
(’1 A )¢A,p,,p{/{’ ’:p'T»P ) + ‘K'a—p—'qsxi.p,,p(/‘t —LPpr P ) ’
' @1
whose solution depends on a parameter b with dimensions of
(momentum) ™! as

F(l(,& A ))( — ixb ) —HA =2 )eibip,' —P,)(S(pjl _pj )6‘7‘7' . (42)

In (42) we use the conventionj = 2 fori=1,andj = 1 for
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i = 2, and the general condition (30) has already been taken
into account. Any function (42) with any value of b, is a
solution of (41} so that the general solution of (41) must be
given by a linear combination of functions (42). The physical
significance of b is the impact parameter conjugate to the
transverse momentum p,. Because we are representing the
Poincaré group over functions ¢ (4,p,, p) of well-defined
transverse momentum, the action of the group cannot de-
pend on the impact parameter, by the Heisenberg uncertain-
ty principle, and we must integrate the function (42) over b.
On the other hand, the measure of integration db restores the
dimensionality, (momentum) 2, which the functions
@4,,,A ‘P p') must exhibit, as can be seen from (15b).

In this way the matrix element function can be written

as
l/,ai,/l.p,, p(/1 ’vp’T’ P’)
1 g
= — ——T({A" = AN —ia,)~ " 4
ppcy {dl N — iax;)
Xo(p; —p)b,,I(A'—A), (43)
where the function I is given by the Fourier transform

IA'"—A)= f db (kb)) ~1* — gt =P (44)

and the integral (44) can be evaluated as follows, '
(A27):

see Eq.

A —A)+ 1)

’ _ p. A=Ay —1 ' _p. HA —A)— 1
« {(p, b l.o) _( = l.o) }
K K

1= ien/Z(A’fA)r( _
K

(45a)
for — A’ — A} — n(n = 1,2,...}, while
] T . i —p; f=pi\T
I=1 si n( )( ) 45b
TR X (43b)
for — A’ — A} = — n. Thefunctions x + io must be under-

stood in the sense of generalized functions.'?
Thus we can explicitly cast the integral representation
of exp{ia E,} into the following form:

(%6 Wiprop) = [ dA"dpi .., 40 6 2" 0101

(40b)
where
Ui plAipl) = — M — = A7/ =40
e
singr[{Ad — A4 7)]
X {p, —pf + o ~#1 =
—p. —p; —iof* 7! (46a)
ifid"—A)# — 1,2,..., and
P =PI !
lpa,,i + in,p; ( !p ) (277_) ( ) ( P ) (46b)

for —iA'—A)= —1,-2,...

Let us rémark, from (46), that the function ¢, ;. p',(/l,p,.) has
polesatA' = A — in,n = 0,1,2,.... The contour of integration

417 J. Math, Phys., Vol. 22, No. 2, February 1981

of A ' in (40b) must be distorted so as to avoid the singularity
of the integrand at 4 ' = A.

Using the following property ' of generalized
functions:

2 — 1)"/nl)6"™(x) ,
(47)

the residue of the function (46), at the location of the poles,
can be extracted as

(x+io) " '—(x—io)T" " =(—

1 (ai—K)" (n)( ?
-———5"p] —p;). (48)

Resto,1plhp) 2mi n

Hence, if the function ¢ is analytic in the lower half-plane,
the contour of integration may be displaced downward. The
only singularities of the integrand of (40b) are the poles of
(46a}, whose residues, Eq. (48), must be added when the poles
are crossed over. The series of residues of (40b) reproduces
the series representation (40a). The proofis straightforward.

4. THE GENERATORS F;

In this section we will merely quote the results concern-
ing the series representation and the integral representation
of the elements exp{iB,F;| of the Poincaré group, acting
over K;-functions. The computational details as well as the
equivalence between the representations will be relegated to
the Appendix.

First of all we can put the generators F; into the follow-
ing form:

F= eie’(f‘(—l— Oi)e—ia,ﬂ’i i=12), (49)
P+
where
my 9
O =pKati=fom =€} + )75 (50)
and
6, = arctan(m/p,); 6, = arctan(m/p,). (51)

Using the decomposition (49), the series representation over
functions ¢ (4, p;, p) analytic in the upper half-plane,
ImA > — €, can be written as

/ (IB n
[ M prop) = § PO
n=0
X3 T4 262 - 0ilpr) ~ 8, 7
A+ ni i 3 e,--(p« +m3)'?
X mz n[____ ; + —— _j._"._._g-
(m7) ) P 2 o, )

x11(8, L 8ipr). — s g) (52a)
(4 + ni, py. p)

- 5’: (IB)"K*"ZT(I)(

8, —8, _7.7_)
n=0 2 2

€, (p? m 1/2
my 2 BP m?

T

o} (m3) (52b)
X T, (6 Z O —8a 2 ) SR+ npr ).
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The mathematical steps leading from (49) to (52) can be
found in the Appendix, Egs. (A3)—(A13). In (52) the func-
tions 7'/, are matrix elements for the spin j irreducible re-
presentation of the rotations group, parametrized as'?

R(1,0,6)=¢"" 2% 1647, (53)

We may express the explicit integral representation of
exp{if;F;},(i = 1,2), as

[e""4 1A, pr, p)
=3 [ dpt U0 B )2 21 ), (59
P

where the function ¢, . o {4, Py p) is given by
1 Iy T T
d’B,A i M"PT’P) = m 2 T,ujt)r((siz 7,6“ —8p "2‘)

— T T\ idla(m?} /K ) — id’ In(m)? /K3
1) L
X Tap' (84‘2 2 79i9 - 61’2 )e ' !

2
% ezml arctan p /e fp; + m’})' 7 — arctan p//e fpl + m?)'/?
X(—=iB) =" = A" =AM (A" A) (55)
2\ —A)—1 )
1:(—) Lr{—ia =)+ 1)
K K

X{(pi —p, + o~

—(pf =y — i e = (56a)
fori{d’" — A)#n(n = 1,2,...); whilefori(d ' — A ) = nwehave
T —in) = /)y~ —T sign(pi _p")(p,’ —p)

(n—1)! K
(56b)

The calculations leading to the integral representation
(54) are somewhat lengthy and the interested reader can find
them in the Appendix, Eqs. (A 14}-{A29). Let us note that the
function ¢ defined in Eq. (55) has singularitiesatA ' = A + in
so that the integration contour in A " in (54) must be distorted
by a small semicircle in order to avoid the poleat A ' = A. If
the function ¢ is supposed to be analytic in the upper half-
plane, the integration contour in A’ may be displaced up-
ward, and the series of poles at A ' = A + in crossed over in
(54) reproduces the series representation (52), as can again be
found in the Appendix, Eqgs. (A30)-(A32).

iV. CONCLUSION

The aim of this paper was to obtain a representation of
the Poincaré group—or equivalently a basis—where the infi-
nite momentum limit could be implemented in a natural,
well-defined, fashion. It is usually thought that the null
plane basis, whose kinematical algebra leaves invariant the
null plane x° = x?, is the best framework to describe high-
energy situations and it has been successfully applied to par-
ton models of high energy hadrons. ' Nevertheless there are
some “bad” features of the null plane basis to which we wish
to call attention: (a) The absence of a parameter “measuring”
high momenta (this role is played by C in the nonrelativistic
limit). (b) As a consequence, the only way of implementing
the infinite momentum limit is through an inner automor-
phism, or infinite momentum frame, so that, as pointed out
by Bacry and Chang,” the contracted group is isomorphic to
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the Poincaré group, and no mathematical simplification is
obtained. (c) The null-plane states are ill-defined in the infi-
nite momentum limit, and a complete description of infinite
momentum states would need to include those with infinite
mass’ (gigamomenta).

In this paper we have proposed the following CSCO:
{pr> K37 3}, where 7 is the third component of the null
plane spin. Let us briefly review the main features of the
representation of the Poincaré group over the new basis,
called the K;-basis:

a) The spin operator is the same as in the null plane basis
so that the kinematical algebra is spin independent and the
spin degrees of freedom appear only in the dynamical part of
the group.

b) K;-states are well defined in the infinite momentum
limit. In fact they are given as Mellin transforms of the null
plane states.

c) In the representation of the Poincaré algebra, and the
Poincaré group, there appears a parameter K, with dimen-
sions of momentum, which enables the infinite momentum
limit to be implemented as the limit k&— o0 in a contraction
procedure.

d) The convergence properties of null plane wave func-
tions translate into (more transparent) analyticity properties
of the K ;-functions in the complex 4 (eigenvalue of K;-plane.

Once we have the contraction parameter K, we can contract
the Poincaré algebra and group by means of a suitable rede-
finition of the infintesimal generators and the limit A—oo.
Two main contractions can be performed:

a) Let ¥ be the goodness of the operator O, and define

O=k"70. (57)
This contraction is equivalent to the infinite momentum
frame contraction of Bacry-Chang’ and Kogut-Soper,® and
the contracted group is isomorphic to the Poincaré group.
With contraction (57) we will have the same features showed
by the infinite momentum frame limit (as e.g., Galilean mo-
tion in the transverse plane, etc...) but the states will now be
well defined.

b) The natural contraction dictated by the K,-represen-
tation [see Egs. {22)] would be given by the definitions

E =(1/k\E, P,=(1/)P, , (58)
and the remaining generators unaltered. In this contraction
the stability group of the null plane keeps the same structure,
with rescaled variables, while the Hamiltonians F,F,,P _ of
the dynamic group go to zero, in the limit k— «, in the case
of free particles. However, in the interacting case the dyna-
mical algebra will no longer tend to zero, as it must be modi-
fied by interaction terms, and the description of the interac-
tion could be simpler in the contracted, ultrarelativistic
group, than in the original Poincaré group. This situation
recalls a similar one in the nonrelativistic limit where the
dynamics of a spin 1/2 particle is simply described by the
nonrelativistic Pauli equation which is the limit C— o of the
Dirac equation. The problem of the interaction, as well as
such other related problems as local covariant realizations,
equations of motion, and the position operator, are under
consideration.
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APPENDIX

In this Appendix we shall compute the series and the
integral representation of exp[iaF, } 4, corresponding to Eqs.
(49)~(56) of Sec. II1. The representation of exp{iaF,} isa
straightforward application of the methods contained in this
Appendix.

Let us first put F}, as in Eq. (49)

Fi=eno(-0 ), (Al)
P
with
m
=PK, +z——T~‘9——(p2+m) (A2)
2 dp,

A. Series representation

In the series expansion of exp{iaF} there will appear
(1/P, 0,)" so that we will need the following two
Propositions:

Proposition 1:

(oy-(ey.

Proposition 2:

Frof-Gro)G)E) we

To prove these propositions, we will need the following:

Lemma:
1 noq 1 1\
—0,) — = —{0,—}, AS
(m?r 1) P, P, ( 1 m%") A3
Proof of the Lemma:

The lemma can be proven by induction over n:

1. That the lemma is true for n = 1, that is
_L oL - Lo L (A6)
my P, P, mi

follows from the explicit representation (A2 of O, and the
commutation relation

1 1
Ky |=—i AT
{3P+] ‘. (A7)

2. Let us suppose (AS5) true for n, then
1 n+l ] 1 1 1Y}~
Gzo) F=moa(o) e
mry P, mzy P, myz
and using (A6} we get
1 nl ] 1 1 \n+1
o) o)
my P, P, my
)

which proves Lemma (A5).
Proof of Proposition 1:
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We shall again proceed by induction:
1. Equation (A3), for n = 1, is trivial;
2. Supposing (A3) true for n, then

(L ol)n+ : = (—1-)”(’"27 )"(__I_ 0‘)” _1_ 0, (A10)
my P, my P,

but by virtue of the Lemma (A5)

1yt 1y 1 1y
__0) =(__) m "__(0 _,)o All
(o) =(z) (o =)o

From where the Eq. (AS), for n + 1, follows, proving thus
Proposition 1.

The proof of Proposition 2 follows along the same lines
as Proposition 1, using the result of Lemma (A5).

Now, using the decomposition (A 1} and definition (31)
we can cast the series representation of exp(iaF,) as

0

g o= § L 5 (a1 dm;iai6.pr)
) e (A12)
x </L Pro (P—‘; 0,)"|/1 g p;,o')t;;“‘(alw) SIA", D3 p)

where, by definition, ¢ /() = T'(0,4,0). It is easy to
prove, using Proposition 1, that

I " # ’ L3
(ﬂ,, pT)a (F"’ 01) lﬂ s pT’U)
. 2 31/2 n
= (m 2)"K‘"{ﬂp‘ y Lo _tm)” a'}
mi 2 dp, mr
X8 +ni — 8% pr ~ prS.. (Al3a]
while the use of Proposition 2 gives
</1, P70 (P ) |/1’, DT,0'>
=K~n{@ Li9 MU}"
m? 2 dp, m3.
X (m7)'8(A + nk —A)6%(p; — p7),, - (A13b)

Thus the insertion of (A 13a) into (A12) proves the series re-
presentation (52a) while the insertion of (A 13b) proves (52b).
The equivalence between (52a) and (52b) can be proven di-
rectly by induction over #.

B. Integral representation

Using the action (22) of the generator F, over the K-
states, the equation (27) for the matrix element ¢'™ leads to
the following equation for the function @, as defined in (29),

(’1 —A )¢/{,p7,p(i ,! pIT’ P’)
m12 8

~Zt"7 6,(p5)K *’[M’-}—i)p;-%—i LI
2 Jp;

-—(p'2+m 1/2 '}
Xt o' NOPTNs oA+, P710) (A14)

Our task will be now to compute a solution to the differentio-
functional equation (A 14). This will be done by successive
simpilifications of the equation, by means of a series of
ansdtze.
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Ansatz 1:

Drpnod B P = 3 OO PN, oA D) (A15)
"
The substitution of (A15) into (A 14) gives the following equation for the function ¢:
’ 2 ’ —_ ' ’ . m’2 a .
A=A )ap A P ) =K ‘[(,1 +ip) + i 2T Pl (p; + rnz)‘”ﬂ}é,,,pp(/1 "1 P ) (A16)
Ansaiz 2:
Capnp A s BT ) = A 07, 30 "W, A, B0 {A17)
where fsatisfies the eigenvalue equation
1 ; m"rz a ?2 (1/2 ' ' 2 '
A'py i 2 o (py" +m )y "p fAprb s u) =k*b'fIA, py,b s ), (A18)
1
whose solution can be explicitly computed as
) m12 (bi ’ +M(p12 + m2)1/2) pr
A, ppb s ) = explid 'In —— — 2i : tan ————— 1.
A H) p{ P (p;z + m2)1/2 arcian (p52 + m2)1/2 (A19)
Then, the equation satisfied by the function y is
’ ¢ ’ ’ K2 ’ . K a ’ L) '
A=A ap, AP} = Kb i — =¥, A+ Pb ). {A20)
m¥y 2 dp;
Ansatz 3:
Xiapn ol 07,k ") = glo7sbb 1 AA VF (Apr, p), (A21)
where g is the solution of the following eigenvalue equation
K2 ’ . KZ a ’ ] ’ !
ko' + i 2 olpribb’) = xbg(pyib,b’) (A22)
my’ dp1
or, explicitly,
T K’ 14
g(pr,b,b ) =e m arctan m . (A23)
The substitution of (A21) into (A20) gives, for #74,4 ‘), the simple functional equation
(A’ — AVHFRA) = kbF AL +1), (A24)
whose solution is 973 2 V= (= A" — AN — ixb & =), (A25)
Using (A15)-{A25) we get
Gy A s 07, p) = (icb Y AT (A = A) S £, (0 (7))
o omE : i .
X exp {z,{ 'In —— 2ibp; — 2igarctan m]&pz —-p3) (prd, p)s (A26)
K 24+ m

which is independent on the parameter 5 ’. Nevertheless the function in Eq. (A26) is explicitly dependent on b. Because the
matrix element i, ; ,, (A, p7, p') may not be dependent on b, we must integrate over b in (A26), as in Sec. 11.C.3. The
integration can be performed with the aid of the Fourier transform'?

Flxtl=ie"" rA+1o+io)"" ' —(g—io)"* '} A#—1,-2,., (A27a)
Flx—" =i —T sgnofo” ). (A27b)
(n — 1)
The function . (p,,4, p) must be fixed with the aid of the general property (30), giving thus
m2
F ¢ — 1) ] T ; 1 I 4 S
F =t,, J(6,(pT))exp{ iAln = + 2ibp, + 2igarctan P ] . {A28)

Using (A27)~(A29) we can give for the matrix element, the following expression, for {A ' — A)# — 1, — 2,...:
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¢ (l/ ’ 1)_9(”/2)(/]'#/{" ( —ial()"""—"'
adpn o\t TP 4 2 sinr[i

A’ —4]]

id 'In(m?P /%) — iA In(mb/x?) tx

. Y . 22 23172y /(p? 1)1/2)] — 4
X Z ti,j']a (el(pr))e 2io [arctan(p{/(p3® + m?)'?) — arctan(p,/(p} + m t o U'(el(pT))
o

x{lp, — p} +iof*—*' ' —(p, — p; —io)* =%~ }8(p, — p3),

while

wa,i.p,,p(ﬁ + inr p’Ty P’) =

i\ 262

, Y ’ ’2 20/ W/ 2 2)!/1” _
X z ti,'na (01@7))9 210[arctan(p,/(p, + m?*)'"%) — arctan(p,/(p; + m f o 1(61@7))5
o

forid' —A)= —1,~—2,.. .

(A29a)

22\ —
1 ( —amy ) "eu. In(m{2/m3)(p, — pi/u)" = !

(A29b)

pp3) °

Now, using (32b), the integral representation (54) follows easily. Let us note that the function ¢, , {4 ’,pr, p) has singylari-
tiesatA ' = A — ininthelower half-plane of the complex variable A ’, due to the function 1/sinw[i{{4 — A ')], butis regular in the

upper half-plane, see (A29b).
C. Equivalence of series and integral representation

Whenever the function ¢ is analytic in the upper half-plane, the integral representation (54) leads unambiguously to the
series representation (52). The simplest way of proving this is to write (54) as an integral over b and to exchange the order of
integration: i.e. tointegrate firstin A ' and then in b. The residues of the polesat A’ = A + in,n = 0,1,2,..., are added as usual, so

that (54) can be written as

i 1 , & (A" o 2 —p))
i YA, pyy 0) = — dp’ db =L ke 1
[e“"¢ 1A, pr, p) - pE o go "

X(mA) 3 t(B,(pr)e e p3 + m?)'/? — arctan pi/(p3 + m?)'?
(24

QA {n(m? /%) — Intm 2/eti} 1
Xe ! 0 o ONpy)) -

The following property

{( 1 0 )n b "}e — z;-bp,ei& ln(m;,/x’)e — Yicarctan[p,/(p? + m**?] 0
! =
’”ZT

’

which can be proved straightforwardly, and the integral over
the remaining b-dependent function

[dbe =5 = sip, — )

leads to the series representation (52b).

(A32)
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A graded Cartan-type connection is devised on a bundle of graded affine frames over superspace.
The relation of the gauged graded affine group to the geometry of superspace is discussed in the
context of bundle reduction to simulate spontaneous symmetry breakdown. A complex
quaternionic caiculus is used to simplify the algebraic analysis.

PACS numbers: 11.30.Pb, 12.25. + ¢

1. INTRODUCTION

Certain physical theories have often received clarifica-
tion and a lucid formulation in terms of geometric concepts.
Such concepts attempt to focus on the salient features of the
theory in an intrinsic coordinate independent manner.' In
particular, classical field theory finds an economical descrip-
tion in the modern language of fiber bundles.

In this article some aspects of the theory of simple su-
pergravity are formulated in terms of the geometry of a re-
duced manifold.” A distinction will be made between those
aspects of the formulation that belong essentially to the es-
tablishment of the structure group of the appropriate bundle
and those features that result when a particular choice is
made for a connection in that bundle.? Such a choice may for
example be made by finding the extremum of an action form
on the base manifold which is invariant under change of
section in the bundle under consideration. The language of
the fiber bundle is particularly suited to the geometrical de-
scription of spontaneous symmetry breaking. Indeed in a
recent paper K. Stelle and P. West have argued that the
reduction of an SO(3,2) bundle over space-time to an O(3,1)
bundle enables them to formulate a theory of gravity as a
spontaneously broken SO(3,2) gauge theory. This approach
is motivated by a particular action which generates the equa-
tions for the geometrical fields in the theory. Although the
establishment of an invariant affine connection on a homo-
geneous space may often be thought of as being triggered by
some spontaneous symmetry mechanism, this aspect of the
formulation will not be dwelt upon in this paper.

In the following, a fairly well established procedure’ for
reducing one bundle to another will be carried out in an
attempt to draw together the notions of the gauged graded
Poincaré group (graded affine group) and the transforma-
tions of simple supergravity.

Two essential viewpoints will be adopted. Firstly it is
asserted that this (and any) formulation should ultimately be
expressible in a coordinate independent way. Thus at any
point the (passive) choice of a coordinate chart in whatever
manifold is being considered should have no intrinsic signifi-
cance. Secondly, a geometrical theory of gravity will be said
to be defined once the linear connection form and canonical
form of a suitable bundle of anholonomic frames is specified.
If the space under consideration admits a metric of definite
signature then orthonormal frames (with respect to this met-
ric) will be chosen and the connection becomes a metric one.
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Thus the conventional theory of Einstein is specified in
terms of a torsion free connection on OM, the bundle of
orthonormal frames over space-time M with the structure
group O(3,1) that preserves the Minkowski metric with sig-
nature (— + + + ). This interpretation of a gravitational
theory is partly motivated by the need to establish a rule for
transporting tensors (as well as frames) in space since in con-
ventional theories they will describe the other (matter) fields
of physics.

Theories involving SL{2,C) spinors are usually present-
ed with the spinor components forming vector arrays that
are coupled into invariant SL(2, C) combinations with suit-
able ¥ matrices. In order to formulate the theory of mani-
folds with spinorial coordinates it has proved convenient to
break with this tradition and embed the spinor components
into the ring of complex quaternions. Historically quater-
nions have often been used to simplify calculations involving
rotations in three or four dimensions. The complex quater-
nions form a homomorphic image of the SL(2, C) algebra and
enable the SL(2, C) group to act in a succint manner. The
reader is referred to Hestene’s” book on space—time algebra
for an analogous viewpoint and earlier papers on quater-
nions. An essentially self-contained description of spinors in
a complex quaternionic basis that is designed for application
to superspace tensor analysis is presented in the Appendix.
Since SL(2, C) plays a fundamental role in the following dis-
cussion it is often convenient to embed other entities into the
complex quaternionic algebra. A considerable freedom from
Fierz rearrangement is afforded by pursuing these tech-
niques and tedious algebra in the ring of y matrices is re-
placed by operations with the simpler quaternionic algebra.
Complex quaternionic valued differential p forms will be
used extensively in the analysis. These and other tensors will
be graded in general by grading both their components and
their basis elements. The components will often be graded as
elements of some unspecified (hidden) Grassmann algebra.
When necessary the terms odd or even will refer to the Fer-
mi-Bose grading.

In order to establish notations a brief description will be
presented for a geometry of ordinary space-time M (with
points coordinated by x ™) in terms of a complex quater-
nionic vector valued linear connection form & on the bundle
OM (M, SL(2, C)) of orthonormal frames. An element of OM
is an orthonormal ordered basis of the tangent space T.(M)
at x. Writing an element of SL(2, C) as (/1 y=e* A where
A= +ifthe right action on the tangent frame d = d,,.
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is defined by

3->0180=19,.0'¢0=0,.¢l)=08,Xx5 &,
ie.,

-~ Q ~

F> X0 e, (1.1)
Thus the linear frame w=(3) = (d,,0,,95,9,) may be consid-

ered as a map from the antihermitian quaternions H, into
T.(M) with the Lorentz group action given from above:

Q u ~ ~ -
uQ:H,—H,—»TM;e"—X§ e*—ulX; e’) =9, X, . (12)

The bundle of orthonormal frames OM is made intog differ-
entiable manifold by taking the ten numbers (x ", a’, )
(f = 1,2,3) as local coordinates. The canonical form e’ will be
taken as an antihermitian quaternionic 1 form e T, *{OM)
satisfying

ue'(X*) = 7X*,
where X*cT, (OM } and m:OM—>M is the projection. Locally

a vector at ¢ with coordinates (X2, £%, k = 1,...,6, may be
written®

4 3 P . b ] )
X*: aa.X"+ (-'—-*‘ j+ —_—. "+3). 13
22X X gt t 3
One readily verifies that in terms of the antihermitian
coframe

4
e= ) e%,, where e%d,)=96;,

a=1

e =QeQ", (1.4)
and e’ corresponds simply to an SL(2, C) rotated coframe. In
order to establish a connection 1-form a set of fundamental
vector fields J.* is first defined on the bundle. These must
correspond homomorphically to the six SL(2, C) generators
Ji=(é,,6,,6,,1¢,,ié,,i¢;). They may be chosen to be dual to the
complex g-vector valued Maurer—Cartan 1-form @,,,,
=0Qd(Q. Thus writing

6 R
a[\)m( = z o :’nc J'l
n=1

3 J . d ;
J*= — Ji{a, +——‘j.J{~+3a, }, i=1,..,6
p [aﬁz @)+ 01 ap)

one solves for J/ the equation
a’}mc (']l *) = J:
or
W i*) =67,

where

in=1,.,6, (1.5)

b = 3 [ofeB)df +af, (@) da’].

j=1

The J, * span the vertical space tangent to the fibers and any
vertical vector A*eT’, (OM ) can be expressed as

6
A% = Z A'x,apB)J*
i=1
Any complex g-vector valued 1-formeT *, (OM ) of the type
& =0ad, dx" + d,, satisfies the fundamental condition
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H(A*) =A=3_, 4'J,. The rest of & is defined so that
&X)=X =X for any X (not just vertical vector) and this
partitions 7, (OM )sothatX = A X + vX, whered(h X) = 0.
From these definitions the horizontal component may be
expressed in terms of a connection as

hX=X— i o' X) J;*, (1.6)

i=1

where & = 5_, @'/’ A convenient expression for an anti-
hermitian g valued torsion 1-form can now be computed in
term of a section through OM. The bundle torsion is defined
in terms of ¢’ as

T =de' .k, (17
i.e., has components T(9, ,0,) = de'(h 9, ,h 8,) in any basis.
From the definition (7) and the identities dQ (43, )
=d(3,,)Q, dQ *(hd,,) = Q *&(d,,) one finds that

T=de+2ddANe (1.8)
(Strictly speaking this is o*T expressed in terms of o*®,
where o: M—OM defines the section. Sectioned forms will
be implied on the following and the pull back symbol will not

be explicitly mentioned.) Under a change of section generat-
ed by the SL(2, C) element Q (x{x), B (x))

6060 + QdQ (1.9)
T-QTQ". (1.10)

In terms of an exterior covariant derivative D, the tor-
sion can be written
T=D,e= - T, (L.11)

where the subscript on D denotes the connection under con-
sideration. The curvature of this connection is the complex
g-vector valued 2-form R defined by

R =dé + & A6—~0RO, (1.12)
with the usual 2 X 3 X 6 = 36 real components. (The quater-
nions commute with the exterior multiplication.) Using defi-
nitions 8 and 12 and the condition QQ = 1 the Bianchi iden-
tities follow immediately as

D,R=dR + 2V (6 AR} =0, (1.13)

D, T=dT+ 26 AT)= 2R Ae). {1.14)

Spinors may be regarded as certain complex quater-
nionic valued tensors in a bundle associated with the orthon-
ormal frame bundle. For a given SL(2, C) frame rotation

e—QeQ", (1.15)
the four types of spinors defined in the Appendix transform
as

¢, —0b, . (1.16)

¢i"’¢i QT~ (1.17)
As an example of the applicability of quaternionic forms in

space-time the theory of simple supergravity’ is recast into
this language. Denoting the gravitino by an odd Majorana

spinor valued 1-form y with x ' = — j the action 4-form is
A (e,d,x)
=ImS{kRAeAe* — &A [XAD,x +D,xAx]},
(1.18)
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where
D,x=dx+oAx—>QD,X,
D,x=dx—xNé'-D,x0".
Making intrinsic variations in e, )'(, and @, respectively, gives
the equations:

RAe=(i/k)D,x \x, (1.19)
EAD, x =0, (1.20)
T=(i/k}xAX, (1.21)

where the last equation is used to fix the connection in terms
of e and . Using the identities x Ax = Y A = O the above
action is readily verified to be invariant under the following
variations with an odd spinor O-form parameter e:

Se = 2.7 (iey), (1.22)
&x = kD¢, (1.23)
8x = kD €. (1.24)

These supersymmetry transformations will be returned
to in the last section from the viewpoint of particular super-
space diffecomorphisms.

2. GRADED AFFINE GROUP

Having established the notion of quaternionic valued
forms and OM (M, SL(2,C) in the familiar context of simple
supergravity this mode of description will be used to discuss
the graded affine frame bundle AN (V,G ) over a supermani-
fold N. In addition to the SL(2,C) generator A the other ele-
ments (P, P,, Q. , Q) of the graded affine algebra are em-
bedded into the complex quaternionic ring in the following
way

P= —iP,—P,é¢,, .1
S, =5(60.), 22
S. =S@0.). (2.3)

In terms of these even elements the algebra is defined by
gi, /sz [/f1 jz] s
Z:S(Pb)=SPUb+bl)),
L8 =8,

L8 =Sp» ‘
L Sp=28(Paf).

For Majorana related spinorial elements the translation pa-
rameter b may be taken antihermitian. An affine group ele-
ment will be parametrized as

G — esuesueZSPb EXE(Q_(/{\ ),b,0,9 ),
where O (ﬂ: ) is an abbreviation for the six coordinates
A=a+iB Regarding the group manifold as being coordi-
nated by (Q,,6,0 )it may be verified from (2.4) that the group
action is
G X G—GiQ,, b,,a,8) 0 b21B5) _

= (0,0 b, + lele{ + mﬁQ{ s

a+Q0,Ba+B01). 2.6

(The virtue of working with quaternionic parameters is par-
ticularly apparent in this composition rule.) It is also

(2.4)

(2.5)
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straightforward to verify that a left invariant 1-form in this
parameterization is given by

Q,..=G ~'dG = QdQ + 25 (P(Q [db — 6d6 | Q1)
+Su60+ +Sous - (2.7)

As indicated in the first section such a form plays an impor-
tant role in constructing a connection form with values in the
graded affine Lie algebra. In particular it may be used to
derive the corresponding fundamental vector fields on the
group manifold.

Defining the generalized exterior product of the algebra
valued even forms as

aNB=F_ AB= Za,./\ﬁj[J",Jf], 2.8)

where the general algebra is generated by J' one may verify
the Maurer—Cartan equation for (2.7):
e, = — 2, N2, 2.9

which also completely specifies the graded Lie algebra.

”

3. GRADED AFFINE FRAME BUNDLE

Considerable work has been done recently in making
the notion of a superspace precise.® For the purpose under
discussion only the existence of a local chart with coordinate
functions Z* = (x™, 2, z#) will be required where the estab-
lished conventions for the nature of the eight coordinates
will be adopted. [The x ™ may in fact be taken as the coordi-
nates of a point in M which forms the base of an exterior
vector bundle generated by the four elements (z*, z”), 1e.,

4
N=U S eAy),

X k=0

(3.1)

where A (V) is the space of rth exterior powers of ¥ at x and
Vis the vector space spanned by (¥, z). For superfield appli-
cations this space is converted into a suitable module.]

Associated with each coordinate, directional deriva-
tives 8/0zM M=23,; =(9,, , 9,, 3‘;)_ are established to-
gether with their duals (dx™, dz*, dz*). These constitute a
coordinate basis in 7, (¥} and T*{N), respectively. Writing
Ay, =9, -E} and E? = E}, dZ™ quaternionic frames and
coframes are defined (see Appendix)

A=dom, 0w, =A,d", (3.2)

(3.3)

Since all the elements of any bundle over superspace are
graded, great care is needed to establish consistent ordering
conventions. As different authors use different conventions
in this respect it is useful to note at this point some of the
differences that arise in graded differential geometry.

It is convenient to adopt a generalized Dirac notation.
Thus a general {r,5) type supertensor field will be expressed in
the previous basis as

K=(a, ®4, 8®A, K35 (E" e~ eE”)
(3.4)

This can be embedded naturally into the quaternionic frame

E—-coeaée=E'¢,.

R.W. Tucker 424



expansion by defining the quaternion components

K=K}5é, 8¢, 08" a0s" (3.5)
and writing
K=SAe-9AKE®-oE), (3.6)

where S here acts tensorwise in each space. Covariant tensor
are regarded as evaluating vectors from the left. Thus

(E™E™,..E*VK(Ap, &g ,..hp ) = K55 (— 1)%,
(3.7)
where

s—14 s r j

e=3(l15)+ $(M14)
j=1M=j j=2M=1

For any covariant tensor field K of degree s the graded alter-

nating tensor field 4 K is defined by

1
AKX, X,,...X|)= rl 2 €(m) KX 1), X pizyse 0 X ), (3.8)

where 2 is taken over all permutation 7 of (1,2,...,5) and €(1r)
is the parity of the permutation taking into account the grad-
ings of the arguments [e.g., if (1,2) are both odd and
m(1,2) = (2,1) then () = 1]. The graded wedge product is
then

oho' =Aweao). (3.9
Hence if @ and @’ are r and s forms, respectively,
((0 /\w,)(Yl9"'rYr+ s)

1
T sl 2 eV K)olY,,...Y,) oY, Yy ),
(3.10)

yvhere the sum is over all possible partitions of (1,...,7 + s)
into(/,,...,J,) and (K, ,...,K,) and €{J:K ) is the graded sign of
the permutation (1,...,r 4 s}/, ,...J,,K, ,...K,).
The following are adopted for graded functions g, /™,

coordinates Z* vector fields X, Y:

@ dz"@,) =54,

(b) df¥=dZ"0y ™)

— ( _ 1)N(N+M)(8NfM) dzN,

(© (X)M=(—1y*df"(X)

=(— XAy M),
(dy Ly M=r",
() Ly X={YX}=(XY—(-1)"YX),
H Lyod=de Ly,

8 Ly (5= = /e+(-1"fYe,
(h) Ly dfYX)=(Ly [df")X
+ (= War"(ZLy(X),
and any superscript to ( — 1) is 0 or 1 according to whether

the associated symbol is even or odd.
Returning to the construction of a bundle over N, a

linear frame at zeN is an ordered basis (E—),i'r+,':_‘r Sof T,(N).
Define ON to be the set of all such frames at all points of N.

The SL(2C) group acts on the frame at Z according to the
rule

uE(5ﬁ'r+fi?+)i(Q_*5Qm@(z‘*ég, (3.11)
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so the 14 local coordinates (z, A)serve to specify a frame in
ON (N, SL2C), the linear frame bundle over superspace with
SL(2C) as structure group. A connection on this bundle is
specified by giving a complex g-vector valued 1-form which
may be locally pulled back to a 1-form &€T *(N) transform-
ing under a change of section in ON (¥, SL2C) as

&—Q6Q + QdQ. (3.12)
& is fixed in any local gauge by specifying 48 real superfields.

The super torsion 2-form T is calculated in a manner analo-
gous to that indicated in the first section:

T=D,E=D,eoD eaD_ ¢
=de + 2O Nejode + dAeddé —eADT

=TzeT,0T: {3.13)
Analogously the saper curvature 2-form is
R=dd+ oMb (3.14)

Having established the notion of the linear frame bun-
dle over N whose fibers locate the SL(2,C) orientation of the
linear frame, attention is now turned to the definition of a
graded affine frame bundle over N.

The basic idea is to regard the tangent vector space
T,(N}) at z as an affine space in which one can define an
operation of translating the origin of the vector space. With
this interpretation it is denoted by 4, (N ) and referred to as
the tangent affine space. In addition to the ordered basis of
tangent vectors used to define the linear frame a graded vec-
tor is now required to locate an “origin” for the linear frame
within the affine tangent space. Specifying this completes the
description of an affine frame at z. Denoting the components
of the “origin” vector by ( p %, p %, p*) and embedding them in
the quaternionic algebra as (p,, p,, p;) the graded affine
frame will be denoted by the set

(A P)=@,7, %, ;S(@p, + 7, p+mp), (3.15)

where Ped, (N ). Such a frame may be identified with a grad-
ed affine transformation that maps a standard linear frame

at P = Ointoit. The right action of the graded group element
G = (Q,b,0,8 ) on the affine frame will be defined by

BP0 807,00 "7

P+S@.b+p 6)+7, 0+7,0)] (316
and it may be verified that
(AP} G\ G, = (A,P)G,G). (3.17)

Thus a point in the graded affine frame bundle AN (N, ,G')can
be coordinated by (z,4,b,0,6 ) and a group motion in the fiber
at z induces the affine transformations

2.2 p, +b+Pf9] o',

p—Qlp,+61,

b—lp,+0)07, (3.18)
in addition to the SL{(2, C) transformations. Since (¢, 0, 0, 0)
is a subgroup of G we may regard (b, 8, 8} as coordinates on
the coset space G /SL(2, C) and there is a correspondence
between this coset space and the motion of the graded affine
frame at z that has been quotiented by its SL(2, C) rotations.

Indeed the coset space may be used as base space of “rigid”
supersymmetry with b interpreted as a Minkowski space-
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time coordinate. In Minkowski space all the T, (M) are iso-
morphic with each other and with M itself. Regarding the
latter as an affine space it is clear that any coset frame in
AM (M, SL(2, C} generated by SL{2, C}subgroup will serve as
aspace on which to define Poincaré transformations induced
by P. The fiber symmetry is enlarged by using the *“global”
supersymmetry operations'® (with parameter a) as funda-
mental vector fields

X% =80, .a+3d,.6d), €T,(G/SL2,C),

in order to generate diffeomorphisms. With the gauging of
SL{2C) however, b must regain the status of a group param-
eter in a fiber over the (curved) superspace base.

The relationship between a connection on AN (¥,G ) and
the linear connection on ON (¥,SL(2, C)) will now be
examined.

The graded generalized affine connection is introduced
with the set of 1-forms (&,7,0,0)eT *(V), where

D=0,€,, N=7N ¢,

P:Paé« ’ pzp(ié{z ’ (319)
and may be written in a local section

2=36+280Pyp) + S, +5,—G'02G + G"dG.
(3.20)

Using the relations (2.4) and the Maurer—Cartan 1-form (2.7)
one finds for the element

G=(0b6.8},

3—Q6Q + 0dQ,

n—Q[n+D, b—6D, 64 2%(pd)] 0",
p—Qlp+D,0],

p—[p+D,6]1Q7 (3.21)

where covariant derivatives with respect to the connection &
associated with the subgroup (@2,0,0,0) have been used:

D_6=d0+ 0,
D, 6=db + 6",

D, b=db + &b+ bd" . (3.22)
The curvature 2-form of this connection is
R=d02 + 2NN
=R, +2S(PR,) + S, + 3, (3.23)

where (Iéw, R,, R,, R,)arecomplex quaternionic valued.
Using the generalized algebra exterior product {2.8) one
finds

-

Rm =dﬁ3+£)/\(;}a
R, =D,n+php,

R,=D,p,

R,=D,p, (3.24)
where

Dyp=dn+aolAn—nha,

Dp=dp+aohp,

D p=dp—pha'. (3.25)
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The connection transformations {3.20) induce the following
transformations on the algebra components of R under
(9.,6,0):

R,—~QR,0,

R,~Q[R,+DLb—0D20+ 2D, pb)] @7,
R,—~Q[D,p+D}0],

R,—[D,p+D20]Q". (3.26)

It may be noted that the second order exterior covariant
derivatives in (3.26) generate the homogeneous Q curvatures:

D26=R_0,
D2 0=6R]

D2b=R_b+bR? . (3.27)

At this point it should be stressed that the generalized affine
connection 1-forms (@,7, p,p) are completely independent of
the affine coframe set (e, €, €, pg, pr, pr) Now the fiber at z is
isomorphic to the G group manifold. If this space is parti-
tioned into its cosets generated by the SL(2, C) subgroup then
the coset space G /SL(2, C) has the correct dimension to set
up a correspondence between it and the tangent space T, (V).
More precisely the bundle AN (¥,G ) may be reducible to the
bundle ON (N,SL{2, C}} by sectioning the fibers G /SL{2, C).
Locally one may regard this as smoothly choosing the group
parameters (b, 8, ) with z so that the associated affine frame
is converted to a linear frame with a fixed origin for each z
and the structure group is reduced to the residual SL(2, C).
Globally the existence of this Higgs mechanism requires the
existence of a global section that clearly depends on the na-
ture of the bundle topology. To relate the generalized affine
connection 1-forms and the affine frames a Cartan-type con-
nection will be established relating (7, p, p) to the linear co-
frames (e, €, €} in a covariant manner. Using the transforma-
tions (3.21), (3.18) one verifies that such a correspondence
may be taken as:

p=¢€+D, pr,

p=€+D, pr,

7= —ie+D,p, —peDpr + 27 &py).  (3.28)
For a given & on ON (N,SL{2, C)) and canonical form (e, ¢, €)
the forms (&, %, p, p) fixed by this condition establish a grad-
ed Cartan connectionon AN (N,G ). With the aid of the funda-
mental vector fields on this bundle one can study the paraliel
transport of affine frames on lifted curves in terms of the
SL(2, C) rotations of the linear frames and their translations
(ps> Pr» Pr)inthe tangent affine space. The curvature of the
graded Cartan connection can be now calculated in terms of
the linear coframe fields:

R, = — T, +eNé+ D3P, — peppR] + 29T p,),
(3.29)

R, =T, +R.p;, (3.30)

R, =T; +p.R’". (3.31)

If the structure group is reduced to SL(2, C) with a section
that sets P = O the linear coframes become identified with
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the graded translation components of the AN connection
and the affine curvatures are simply related to the torsions
on ON.

A relation has consequently been traced between the
gauging of the graded affine group in superspace and
the geometry established by reducing AN (V,G) to
ON (V.S1(2, C)). Within this residual bundie of graded 1
linear frames the SL(2, C) connection w is entirely free
at this point. This process of bundle reduction may be
phrased in the language of spontaneous symmetry break-
down. Indeed by replacing the graded affine group by
the graded de-Sitter group much of the discussion on
development and reduction in Ref. 4 may be generalized
to the situation discussed in this paper. However, a com-
plete motivation along these would appear to demand
a generalized action principle with solutions giving topo-
logical information.

To make contact with simple supergravity in a super-
space geometry Wess and Zumino'' have fixed the connec-
tion & in terms of the torsion (T, Tr, Ty):

T, = ieAé, (3.32)
T, = [Toe’Ne + TSP Aes + TS P Aelé, ,
Ty = [TEe’Ae + T4 A"+ ThefAeclé, .
(3.33)
One observes that (3.32) implies the vanishing of R, in the
P = 0 gauge. This connection will be employed in the last

section where a return is made to the local supersymmetry
transformations discussed in Sec. 1.

4. CONNECTION PRESERVING SUPERSPACE
DIFFEOMORPHISMS

The use of tensors over superspace to discuss supergra-
vity of course relegates passive supercoordinate transforma-
tions at z to the status of labelling conventions. The funda-
mental nature of local supersymmetry transformations on
the manifold N must be sought in the nature of particular
transformations generated by certain vector fields. Having
reduced the gauge group to SL(2, C) it may at first seem
unlikely that transformations on the linear frames analogous
to the graded affine transformations (3.21) could be given
any natural formulation in terms of covariant operations in-
volving the SL(2, C) connection & . It will be shown, howev-
er, that at least within a certain choice of “‘gauge” {the Wess—
Zumino gauge) such transformations can be identified with
an intrinsic derivation.

The basic observation is to demand that once the tor-
sion conditions have established an SL{2, C) connection on
ON {N,SL{2, C)), transformations should be sought that leave
this choice invariant. More precisely a diffeomorphism
S :N—N that maps one point of NV smoothly to another
should induce no change in .

[*d = . (4.1)
(By comparison one recalls that on a space with a metric
tensor g, fis an isometry if f*g = g. The generators of fare
termed Killing vectors). Incidentally any transformation

will induce a transformation on ON that leaves the canonical
form invariant. Such a diffeomorphism is characterized by a
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vector field X = 9,,-X ™ say which may be thought of as the
velocity field of a steady flow on the manifold as each point
displaces according to the map f. A particular characteriza-
tion of X will be sought (by finding an equation for its compo-
nents in some basis) so that the Lie derivative of & vanishes.
Such a vector field is said to generate an affine
transformation. '

In dealing with active motions on a manifold with con-
nection it is preferable to translate the connection one form
into a graded type-preserving Koszul connection V. Given &
and with an arbitrary vector field X:

X=X+A+p=3,X°+mw, A, A%, (4.2)
Vis defined by

V40 = 2.(3-0(X)),

V, 08 = 2.27(3-d(A),

V.3 =24(3-0(p)),

V@, = §+‘5(X)’

Vam, =%, A,

Véﬁ+ = ‘7\‘+(5(H) ,

Ver, =dX)w, ,

Vat, = bR,

Viw, = a(n, . (4.3)

If one agrees to commute quaternionic elements across
® these formula are summarized in the familiar form:

VA =24[@0d)+ T, 80 +6" 0%, (4.4)
In this language the (1,2) torsion tensor T is defined by

TX,Y)=V,Y -V, X - {X,Y] (4.5)
and the curvature operator of this connection is

R(X,Y) = {VX’VY } - V)x,Yy s (4.6)

where X and Y are arbitrary graded vector fields on N. The
derivation that is needed to determine the generator X of
affine transformation is 4, =.%", — V,, . For any vector
fields X, Y, one sees from (4.5} that

A Y= —V,X - TX)Y). (4.7)

Furthermore it is not difficult to show that the required
generator X must satisfy

Vy{Ax) = R{X,Y) (4.8)
for all Y. Defining V,, by
V(@ X)) =8, (V,X¥) YV, (4.9)

Eq. (4.8) implies that in a local coordinate system

VoV, X'+ Tl X5)+ R, X¥=0. (4.10)

In the Wess-Zumino gauge one can examine the action
of Ay on 8,, for X an odd affine generator and project the
resulting vector onto an anholonomic basis. Thus with
E4T)=T",

EY(AyBy)= —Vy X' -T"0,.X%3,,). {4.11)
Comparing this result with Ref. 13 leads to the identification

E*(4x d,,) = 8E 4, and the calculations therein recover the
local supersymmetry transformations together with their
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minimal auxilliary field content. Thus in the Wess—Zumino
gauge the coframe 1-forms € and € contain the gravitino 1-
forms y and  introduced in Sec. 1 and the bosonic frame e
contains the space-time tetrad (whose coordinate compo-
nents are the conventional vierbeins e2, ). In this gauge, for
example, by taking components of (4.11) there results:

BES, = 8¢5, (x) = Ay 3)

= —TYms X2, ) yo (x) — Tms X Pm,) X (%)
SE; = by mix) = €"(dx 3,)
= —D, X —T%m, X" 3,) ¢,
—T%n;.X%8,) €5,
(4.12)
where
D, X=—e,0, X+ Y [Fdlx), er(x))s X7
B=yy

Thus the complete local supersymmetry transforma-
tions of supergravity appear in the Wess—Zumino super-
space gauge to be intimately related to the derivation 4
which in turn may be used to specify the generator of affine
transformation on the superspace manifold.

CONCLUSION

In this paper the relation between the gauging of the
graded Affine group and the process of reduction to the
SL(2, C) gauge group has been traced with the aid of a Cartan
type connection on the graded Affine frame bundle. The
methodology offers several generalizations to extended and
unified theories of supergravity formulated in a superspace.
Once a graded algebra has been chosen to extend the Affine
group an extended bundle of Affine frames would appear to
offer an attractive arena for the discussion of spontaneous
bundle reduction. The dimension and grading of the base
supermanifold can be adjusted so that a matching can be
achieved between the coset spaces that prefigure in the spon-
taneous symmetry breakdown and the generalized super-
space tangent spaces. The phenomenon of mass generation
in matter fields would then be tied to the existence of a sec-
tion that includes gravitational effects. Certainly it is to be
expected that the interpretation of spontaneous symmetry
breakdown will undergo a modification in the presence of
gravity.
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APPENDIX

The 3 elements &, (a = 1,2,3,)in the ring of quaternions

obey
éaéb = - 5ub + Eabr:éc . (Al)

A general complex quaternion is denoted

g=a+ 3 a6, (A2)
b=1
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where a, and a, €C. The conjugate quaternion ¢ is

3
- 3 a8,. {A3)
b=1
Complex conjugation commutes with quaternionic
conjugation
3
g*=at+ Y apé, (A4)

b=1
and the Hermitian conjugate is ¢ ¥ = g*. In terms of these

operations are defined the following:

2Relg) =9 +¢*,
2iIm(q) = ¢ — ¢*%,
285g)=9+4,
(AS)
2Vl =9—¢
e =q+4q,
2(g)=9—q" .
IfVig=0[S (q) 0] ¢ will be called ag scalar (g vector). Itis

Hermitian (anti-Hermitian)ifg* = + ( — ) ¢. Four real enti-
ties {b,b, | may be embedded into an anti-Hermitian quater-
nion by writing
3
b=iby+ Y b.é,.
a=1

If a 4-space has metricg = — e’®€° + 3_,e®ein
terms of real 1-forms (e°, e ) then an anti-Hermitian coframe
is defined as

(A6)

3
e=ie+ 3 €%, (A7)
a=1
with norm eé = ge = ds”. If Q is a complex unit norm qua-
ternion 00 = @Q = 1 then e’ = QeQ ' is also anti-Hermi-

tian and has unit norm
T = 0eQ 080 = Qee0 = e, (A8)
since e€ is a g scalar. Hence Q generates proper local Lorentz

transformations and it may be parametrized in terms of 3
angles (a, ) and 3 boosts ( B, ):

Q"e&+lﬁ’
where
~ 3
a= > aé,,
a=1
A 3 .
B= Y B.é,,

and the ~ symbol will in general denote a g-vector.

A complex quaternionic p form 4, is a p form with
complex quaternionic components in any basis of a real co-
tangent space. For graded forms there is the relation

A, AB, =(—~1)P""**B NA,, (A10)
although 4, AB, = (— 1" """ B N4, only if one of the
formsisgq scalar Under complex conjugatlon of odd o forms
the rule

(@p)* =d26T= —41¢7 (A1)

R.W. Tucker 428



is adopted. Hence for general odd forms

{@N\B)*= —a*A\B* (A12)
and for all forms (even or odd)
(4, AB)" = (— 1P'BIAA]} . (A13)

If A is a complex 2 X 2 matrix with det4 = 1 the complex
SL(2, C) spinors are 2-component vectors transforming as

¢;,' = (A¢ }r s
¢"=(¢A_l)’,
{A14)
‘/}; = (lﬁA +)i’ ’
¢ri‘ — (A +-—l¢)r"
where A * is the complex transpose of 4. Writing
Az(j“—l.% _Q2—1141) (A15)
> — iy qs+ 195

where Q =g, + =2 _, ¢,é, then Q0 = 1 implies detd = 1.
It may be verified that if g spinors are defined as

b, =0 U'+ 8,07, (A16)
$_=¢'W'+42W2, (A17)
and transform as ¢ , —Q¢ , under SL(2, C), then the com-

ponents (5:) and (¢ ',¢ %) transform as the index structure sug-
gests (A 14). The ideals are constructed with the elements

Ut = (1201 +i8,),
02 = (1/2)é, +ié,),

(A18)
W= (1/2)1 - i&,),
W2 = (1/2)(6, —ié,).
Similarly the dotted ¢ spinors,
$,=4U' + 6 W2, (A19)
b_=¢W'+4207?, (A20)

transform as ¢ N —¢ , Q7. A g spinor A without a subscript
will be taken as A _ by convention.

A typical tangent vector in superspace may be written
in the (3,, w,, ;) basis as

X=S@X+7, A+7 .

4 2 2 )
=Zak.X"+Z1ra.}L“+ZIId./1", (A21)
k=1 a=1 a =1
where

X=X%,, 8=9,¢,

A=A%, =, =mn,é,
;},:,udéd s 7_7=“ae~u,

& =(18), &=(1,-é,),
9, = — i, e'=ie°
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SE,P) =8, kl=1234,
a=1273,
i, =(W\WY, E=W,-0?,
&, =(W'\0?%, #=W',-W),
S@é)=56,, SE,&@) =5,

A complete duality between the quaternions
# =1 2, e and é, = (é,, &,, €;,) may beset upinan
obvious manner so these basis quaternions need never ap-
pear in any practical calculations. For convenience the rela-
tive transformation properties of the various ¢ spinors can be
immediately determined from their notation.

A Majorana spinor p form is one where all four types of
complex spinor p forms can be expressed in terms of two
independent complex spinor p forms.

Denoting these by ¢, and ¢, for illustration a Major-
ana related set is

b= —¢sU'+ 8,0,

a,a=1,2.

(A22)
b= W'+, W7,
b.=i@2U" + %W,
(A23)
b.=i@1W' -3 UY),
In general they satisfy the relation
' = +ip, . (A24)
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We develop the mathematical apparatus necessary to isolate pure naturality contributions from
the helicity amplitudes for an arbitrary 2—2 scattering process (with a Bosonic ¢ channel). We
prove that certain combinations of the amplitudes and their (multiple) energy-derivatives suffice,
and that no simpler methods exist. For high spin processes, where our methods might be
overcomplicated, we develop a simple and accurate approximation using just a single energy-

derivative.

PACS numbers: 11.50.Nk, 11.80.Fv
I. INTRODUCTION

In the next few years it is hoped that we will achieve a
much more thorough understanding of the structure of scat-
tering processes than we have at present. Experimental pro-
gress is being made in the measurement of a wide variety of
spin-dependent observables'; the eventual aim will be com-
plete amplitude analyses over a range of energies for the dif-
ferent processes. The new results should stimulate further
theoretical developments. For the moment we must deter-
mine how to interpret the measurements in terms of the dif-
ferent types of ¢ channel exchange participating.

Recently we published an account of how to isolate ex-
changes of definite naturality [ P( — )’ ] from the helicity
amplitudes for an arbitrary 2—>2 scattering process.” In or-
der to keep the analysis simple and practical we omitted to
prove our results. Here we will repair that omission.

The problem is highly nontrivial and none the less im-
portant for having been swept under the carpet for many
years. In Ref. 2 we spent some time demonstrating that con-
ventional approximations to the same results are generally
worthless at moderate energies. Here we will take this for
granted. First of all we state the general problemin Sec. II A.
Phrased mathematically, this involves finding J-indepen-
dent functions G (A,u) such that

G(/{’lu)dj/z (Zl) = G(/l: —#)di H(Z:)y VJ

The solution turns out to depend greatly on whether the ¢
channel is bosonic or fermionic (1 and y integral or half-odd
integral). In this paper we treat the bosonic case, the simpler
of the two. The fermionic case 1s considered in an accompa-
nying paper.’

We determine G {A,u) (4,u€Z) in Sec. I1 B. It is a finite
polynomial in z,( = cos8,) and D ( = d /dz,} of order

m =min(|4 |,| u[)

in D. In Sec. II C we develop our solution into a more useful
form, and in Sec. IT D we show that we need at least 7 de-
rivatives to achieve an exact separation. That is, our solution
is as good as it could be.

For large m our exact results may be rather difficult to
use. In Sec. III we derive the general single-derivative ap-
proximation to naturality isolation and demonstrate that it is

*'Present address: Department of Physics and Astronomy, University Col-
lege London, Gower Street, London WCIE 6BT.
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likely to be reliable at moderate energies.
Section IV contains a summary and some conclusions

Il. GENERAL RESULTS
A. General problem

We start by considering a completely general 2—2
pracess

A+B->C+D.
The ¢ channel is labelled
D + B—C + 4.

Our program is to isolate from /[, 3, and f*_ . _ ;5 compo-
nents of definite naturality. To do this we need the z-channel
partial-wave expansions®

{

cddb

= S (ea|T’(+)[db) + (ca|T*(—)|db))d 1, (z,),

H
fl ¢ — adb
=£ 3 ((ca|T'(+)|db) — (ca|T'(—)idb))d} ().
where
z,=cosb,, pu=c—a A=d—b. )]

The (cd@| T’ (p)|db ) are transition amplitudes of defi-
nite naturality ( p) depending on t alone (not z,). £ is a phase
factor.’

Our program is clearly equivalent to discovering func-
tions G (A,u), independent of J, such that

GUAmd;,(z)=GA —wd;. () (3
for given such G (4,1} we can define
F(p)=iGA Y aan +PEG A —1)f" . 2]
= Y {ca|T’(p)|db )G A p)d 3, (z,) 4
J

and F( p) has contributions from naturality p alone.®

B. Central result

Theorem: There exist J-independent operators G (4,u)
such that VJ (1,u€Z)

GAwd], =G@, —pd _
If the sign of Ay is positive, then

Mt
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G = [[ [(E=OD+z—M+m—2r+11,
- (52)
while if the sign of A is negative, then
GA.p)

—()» [[[@-DD+z +M—m+2r—1].

! (5b)
Proof: We use the notation of Sec. I A together with
z, =z, + 1

and
M (m) = max(min)(JA |,|u]) .

Our starting point is the definition of the funetions eﬁ; given
in Ref. 7. These are related to the d ; , , we are interested in
by
dzllu (Zx) — Z(l/z)"l +m( —z_ )(m_)u ““'(eﬁ‘# + 9,11}4) ,
6
(=) "Mdi_,@)
_ (Jrr/z)u —,u[( — z )i +"'(eﬁ'” _ eﬁ'ﬂ) )
First we will relate ¢} ; clearly thend ] , ,, are related. Triv-
ial manipulations on Ref. 7 give, up to a common constant,
e;;, +sey, =DY "Dz _DY'P,(z,),
i , (7}
ey, — sy, =DM~ "(Dz, D)"P,(z,),
{s = sign of {Ax).] Since we are concerned only with linear

relations on eﬁ; the constant makes no difference and we will
ignore it. Now by induction,

Dz, D)"=D"z", D™,
Hence we can rewrite Eq. (7):

z" (e, +sep,)=z7. DYz7 D™~ M(DYP,(z,)),

, &)
z” (&3, —sey, ) =2" DYz, D" M(DYP,(z,)) .
Now (by induction again)
22D D" M= ] [ = DD+ (M —m+1)z,
r=1
+M—-m4+2r—1],
(10)

2" DM D" M= ] [@ = DD+ M~ m+1)z,

r=1

M +m-—-2r+1].

Here we make a crucial observation. A// the terms in both
products in Eq. (10) differ from each other only by con-
stants. Therefore they all commute, and hence so do'the pro-
ducts. Thus

[z DYz D™ =M, 27 DMzm D" -M]=0. (11)
Combining (9) and (11), we get
27 DMz DM (e, + sel,)

=z D" D" M (e), —selr,), (12)

a fundamental relation for our purposes.
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Next we must combine Egs. (12) and (6) to relate

dj .. If the sign of Au is positive, Eq. (6) becomes
di,z) =@ —DVPM g (e, + e (=) PM
(13)
(=)Y+M=mdy (@) =@ —DYPM LT (e, —ey,)
X( _ )(I/2)(M — m) .

Hence
Idj“ =77de‘,, , (14)
where
I=—'Zm DMznjr Dm~M(ZIZ _ 1)(1/2)(m—M) ,
(15)
K _:Zm DMZm Dm wM(Zz _ 1)(1/2)(m — M)
+ — i ’
and
77 — ( . )/l +M-—-m .
If the sign of Au is negative, then the sign of A ( — ) is
positive, so
anfm =Idﬁﬁ# . (16)
Combining (14) and (16), we can now define
GAp) =@ —D)VPM "I+ 9K ) + 550 — 1K)] .
)
Then, quite generally,

GApwdi, =GR, —pwdi_, . (13)

G (4,u) is defined by Eqgs. (15) and (17) to be independent of
J. To derive Egs. (5) we use Eq. (10) and observe that

@ =DVl - DD+ (M —m 4+ 1)z, ]
X{Z2 =D=M — (22 _ DD+ 2z, .

Hence Eqs. (17) and (5) are equivalent. We have proved the
theorem. O
We observe that up to a constant

dﬁu = (ZXZ - l)“/Z)[Mim)z': DMZ’Z DmPJ(Zt) ’ I(ZI) s

(19)
d/J{ 2(_)1 +M—m(22 __1)(]/2)(M~m)zm DMzm D™
—H { - +
XPJ(ZI) s
and
Lemma:

G(/Lﬂ)dﬁ,, (zl) — (212 _ 1)(1/2)(M+ m)D M+ m(th _ I)mD m

XPy(z,). (20)

Proof: From Eqgs. (17) and (15), if the sign of Ay is
positive,

GAu)d,(z)
= (22 — 1)\/M = migm pMam pm—M(z2_ {)(1/2m M)

X (22 — 1)\V/IM = mizm DMz DR, (z,)
= (2% — 1)1V2M —m)[gm [y dgm [ym = Mpm [y Mpm
XDm~MpM-=m1D™P (z,). (21)
Thus the assertion of the lemma is equivalent to
@ DYz, D" M) @, DMm D" MDDV
=@ -D"DM "z -1, (22)
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From Eq. (10) and the deduced commutation properties the
left-hand side of Eq. (22) is

m

[l (1@ - DD+ —m + 1)z, T
r=1

—(M-—m+42r—1y| DY,
The r = 1 term in the product is

@ -D[EE-DD?4+2M —m +2) z,D
+WM—m+ DM —m+2)]

=@ ~DDM "+ _1)D" M (23)
(by induction). Thus the left-hand side of Eq. (22) equals

[ — DD+ M —m+1)z, P — (M —m+2r — 1))
X (2 —1)DM-m 22 1)
=@ =D [ 116 - DD+ 3 —m+ 3z}

2
— (M —m +z,v—1)2§DM~m+2](z,2—1)

m—1

:(2,2——1)[ T ([ - DD+ M —m+3)z]

M —mt2r+ 1)211)M~m+2]<z3—1) (24)

The expression in square brackets (between the zZ — 1 fac-
tors) in Eq. (24) is like the left-hand side of Eq. (22) with
MM +1,

Thus we can extract another factor of z2 — 1 at each end and
take

M'_"M + 2)
Doing this m times we have m factors of z2 — 1 at each end,
and between them the left-hand side of Eq. (22) with

MM+ m, m—-0,
ie.

DM+m,
Thus the left-hand side of Eq. (22) equals

(23. _ l)mDM+ m(z? _ l)m ,
the right-hand side of Eq. (22). We have established that Eq.
(20) is true if the sign of Ay is positive. From Eq. (18) this
result is independent of the sign of Ay, so the lemma is
proven.

m—m —1.

m—-m—2.

C. Development of results

Here we develop the results derived in the previous sec-
tion into a more useful form. We assume that the sign of Ay is
positive throughout this section.

(i) First (as is usual) we replace the /' by

f+ = %(fi&;z;b + nft— ¢ — E;Jb) ’
=¥ Ga —f'c_am)

where
—m Se+ 54 —a
N=E(=) M M=o (= )=
We can recast our earlier results in terms of f * rather

(25)

432 J. Math. Phys., Vol. 22, No. 2, February 1981

than f*. F(p) [Eq. (4)] can be rewritten as
F(p=G,f'+G_,f =G.fr+Gf7,

where

1 m
G, = 7(1] (@ —1)D+z, ~ My m—2r4+1]

r=1

(26)

t ﬁ lzZ—1)D+z, +M—m+2r— 1])

r=1
27)

As emphasized previously, all terms in Eq. (26) depend on
the helicities ¢,4,d,b, though we do not make this explicit.

In general (if m#£0),

G #0.
In fact G. measures the extent to which the approximation

fFPo~naturality ( p)

fails to hold.

(ii) In order to see how different contributions appear in
f* and F(p) [with a view to interpreting data on F ( p)] we
need some more notation. From Egs. (1) and (19)

fr=@-nWPM=m N i@n DM2" 4 pz" DM

p=x

XD™¥ t(p)Pyz,), (28)
J
where
t7(p) = (ca|T’(p)ldb )(— )™~ 29
Thus, if we define
A(p)= (22 —1)WPM=miGm DMz 4z DM27 )
X‘Dm 2 tj(p)PJ(zz) ]
J
(30)
B(p)=(Z —1)VPM=muzm DM — 2" DMZ7)
XD™ N t!(p)P,(z,),
J
we can write
[T=AWN)Y+BU), ff=A4U)+B{{N), (31

where

ANY=A(+), BU)=B(+), ectc

Now we can use our new notation to demonstrate the
effect of a naturality ( p)J = a (polelike) term. Observe that
in the combination

27 DMzm 2" DMz

the leading-order O (22" ~ ™) terms vanish. Thus our J = a
term will appear to higher order in 4 ( p) than in B( p)
(z* versus z*~')from Eq.(30). 4 ( p) willdominate B ( p)in
the infinite-energy limit.

The equation for F( p) to compare with Eq. (30) is [see
Egs. (1), (27), and (20)]

F(p)= (@ — D0 =mp s miz 1y
x(p73 (PP))- (32)
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Our J = « term contributes to 4 ( p), B (p), and F ( p) in the
form

F(py= M oymrm[1 4 03],
(a 1)
A(p) = ag®)z[1 + 0], 33)

B(p)=Aug)zr~'[1+0G].

Equations (33), or (32) and (30), are the starting point
for the application of our techniques; we refer the reader to
Ref. 8 for further comments.

(i) Here we give some examples of Eq. (27) for the
cases m =0, 1, and 2.

(a) m = 0 In this case

G.=1, G.=0,
so the £ * have definite naturality and B ( p) vanishes
identically.

(b) m = 1 Here

G=Z-UD+2z, G=-—-M.

The results for m = 0 and 1 together cover a wide variety of
processes, for instance, all those with at least one vertex:

N—N, eg., NN-NN,
or

y—0-, e.g., yp—rd,
or

O —1*, (eg, WN—pld).
Consider the process

TN—pN .

Here there are four m = 0 t-channel amplitudes f.;.,:
fo + _ =A,-like Q numbers only (UP),
v o ., =p-like O numbers (NP),
f6. . . =mlike Q numbers only (UP),
e+ =S =14 + =mw-like O numbers (NP).
The two mixed naturality (m = 1) amplitudes are
F2=4fr - £ s )
andforp= +
F(p=[zZ—-DD+z]fr—f""

isolate the pure naturality ( p-like and 4 ;-like) contributions.
(c) m = 2 For amplitudes with m =2

F(p=Gfr+6.77",
where

G.=(@—-DD¥2—1)+ M,

G = -2M{(z}-1D)D+z].

D. Necessity for m derivatives

Here we will prove that we must use at least m deriva-
tives to obtain pure naturality contributions. Thus the F( p)
of Sec. II C is the simplest possible function of amplitudes
that does this.
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For an m = 1 pair of amplitudes the proof is simple. A
J = a wrong naturality contribution appearsin 4 ( — p) and
B (— p) [see Sec. II D, Egs. (30)] like

A(=p)=az[1+0@E )],
B(—p)=M£'[1+0¢ )]
Working to leading order, we want to cancel these terms in

an a-independent linear combination. The only way to give
B (— p) an extra factor of a is to take

d
— [z, B(—p)}],
z [zB(—p)]
i.e., we need at least one derivative.
For m>2 the above argument is no use. Instead we con-

sider eigenstates of I = (22 — 1)D +2z, Y(A ):
IY{A)=AY(A), AeC.

These exist:
Yz " (1/2)(1 + A4 )z(l/z)(a -n

Hence if we have 2 wrong naturality term

fom= [ A+M—m+2—17,
r=1
then [using Eq. (4)] in order that this may be eliminated in
F(p) we need a term

fean=[[A—-M+m=2r+1)Y
r=1
up to a phase. The polynomials multiplying Y in the two
cases have no common factors. Thus to eliminate the contri-
bution we need to generate a factor

MG-M+m—2-+1)
r=1

from Yin f.; 5. We need to generate a polynomial of order
m in A from Y. The only way we can do this (in a linear
fashion) is by differentiating m times (only one power of A
can be gained from one differential). Thus we need m deriva-
tives of the amplitudes to isolate pure naturality
contributions.

Iii. SINGLE-DERIVATIVE APPROXIMATION

In Sec. IT we saw that (given adequate data) we do not
need to make approximations to isolate pure naturality con-
tributions for a bosonic 7 channel. However, we need » de-
rivatives with respect to energy to do this and the data would
have to be incredibly good to allow us to extract second- and
higher-order derivatives. If we had a good approximation to
exact separation, involving only a single derivative, this
would be more useful.

Consider G, [Eq. (27)]. Since

D~0@),

we can write
G.=Dz)y"+0E"7?),
G = —Au@Dz)" '+0(@E""?).

Approximating G , by their leading orders and cancelling
the common factor (z,Dz,)™ ~', we get
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F(p)=G,f+G_,f, (34)
where

G.=zDz,, G = —Au. (35)
F (p) approximately isolates naturality ( p). From Eq. (33) it

is easy tosee that aJ = a naturality — p term appearsin (34)
to leading order

Ied -2
z, 0 * .

The leading-order terms cancel out. By contrastaJ = a,
naturality p term appears in F( p) to higher order,

a, + 1
~Z, .

Comparing this with the approximation of neglecting

B (— p)inf?, we see that we are on much safer ground. The
“wrong” naturality terms are suppressed by an extra factor
of O (z;”*). For comparison with Egs. (33) we give

F(py=ala+1)gt)z ' [1+0E)]. (36)

Of course for m = 1 this approximation is redundant:
we can achieve exact separation with the same information.
For m>2 it should, however, be useful.

IV. SUMMARY

We have succeeded in exactly isolating the definite na-
turality contributions from helicity amplitudes for a general
2—2 process (with a bosonic 7 channel). Here we summarize
our methods.

We write (for sign of Ay positive)

[ =fam+" . an)=AN)+BU),

(37
f‘ = %(fia;d‘b - nfl-cfa;ib) =4 (U) +B(N) »
where
7 =n0cni( =) (=)0
We define terms of definite naturality
F(p)=G,f"+G_,f, (38)
where
G, = %( MIE-—0DD+z—M+m—2r+1]
r=1
+ [[@-DD+z, +M—m+2r— 1]) (39)
r=1
434 J. Math. Phys., Vol. 22, No. 2, February 1981

A J = ¢ term appears in Eqgs. (37) and (38) in the form

A(p)=ag®)z[1 + 0@ ],
B(p)=Augt)z; ' [1+0G 1], (40)

F(py= 8™ yeesm1 4 0]
(a—1)

These results should not be taken to imply that we are
just concerned with a Regge model. They are simply useful
to interpret a measured F ( p) in terms of the contributions to
amplitudes f *+; they can be considered as a starting point for
a more sophisticated analysis.

A simpler (and fairly accurate) approximation to natur-
ality isolation involving only a single derivative has also been
developed (see Sec. III).

We conclude that amplitude measurements over a
range of energies can now give us, using the above results, a
much better idea of the different naturality contributions
than was possible previously for every 2—2 scattering pro-
cess (with a bosonic ¢ channel). The results are model
independent.
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We develop the mathematical apparatus necessary to isolate pure naturality contributions from
the helicity amplitudes for an arbitrary 2—2 scattering process (with a Fermionic ¢ channel). In
their exact form they are unlikely to be useful; in fact we prove that an exact isolation is impossible
using only a finite combination of the amplitudes and their energy derivatives. However, we
derive an approximation series consisting of such finite combinations which converges quickly to
an exact separation of naturalities. The first term in the series—the single derivative
approximation—is likely to give a good approximation. We comment on the application of our

techniques to 7N backward scattering.
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I. INTRODUCTION

In this paper we investigate how to isolate definite na-
turality exchanges for processes with a Fermionic 7 channel.
[Here naturality p = P( — )’ ~/*] We remind the reader
that the general problem (see Ref. 1 and Secs. Il Aand II C
below) reduces to seeking J independent functions G (4,u)
such that

GApdi, )=GWA, —wd;_,@z).
Here matters are more complicated than they were in

the Bosonic case. There we were able to find G (1,u) essen-
tially because

diy(zr)z ‘}l.;t XO/I;L(ZI’D)XPJ(ZI)7 (1)
(where N3, is a constant and O,,, is J independent) and
dﬁ—y(zl):(—)‘]+ldiy(~zt)' (2)
Since P,(z,) has the simple reflection property
Pi(—z)=(=)P,z), 3
our problem reduces to finding functions G, such that
6.0,,z,D)=G0,,(—2,—D). C))

Equation (4) is already J-independent, and can be solved.
This simple behavior seems to be related to the simplicity of
the spinless case (Oy, = 1).

Now if the f channel is Fermionic, Eq. (2) still holds but
(1) is replaced by”
diu(zl)=N‘i{y XO}»#(Z!’D)X[P}+1/2 —P3—1/2]' (5)
Clearly we do not have a relation like (3) for
(P12 —Pj_ ) The simplest state (with A = p = }jis
Jfundamentally more complicated. To effect a separation we
clearly need to find J-independent operators g , (z,,D ) such
that

&Priam =8P _unV. (6)

Once we have g , it is likely that we will be able to isolate
naturalities by methods analogous to those developed for the
Bosonic case.

Section II is devoted to our general results. First (Sec.
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IT A) we prove thatif we restrictg , to the class of polynomi-
alsin D (cf. Ref. 1) then we have no relation like (6). It follows
simply that no combination of amplitudes and a finite num-
ber of energy derivatives can exactly isolate naturalities
when the ¢ channel is Fermionic. Allis not lost, however. We
discover in Sec. II B a formal method of exact isolation,
which involves an infinite number of derivatives. It is unlike-
ly to be useful as it stands, but it can be approximated sensi-
bly in terms of a finite combination of derivatives, the ap-
proximation series converging quickly to the exact result
(Sec. I C). In Sec. IIT we develop more fully the m = i ap-
proximation series (Sec. III A), and consider briefly (Sec.
III B) a process for which it is likely to be useful, viz:

T+ pop+m.
In Sec. IV we treat the general single derivative approxima-
tion. Finally, we summarize our results and draw some con-

clusions (Sec. V). For the reader who wishes to use our meth-
ods, Sec. IIIB and IV are probably the most important.

Il. GENERAL RESULTS
A. No separation with finite derivatives

Theorem: There do not exist functions fand g, being
polynomials in D = d /dz, with coefficients functions of z,,
such that [ f £0+#g]

SPy 1y =8P Y. @)

Proof: Suppose such functions did exist. We can take

and g to be polynomials of the same order 2m without loss of
generality:

f@D)Y=fy+f D+ +f, D>, ©
g(Z,D):g0+giD_+_...+g2mD2m’

where f; and g; are functions of z,. By multiplying appropri-
ate factors we can choose fand g such that £, and g, have no
poles at z, = 0 and do not all vanish there. We will obtain a
contradiction by showing that f; and g, do all vanish at z,
= 0, and so establish the theorem.

We work with J — 1€Z only. We have

2r

P _cC z":(_),(2n+2r)! n! n! z
RO “ @n) (=N (m+r) @)’
©)]
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1. INTRODUCTION

In this paper we investigate how to isolate definite na-
turality exchanges for processes with a Fermionic ¢ channel.
[Here naturality p = P( — )’ ~ /2] We remind the reader
that the general problem (see Ref. 1 and Secs. Il A and I1 C
below) reduces to seeking J independent functions G (4,x)
such that

GAuyd;,@)=GW, —wd;_,().
Here matters are more complicated than they were in

the Bosonic case. There we were able to find G (1,u) essen-
tially because

d3,(2) = N3, X0,,(z,D)XP,z), (D
(where N}, is a constant and O, is J independent) and
di_@)=(=Y""d},(~z). €))
Since P,(z,) has the simple reflection property
PJ(_ZI):(—)JPJ(ZI)’ (3)
our problem reduces to finding functions G _ such that
GO, z,D)y=GO0,,(—z2,—D). %)

Equation (4) is already J-independent, and can be solved.
This simple behavior seems to be related to the simplicity of
the spinless case (Og, = 1).

Now if the ¢ channel is Fermionic, Eq. (2) still holds but
(1) is replaced by?
dfw(z,)zNj” XOA;L(ZHD)X[P.’I+1/2—P.II—I/Z]' (5)
Clearly we do not have a relation like (3) for
(P} 1,2 — P} _1.) The simplest state (with A =y = 1) is
fundamentally more complicated. To effect a separation we
clearly need to find J-independent operators g , (z,,D) such
that

&l =8P V. 6)
Once we have g , it is likely that we will be able to isolate
naturalities by methods analogous to those developed for the
Bosonic case.

Section II is devoted to our general results. First (Sec.
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II A)we prove thatif werestrictg . to the class of polynomi-
alsin D (cf. Ref. 1) then we have no relation like (6). It follows
simply that no combination of amplitudes and a _finite num-
ber of energy derivatives can exactly isolate naturalities
when the f channel is Fermionic. Allis not lost, however. We
discover in Sec. II B a formal method of exact isolation,
which involves an infinite number of derivatives. It is unlike-
ly to be useful as it stands, but it can be approximated sensi-
bly in terms of a finite combination of derivatives, the ap-
proximation series converging quickly to the exact result
(Sec. IT C). In Sec. ITI we develop more fully the m = 4 ap-
proximation series (Sec. III A), and consider briefly (Sec.
III B) a process for which it is likely to be useful, viz:

T+p—p+.

In Sec. IV we treat the general single derivative approxima-
tion. Finally, we summarize our results and draw some con-
clusions (Sec. V). For the reader who wishes to use our meth-
ods, Sec. I1IB and IV are probably the most important.

Il. GENERAL RESULTS
A. No separation with finite derivatives

Theorem: There do not exist functions f and g, being
polynomials in D = d /dz, with coefficients functions of z,,
such that [ f#0s#g]

FPy iy =8P, Y. M

Proof: Suppose such functions did exist. We can take /

and g to be polynomials of the same order 2m without loss of
generality:

f(Z’D)zﬁ)+f;D+"‘+fsz2'", @

gzD)=g,+gD+ - +g,,D*,

where f; and g; are functions of z,. By multiplying appropri-
ate factors we can choose fand g such that f; and g; have no
poles at z, = 0 and do not all vanish there. We will obtain a
contradiction by showing that f; and g; do all vanish at z,
= (), and so establish the theorem.

We work with J — 1eZ only. We have

2r

. 1 L@2nt2r) R n! Z;
P2n - Cn z ( - ) 1 — | 1 ) »
5 @n) (n—r)l(m+r) @)
)
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From (20) we get
ha, , =h[(r—Dk+r~1a,_,]
= —~-Dk+r+Dha,_,
=[O -k +r+1D)k+na., (22
and hence (inductively)
hiagg=nlk+2r-DV/(k+r—1]a,, 23)
in an obvious notation. Now, if 7 < N then the expression
(k+2N - (k+r—1)
k+2r—10 (k=1
represents a polynomial in k. Multiplying both sides of Eq.
(23) by this factor gives

(24)

1 (k42N -1 (k+r—-1) hay = (k+2N—1) .
r k-  (k+2r—-1n! (k-1 .
(25)
Hence
k+2N-D X (k+r-—-D) ha,
(k — 1(3(’ N 2& __r'gﬁ +N2r — 1)
= —W ; a, . (26)

Equation (26) is the expression we were seeking.
(i) We develop (26) to prove the theorem. Cancelling the
common factor in (26) we obtain

Gtr—10 .
— oy rr=t
2%= X kT

N N

a. QN

The fact that inverse polynomials in z, D are well defined in
their operation is discussed in Sec. IT C. Since a, converges
sensibly to P, we can take the limit

N—wo
in (27). Thus

P,(z,) =Hay(/J), (28)
where

— i k+r—1) nr
5 Mk+2r—1)

H maps P, onto its leading term for all J. This mapping is 1-1

so the inverse is well defined. We prove later (lemma follow-
ing) that

29

HK =1, (30
where
K=5-K_(_ny. &)
5 Mk + )
Hence
ao(J) = KP,VJ . (32)

From (18) we see easily that up to a common constant
factor

ayJ + D= 2z + 0D
ayJ — ) = + Pzl -V,
and therefore
DayJ + ) = 2 (J + Pz +0/»
= (22D + DaolJ ~ ),
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ie.,
WDay(J + 1) = kao(J — §) . (33)
Combining (33) and (32) we have
%DKPJ () T kKP, /2 - 34

This is the assertion of the theorem, with (31) giving (17)
with the values of k£ and 4 defined after Eq. (19).

There is one extra point to note: if JEZ + } then a, [Eq.
{18)] can be infinite. If we exclude these points from the
definitions of K we still have all the results in Sec. II Csince
there K is taken to act on a sum of P, (/N integral) before we
generalize J.

We conclude this section by proving the result quoted in
Eq. (30).

Lemma: Defining

_ i (k+r—1) hr
5 ik +2r -1
and
K Y ' h r ,
2( s r‘(k +r)
with

hk = (k +2)h
we have KH = 1.

Proof:

z( ) r (k+r,—'1)‘ h'/.
.y r,(k+r)‘ r,'(k+2r,~—1)’
Using the commutation properties

=z(_) k! k+2r4+r -1 pre
PY: Ak 4 e Pk 427 427 — 1)

, kKik +m+r—1) m
,Zo( 2( ) Alm — £k + r )k +2m — 1) )h '

(35)
The coefficient of / ° is
kik — DV/KYk — 1) =1.

The result of the lemma is now equivalent to proving that,

form>1,
& ki k+m+r—1) _
2o"( )r!(m——r)!(k+r)!(k+2m—1)
The expression on the left-hand side of (36) equals
k+m+r—1)

(k+2m Him! rZO( )( ) k+r) - G0
Now if k€Z', then
Dm—l[xk+m~l(1__x)m]

=Dmﬁl[ i (_)r(’:)xr+k+rnw1]

- ktm+r—1)

_2( )(> ke T @

Putting x = 1in (38), the left-hand side must be zero [at least
one factor (1 — x)}, so

o k+m4r—1)
; () k + ) =0 9

(36)
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for keZ'. Now (39) is a polynomial in & with infinitely many
roots, so it must vanish identically, whatever k is. Thus (37)
vanishes and (36) holds.

We have our result.

C. Formal exact separation (2)

In this section we explore the consequences of the theo-
rem proved in Sec. II B (Egs. (16) and (17)}. First we will
justify some of our earlier analysis.

The presence in K [Eq. (17)] of inverse polynomials in
z,D means that we cannot evaluate directly the result of
operating it on an arbitrary function. Its operation is, none-
theless, perfectly well defined. For a wide class of amplitudes
f{z,) we can write

rer= | #@da. (40)

We have an upper bound a, because of the Froissart bound;
our o, is chosen to be the lowest nontrivial bound. Now the
operation of X on z{ is well defined for |z,| > 1:

(@ —2r+ al iz‘,"z’. @1)
o a —r+Dl(a—-2r) 4
The series on the right-hand side of (41) has good (uniform)

convergence properties since as 7— oo the ratio of successive
terms tends to

&
Kz =

1y —2
—z7".

Thus we can commute the sum in (41) with the integral in
(40), giving, with a little manipulation,

Krey=z 5 (LY [ @@ @
where
Fla) = {a+a,—4r+YWa+a,—2r)

Ma + ay —3r + Doa + ay —4r)!
1 =
X ;f(a+a0—2r).

We can draw two important conclusions from Eq. (42):

1. Kf (z,) is well defined: it exists.

2. The right-hand side of Eq. {42} is a good asymptotic
expansion, effectively in z,~ 2. The coefficients
[5° . z%f.(¢) da] have some z, dependence, but as z,~—>w

]z,|‘>0[Jimz;’ﬁ(a)da]>|z,|”‘v €>0.

At low energies there can be more variation, but any energy-
dependence in these factors should be totally swamped by
the 2,7 ? terms. The first few terms of Eq. {42) should give a
good approximation to Kf (z, ) in the usual “high energy”
region (e.g. P, >3). This approximation is in fact obtained by
taking the first few terms of X itself, as given by Eq. {17).
“high energy” region (e.g. P, >3). This approximation is in
fact obtained by taking the first few terms of X itself, as given
by Eq. (17).

Conclusion (1) allows us to achieve a formal separation
of naturalities; (2) allows us to approximate it more usefully,
to arbitrary accuracy. The rest of this section is taken up
with doing just that.
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We have the expansion of /[, 5, and /' 5, in partial
wave series:
faaw =3 Wea|T'(+)|db) + {(ca|T’(—)|db)]

J
Xdiu (z() ’
43

[ aan=£€3 [{caT'(+)|db)

J
- <CE‘TJ( - )‘Jb ) }di »‘u(zr) s
where £ = .7 — > 757 2 [of. Ref. 1, Eq. (1)]. Now up
to a common constant [sign (1y) = + 1%
di, =2 = 1), + 1)z, ~
XDM—WZ)(PJHx/z) —P;_umhs (44)
( _ )/l +M—md‘/,l—p — (Zf . 1){1/2)(M-~m)(zl . l)m
XDM= 2 4 1)~ 4+ Py
{cf. Ref. 1 for notation). Manipulating formally
D m -+ (1/2)ij: 12

= 4le, + 1y mp MGz, )=

l)m - [)/2)1) m 4+ |1/2)

X(Zzz - 1)“/2)(""1"{)( — )/1+M——mdj
o
+(z, — YBA-mp/D-M
X{z, + 1) g2 — 1y VAm=Mig L ] s)

The inverse powers of D are, again, not ill defined; but in the
expressions we wish to use we will eliminate them (cf. Sec.
II1).
From Egs. (16) and (17) we deduce that
ADK'(D™ T VIP, L 11)
={z.D+m+ I)K’(D"”‘“/Z’P,v(,/z,), (46)
where

S D I
k= § EREmID ey 7
o Mz D+m+r+ 1)
Hence, defining
G u)=(ED+ D+ m+DK'(z, — 1)/ -mpi2=H

X(Z, + 1) *m(ztz . 1)1/2(m~»M),

(48)
G, —p)=@ED—-D+m+DK'(z, + D2 - 7"pWD -4
Xz, —1) »m(Z? _ 1)1/2(:n MY Y M
we can write [combining (45) and (46)}:
G, )=CGWA —pwd;_,.@z). (49)
The reader should compare this with Sec. IT A of Ref. 1; we
now proceed in a similar manner.

Using Egs. (49) and (43) we can define a pure naturality
p amplitude

F(p) =G A laq +PECA — )" sz ]
= 3 (ca|T’(p)|db )G (A )73, (2,) . (50)

We now go on todefine f *, 4 (p), and B ( p)exactly as
in Sec. II B of Ref. 1. In brief,

rt =i sl =a(y) +8(5). 6D
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where now

7 =yena(—)" " T VI(=)  Tsign(Ap) .
In terms of /£ *

F(p)=G,f*+G_,f", (52)
where
G, =GAW +(—)""""MG@A, —~pu). (53

A J = a polelike term contributes to (51} and {52} as
A(p)=agt)z;[1 + 0@ )],
B(p)=Apgt)z: '[1+ 0 D], (54)
F(p)=aa + 1) [(@— MW/ (a — Pgt)z
x[1+0@EH].

This ends our general analysis. In Sec. II1 we develop in
detail the m = } approximation series, an example of what
can be done in general (though not easily in a general
manner). :

11l. APPROXIMATIONS FOR m = }
A. The m = } series

In line with point (2) following Eq. (42) we here develop

a useful approximation series for the case
m=14.

Let us define modified amplitudes:

Héa;Jb =z, + 1) @ - M)fZE;d’b )
(55)
fl— c—adb = (Z: -1 ‘/Z(ZIZ —1) s - M)fL c—adb *

where sign (Az) = + as usual. We modify the G (4,u) and
F{( p) of Egs. (48) and (50) by taking

G'Gp) =DM~ G (pr),
F'(p)=D"~"2F(p).
Equation (50) becomes
F(p=3leD+D+M+DK" [z .
+p9E DD+ M+DK"F . _.al,  (56)

where
n=qeni( =)~y E
and
o 2D+ M+ 1)
K" = ¢ ) D . (57)

oz D+ M+ r+1)

Denoting by F () the first N terms in F’'( p) we can
define

@D+MA N+
Fu(p)
D+ M+ 1)
Nl @D+ M+ N+ 1)
o Nz D+M+r+ 1)
X(%D2)'%[féa +of' .l
' N1 D+ M !
+w@D+M+D§:v@ M N)
=o flzD+M+r+1)
XU fle —puf'_. 2] (58)

Fi(p)=

=@ D+M+1)
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Forall N F i ( p)isa well-defined expression consisting
of polynomials in D acting on the f". The discussion follow-
ing Eq. (42) establishes that F 3 ( p) converges to a pure na-
turality p amplitude as N— 0. The naturality ( — p) terms at
each stage are suppressed relative to the naturality ( p) terms
by a factor of order

1 /thN +1 .

Now we will consider some examples of Eq. (58), for the
cases N = 1and 2.

LN=1

In this (the simplest) case we have

Fi(p - -
=@D+M+D[ED+M+Dif G +p1f' . a)

+ 1D —pf' 2] (59)
Apart from the irrelevant overall factor this is just Eq. (56)
with K "~1. We can rewrite F {( p) in terms of the f* [hence
the f * of Eq. (51)] by taking the same order approximation
we are using already in Eq. (55). Thus

f—za;ib o~z Mo I(Z: - %]fia;ib ,
f—:L ¢ — &db =~z M- ‘(Z, + %)f‘, c—adb *
Continuing to retain only the feading two orders we get
Fipy=z,Y""' @D+ 1)[@Dz)f " —Auf ~*].
Apart from irrelevant factors this is just the single derivative
approximation of Sec. IV for this special case.
2LN=2
This case is less trivial. From Eq. (58)
Fi(p)
=@D+M+DED+M+N[@D+M+2)+1D?]
X3 S +rf i)+ %D(Z_ID ’+‘M_+ 1)
X[eD+M+2)+ D Y fa —paf'- 5]
(60)
This last expression can of course be written in terms of f +,
just as F 7( p). The approximation is obtained by taking the

leading four orders in z,.
In general we need 2V energy-derivatives to evaluate

Fu(p).
B. 7N backward scattering

Here our main idea is just to observe that 7§ backward
scattering is a process where our methods should be useful.
The process is, in the s channel,

T+ NN+,
with ¢ channel
]\—7 + 77+ ]\—7 .

There are only two independent helicity amplitudes. If
we write the 7 channel amplitudes f7.,. and the s channel
amplitudes £, , then

Yiw = oS =N
(61)
Si:f = -fsi;+ EF“’

in an obvious notation. We have one crossing angle y, and
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(N,’)z[ c?sx — siny ]( NS), )
F siny  cosy £
where
cosy = ({5 + m* — p)(t + m* — p?) — dm*(m? — 1?)}
X{Is = (m —p)’1[s — (m +p)*1 [t — om — p)*]
X [t . (m —'H)Z] [m +lu)2]} -1/2
(m=my,u=m_)and
siny = 2m{stu + (s + 1 Y(m* — p*)* +2(u* — m*)
X(m* — uH (s = (m — )]s — (m + p)?]
X[t~ (m —p)1t—(m —p)lm +py1}".
Our amplitudes f + [Eq. (51)] are given by
[ =F'+iN'=e X[F*+iN°},
(63)
[ =F'—iN'=e¥[F°'—iN°].
The single derivative approximate separation scheme de-
fined in the last section is

F(p)==z, di(zﬂ) Yy 64)
zl‘

The contributions of a J = a polelike term to the different
amplitudes are

4(p)=azi[1+0(7H)],
B(py=1' {1+ 0@ D], (65)
F(py=ala+D ' [1+0@EH].

This section [Egs. (61)—-(65)] can be taken by itself and
used to get a good estimate of the pure naturality contribu-
tions. The B ( p) factors are not so important here as they are
in any (m #0) Bosonic 7-channel process, due to the extra
factor of §(==Au). We still cannot rely on B ( p) being small
for moderate energies. In our NN analysis B ( p) was general-
ly comparable to 4 ( — p); a factor of | will not make it negli-

J

gible. Our single-derivative approximation should be very
reliable.

IV. THE SINGLE-DERIVATIVE APPROXIMATION

In this section we derive the single-derivative approxi-
mation to exact naturality separation for a general Fer-
mionic ¢ channel. We have already done this in Sec. IIT A for
the case m = 1.

In fact the single-derivative approximation (=SDA) is
exactly the same here as in the Bosonic case (Ref. 1, Sec. ITI).
There are two reasons:

1. The leading order (J = @) expansions for 4 ( p) and
B ( p) are the same in the Bosonic and Fermionic cases [Eq.
(54) and Ref. 1, Eq. (31)].

2. The single derivative approximation simply cancels
the leading order wrong-naturality terms.

These comments do not mean we are just considering a
pole model, as might easily be thought. Any amplitude can
be considered as being as convolution of polelike terms, or
having the form of Eq. (40). If the leading naturality ( — p)
term [4 ( — p)] has the form

A(—p)= f #F (@) da, (66)

then the naturality ( — p) contribution to F( p) is

F(ol—pl = f 2 (a) da

= = [ Jw #fa—2)dal, (67)

i.e., relatively smaller by a factor of O (z,”*) than B ( — p)isin
S 7. This point is outside the main line of our argument, but it
is important in order to avoid any misunderstanding.

Anyway, the SDA is the same for any 2—2 process, so
that we have already considered it fully in Ref. 1. Nonethe-
less we will now show how to derive the technique from the
general methods of Sec. II. This is a useful check on the
validity of our manipulations.

The simplest approximation to £ (p) [Eq. (50)] is obtained by taking K’ ~ | in Eq. (48):

GAwy=ED+D+m+1DK'(z, =)D -mDED =Mz L 1)~ m(z2 1)/ =D
=@D+D+m+ D"+ (m ~ Pz, V2D YP MG —mzr Ny M1+ 0]
— 251/2) - mD(’l/Z)f le-—M- I(Z,DZ, _ mM)[l + 0(272)] .

From the symmetry under z,— — z,

(68)

G(A, _,u):( _ )/l + M- ngl/Z) - mD(i/2) - MZI‘MHI(Z,DZ, + mM) . (69)
We can define F ( p) by inserting these approximations into G (4, + ) in Eq. (50), and then we can use this F ( p) to define

F_(p) :Z;MHDM«(I/z)z;n ’“/2)17([)) .

Hence

F(P) = ZIDZI 'Ql(fzﬁ;z;b +P72f1—— C~E;Jb) - mM %(fi‘ﬁ;z;b "P’ZfL ¢~ 6;:?17)

2, (e ) - s
zl

This is just Eq. (34) of Ref. 1 again. As there, we can
write as the contribution of a / = a naturality p term:

A(p)=azig)H[1 + 0@ 9],

440 J. Math. Phys., Vol. 22, No. 2, February 1981

(70)
—
B(p)=Apz; ~'g(t)[1 + 0@ "], n
F(p)=ala+ Dz g0)[1+0E)].
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V. SUMMARY

In this paper we have done a great deal of mathematical
work, leaving us with some simple techniques for extracting
important information on pure naturality exchanges from
measured amplitudes, the techniques being set in a well-un-
derstood mathematical framework.

We have a well-defined approximation series consisting
of sums of amplitudes and a finite number of their energy
derivatives, giving increasingly good approximations to pure
naturality contributions. At every stage the error is reduced
by a factor of order z,7%. The first term (SDA: Sec. IV) is
likely to give a good approximation, the “wrong” naturality
terms being suppressed by a factor of order z,~* relative to
the “right” naturality terms. Better approximations are easi-
ly obtained (Sec. III) but are less simple.

The limit of the series exists (Sec. II) but in general we
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will not know how to express the amplitudes in a form where
we can use our exact methods. No simpler method involving
just a finite number of derivatives can achieve exact natura-
lity isolation.
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