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A class of states on the algebra of the infinite classical system is characterized by the vanishing of 
the higher order (n > 2) truncated correlation functions. The states are called Gaussian. It is 
shown how liquids and crystals can be described by Gaussian states. 

PACS numbers: 02.10. - v, 61.20.Gy, 61.50.Em 

I. INTRODUCTION 

An infinite system of classical particles can be described 
in terms of correlation functions, or in terms of states on a 
C *-algebra. I Especially interesting is the C *-algebra of Ref. 
2. It allows to construct states in an elegant and concise way. 
Quasifree states on this algebra are determined by a positive 
linear functional on a testspace D. It is shown in the present 
paper that Gaussian states are determined by a linear func­
tional on D describing the density of particles and a sesqui­
linear form on D describing the correlations. A form of 
Wick's theorem is proved. 

In Sec. 4 liquids are considered. For any density Po and 
radial distribution function g(r) a Gaussian state exists pro­
vided that the static structure factor is strictly positive 
everywhere. 

In Sec. 5 a description of crystals is given in terms of a 
periodic density functionp (I)(q) and of the correlation func­
tion p (2)(q I ,Q2)' The static structure factor alone contains not 
enough information to calculate this pair correlation and 
one is forced to introduce a family of "structure factors" 
Kbb' (k) which are functions over the Brillouin zone and are 
labelled by vectors b,b ' of the reciprocal lattice. The exis­
tence of a Gaussian state then is assured under conditions 
similar to the ones in the case of liquids. 

The harmonic crystal model is treated as example. A 
simple description of this model in terms of densities and 
density correlations is only possible in the one-phonon 
approximation. 

Finally let us indicate the similarities of the present 
work with that of van Hemmen3 who describes the harmonic 
crystal in terms of Gaussian processes. Essential in that ap­
proach is a generalized version of the finite dimensional 
Bochner theorem. It allows to introduce a Gaussian measure 
on a phase space of the system with infinitely many degrees 
offreedom. In the present approach such a measure on a 
phase space is absent. Its counterpart is obtained by the inte­
gral decomposition of the Gaussian state into pure states. 

A direct link exists between the theory of stochastic 
processes4 and the formalism of Ref. 2. It is shortly discussed 
at the end of Sec. 3. 

2. ALGEBRA OF OBSERVABLES 

An infinitely extended system with non vanishing densi­
ty of particles can be described in the algebraic approach. 
The C *-algebra of observables which we will use is the classi­
cal analog of the Weyl algebra in quantum mechamcs. See 
Ref. 2. 

Let K be the set of subsets X of R3 which satisfy the 
condition that for each bounded part VofR3 the intersection 
vnX contains an at most finite number of points. Then K is 
the configuration space of the infinite system. Remark that 
unlike in Ref. 2 the particles are described by their coordi­
nates only. 

The testspace D is the set of real C oc -functions with 
bounded support in R3. For eachfin D a function Sfon K is 
defined by: 

(Sf)(X) = If(x). 
xEX 

Because the support offis bounded at most a finite number 
of terms in the summation do not vanish. 

For each fin D a Weylfunction W(f) is defined by: 

W (f) = expiSj 

In fact Wis a map of D into the von Neumann algebra B (K, C) 
of bounded functions on configuration space. One has: 

W(f)* = W( - f), W(O) = 1, 

and 

W(f)W(g) = W(f + g). 

The C *-algebra.2/ of the infinite classical system now is 
generated by the function W(f),!ED. For more details see 
Ref. 2. 

3. GAUSSIAN STATES 

A class of states on .2/ is introduced and a characteriza­
tion is given in terms of truncated correlation functions. De­
note D the complex algebra generated by D: 

D = {f + iglJ. gED l· 
Following Ref. 2 we say that a state won d is Coo iff or allf 
and gin D the map AER----rlU( W (f + Ag)) is infinitely 
differentiable. 

Theorem 1: Let wo:D ........ R be a linear map. Let s be a non­
negative definite sesquilinear form on D. Then a state won. 
is uniquely defined by the relation 

w( W (f)) = exp [ iwo( f) - !S( f, f) 1 ( 1 ) 

for allfED. Moreover the state w is Coo. 
Proof By linearity and continuity w extends to a linear 

map on d. Normalization follows from 
w(l} = w(W(O)) = 1. It rests to show that w is positive. Let 

51"",5n in C andfp"''!n in D. One has: 
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22 5i~ W(W(.t;)* W(J;» 
IJ 

= I 5i~ (tJ(WU; -.t;» 
y 

(2) 

with 

1]i = 5iexp( - iwo(.t;) - '!;>(.t;,J;». 

From Schur's theorem follows that (2) is positive. Hence w is 
a state on sf'. One immediately verifies that it has the C "'­
property. 

Definition 2: A state (tJ on sf' is called Gaussian if there 
exists a linear map (Uo:D~R and a nonnegative definite ses­
quilinear form s on D such that relation (1) is satisfied for allf 
inDo 

Let (II,K,n ) be the G.N.S.-representation of a Gaus­
sian state W. Because {U is C 00 all field operators (2) B (f),JED 
exist and satisfy: II (W (f)) = expiB (f) and B (ftl···B (fn )n be­
longs to the domain of B (f). 

Truncated correlation functions {U T(fl' ···,In I are de­
fined by the recurrence relation: 

(n,B ( /d.··B ( fn)n ) = ~(UT( hi ,.-j-··WT(···, fin)' 

where the summation is over all possible partitions 
(il,··+ .. (···,i n ) of { 1, .. ·,n 1 with the original order preserved 
within each cluster. In particular 

and 

(n,B ( fIn 1= (UT( f) 

rn,B ( filB ( fz}n) = (UT( /d{UT( f2) + wT( fl' f2)' 

Lemma 3: For n;;;.3 one has 
n n-l 

(fl, II B(J;lfl)=wo(fn) (fl, n B(J;lfl) 
j~ \ J~ I 

+ ~tll s(J;,fn} (fl, k~«¥J B(fk)fl} 

The proof of the lemma is straightforward. The following 
characterization of Gaussian states is obtained. It is a version 
of Wick's theorem. 

Theorem 4: Let w be a COO-state on sf. The following 
two statements are equivalent: (a) W is Gaussian; (b) 
WT( fl'"'' fn) = 0 for n;;;.3. Let Wo and s be the linear map 
respectively the sesquilinear form which appears in the de­
fining relation (1). Then one has for allfl,J2ED: (c) 
(u I ( fl) = (tJo( fl) and (u I ( f1/2) = s( fl' f2)' 

Proof (a)=?(b) and (a)=>(c) follows from the lemma. 
(b)=>(a). 

Let Wo be given by 

wo(f) = wT( I) = (fl,B ( I)fl ). 

Clearly Wo is a linear function on D. This follows from the 
linearity of the field operator. 

Let s be given by 

s( fl + if2, g I + ig2) = (tJT( fl,g I) + WT( f2,g2) 

+ i{ wT( f2' gl) - wT ( fl' g2)]' 

Then s is a sesquilinear form on D. 
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Now one has wT ( fl,J2) = wT ( f2' f,) because the field op­
erators commute. Hence: 

s( It + if2' It + ih) = wT( J;, It) + wT( f2' f2)' 

But from Schwarz inequality one has: 

(tJT( .t;, h) = (n,B (h)2n) 
- (fl,B ( h)fl )2;;;'0. 

Therefore s is nonnegative definite. 
Because W is C 00 one has 

W(W( f) = ! (i"/n!)(n,B( f)nfl). 
n=O 

From condition (b) and with the former definition of Wo and s 
one obtains 

W(W( I) = exp(iwo( f) - !s( J, f)l· 

Therefore (tJ is Gaussian. 
Finally we indicate a relation with the the theory of stochas­
tic processes. LetJ;,''''f,. be test functions in D. 
The function 

x = (x" .. ·,x/,)~(W( I Xi .t;) 
I 

is the characteristic function of a Gaussian process with ran­
dom variablesf" .. ·,Jn' It can be written as 

exp(imx - !xLx), 

with the mean m given by m i = woe h) and the covariance 
matrix L given by Lij = s( h, J;). 

The underlying probability space is the one-particle 
configuration space R3 equipped with the measure induced 
by the linear functional (tJo. 

4. LIQUIDS 

The physical way of describing a liquid or a crystal will 
be by use ofa density functionalp (I) (q) and a density corre­
lation function p (Z) (q.,qz). The following relations give the 
formal connection with the linear functional Wo and the ses­
quilinear form s which by definition determine a Gaussian 
state of the system: 

woe I) = Sdqf(q)p(')(q) 

ancl 

s( fl' f2) = wo( fl f2) - J dqj J dq2 fl(ql) f2(q2) 

X [p(I)(qdp(ll(q2) - p(ZI(qpq2)]' 

An apparent advantage of working with test functions}; in D 
is that one can allow the fun~tionsp (I) andp (2) to be general­
ized functions. Hence the definition of Wo and s by foregoing 
relations in most applications will not be too difficult to 
prove. The main requirement is the positivity of the sesqui­
linear form s. 

In the case of a dense gas or of a liquid one has transla­
tional in variance of the system. The density correlation func­
tions p (I) and p (2) are of the form 

p(l)(q) =Po 

and 

p(2)(q"q2) = P6g(Ql - q2)' 
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Po is the density of the system. g(q) is called the radial distri­
bution function, and usually it is assumed to be positive. 

It is conventionalto denote h (q) = g(q) - 1. For conve­
nience we will work with Fourier transformed quantities: 

ii (Q) = Sdq eiq% (q). 

The static structure factorS is given by: 

S (Q) = 1 + poh (Q ). 

Remark that iffis a test function in D then its Fourier trans­
formjis a bounded function which falls off at infinity faster 
than any polynomial. 

Proposition 5: Let Po be a constant. Let ii (Q ) be a real 
function on R3 which is locally integrable. Assume there 
exists a positive integer n such that I Q I - "ii (Q) is integrable 
outside the unit ball ofR3. Assume also that S (Q) > 0 almost 
everywhere. Then a linear functional Wo on D and a positive 
definite sesquilinear form s on jj are given by the relations 

wo( f) = pJ(O) 

and 

s( fl' f2)= wo( fl f2) 

+ (21T) - 3p~fdQft(Q) h( - Q)ii (Q). 

In particular it corresponds a Gaussian state on d. 
Proof: Let us show that the integration in the defining 

relation s is meaningful. Denote A the unit ball of R3. Let M 
beaboundedregionin~3.Thenf MdQ~(Q)h( - Q) ii (Q)is 
well defined because h is locally integrable andjl andj2 are 
Fourier transforms of infinitely differentiable functions with 
compact support and hence are continuous and bounded. 
Suppose now MnA = (J. Then one has: 

IL dQjl(Q)];( - Q)ii(Q)1 

<x(M)1I j211", ( dQ IQI-"lii(Q)I, JCA 
with x(M) = sup ( I Q I "I ft(Q) 1 :QEM }. The convergence of 
the integral in the definition of s follows because the function 
jl (Q ) falls off at infinity faster than any polynomial. The 
proof of the proposition now is straightforward. In particu­
lar the positivity of s follows from the relation 

S(I.'/2) = (21T) -3po J dQft(Q)];( - Q)S(Q). 

Example: A gas is described by the two-body interac­
tion potential VIr). An obvious choice of the radial distribu­
tion function g is 

g(q) = exp( - V( Iql )lkT) 

(k is the Boltzmann factor, and Tis the temperature). It is the 
low density limit of the solution ofthe Kirkwood equation. 

Under reasonable assumptions on the potential Vthe 
function h ' = g - 1 is integrable. At high temperature and 
low density one has 

Po f dq Ih (q)1 = Po f dq lexp( - V( Iql )lkT) - 11 < 1. 

The Fourier transformed function ii (Q) is bounded. It satis­
fies the conditions of the foregoing proposition. Hence a 
Gaussian state on d describes the gas. 

The energy density U is given by 
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U(ql) = ~ f dq2P(2)(qpq2)V( Iql - q21 ). 

One finds 

U = !p~ S dq exp( - V( Iql )/kT) V( Iql ). 

5. CRYSTALS 

We consider Gaussian states on d which are periodic 
under translations ofR3. For example they can describe a 
crystal within the harmonic approximation. 

The description of a crystal in terms of a density func­
tion p (1) (q), which is a superposition of Gaussians centered 
on lattice sites, and a density correlation function p (21 (q l,q2) 
is unusual. The quantities which are accessible by experi­
ment (x ray and neutron scattering) are p (1) (q) and the aver­
age of p (2) (q I ,q2) over one unit cell Ao: 

1 f d (2) -- sp (ql +S,q2 +s). 
V(Ao) Ao 

Expressions for the latter quantity can be found in the 
literature. 5 

We consider a Bravais lattice generated by the vectors 
ai' a2 , and a3 • They form a non-degenerate matrixA. The 
lattice sites are given by: An, nEZ.? Denote B the (first) Bril­
louin zone. It is (isomorphic to) the dual of the lattice group. 
A pair of Fourier transforms is defined by 

c(k) = L eikAncn, 
n 

C = _1_ ( dke-ikAnc(k). 
n V(B) JB 

Denote r the reciprocal lattice. Denote A 0 the unit cell of the 
lattice. The density p (I) (q) is a continuous periodic function 
and hence it can be written as 

with 

p(I)(q) = L eibqpb' 
bEr 

ii = _1_ f dq e - ibqp(ll(q). 
V(Ao) Ao 

The density correlationp (2) (ql,q2) has the periodicity 
property 

p(2)(ql + An,Q2 +An) =p(2)(ql,q2)' 

One therefore can write: 

p(2)(ql,q2) - p(I)(ql)P(1)(q2) 

with 

= (21T) -3 L e- ibq, e+ib'q, 
b,bT 

X L dk eik(q, - q')Kbb' (k), 

Kbb,(k) = [lIV(Ao)] ( dq'eiq'(k-b'){ dqeiq(b-b') 
JR J JAo 

X [/2)(q,q + q') _ p(I)(q)p(I)(q + q')]. 

In particular one has 

[lIV(Ao)] 10 ds [p(2) (ql + s,q2 + s) 
- p(I)(ql + S)P(I)(q2 + s)] 
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Proposition 6: Let (Pb)bEr be a bounded sequence of reals. 
Let (Kbb ,(k ):b,b 'if J be a matrix of integrable functions on 
B. Assume a uniform bound M exists: 

lIKbb,(k)1 dk <M 

independent of b,b 'if. Assume for almost all kEB that the 
matrixPb' _ b + Kbb'(k) is positive definite. Then a linear 
functional cuo on D and a positive definite sesquilinear form s 
on 15 are given by the relations: 

(3) 

and 

S(/I./2) = CUO(fJ2) + (21T) - 3 2: r dk Kbb' (k ) 
b.b'Er JB 

xhk - b )}2( - k + b '). (4) 

In particular it corresponds a Gaussian state on .If follows. 
Proof For a test function/the Fourier coefficientsj(b) 

are summable. By assumption thepb are bonded. Hence a 
linear functional CUo is defined by relation (3). 

In order to prove that expression (4) is well defined we 
need to show that for a test function of 15 the quantity 11/11. 
= };.bEr SUPkEB Ij(k - b)1 is bounded. It follows because 

the Fourier transform of a function which is infinitely differ­
entiable with compact support tends to zero at infinity faster 
than any polynomial. One then has: 

b.~r 11 dk Kbb'(k )jl(k - b )j2( - k + b ')1 

<MII/III.11/211.· 

SO one has absolute convergence of the summations in (2). 
From the relation 

xli (k - b) l2( - k + b ') 

the positivity of s follows. 
Remark: Denotepo = V (A 0) -1. Let h (Q) be a locally 

integrable function. Assume that a bound M exists such that 

Ilh (k + b) I dk<M, 

independently of bif. Assume thatpoh (Q) > - 1 almost ev-
- 2 -erywhere. Let Pb = ObOPO and Kw (k) = owPo h (k - b). 

Under these assumptions Prop. 6 becomes a particular case 
of Prop. 5. 

Example: A harmonic crystal is described by the dyna­
mical matrix N (k). The wavevector k belongs to the Bril­
louin zone B. The inverse matrix is denoted X (k ). It is posi­
tive definite almost everywhere. The matrix elements 
X aa, (k) are integrable. 

Denote 

W
aa

, (p) = kT V(B) - 1 1 dk eikAPXaa' (k). 
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Let 

and 
Kw(k) = V(Ao)-1 

xexp( -! ?;Waa' (O)[(b + k)a 

X (b + k la' (b ' + k )a (b ' + k )a ) ] 

X I e - ikAp [exp IWaa· (p)(k + b )a (k + b 'la' -
p::;fO aa' 

It is shown in the Appendix thatpb' _ b + K bb , (k) is positive­
definite. In the approximation that multi-phonon processes 
of order n larger than a given number no are neglected one 
can show that the conditions of Prop. 6 are satisfied. 
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APPENDIX 
Let Waa' ( p), Pb' and Kw (k) be as in the example of 

Sec. 5. We show that the matrix Kw (k) + Pb' _ b is positive 
definite and that a uniform bound M exists such that 
SB dk IKw(k)I<M. 

The expression 

Hbb'(k) = V(B)-I 2: e- ikAp 

p 

X { exp ?; Waa,(P)(k + b )a(k + b 'la' - I} 

is expanded in a Taylor series. One obtains 

Hbb.(k) = V(B )-1 2: e- ikAp f (lin!) 
p n = \ 

X ( I Waa' (p)(k + b )a (k + b 'la' (. 
aa' 

Using the defining relation 

Waa,(P) = kT V(B) -\ 1 dk eikAPXaa,(k) 

one obtains 

Hw(k) = f (lIn/!)(kTrV(B)- 1- n 

n=l 

xL dk\,,{ dkn 

X ( ~ e - ikAeik,AP ... eik" AP) 

X Yw (ktl· .. yw (kn ), 

with 

Ybb' (k j ) = I X aa' (k.)(k + b)" (k + b l,,· 
aa' 

Hence 

Hw(k) = f (lIn!)(kTrV(B) - n 

n=l 
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X Ybb' (k2) .. · Ybb' (kn ) Ybb' (k - ,t2 k) 

The terms in the foregoing expression can be interpreted as 
coming from n-phonon processes. It follows by use of 
Schur's theorem that each of the contributions is a positive 
definite matrix. From the relation 

Kbb'(k) + Pb' _ b = (21T)3V(Ao) - 2 

Xexp( -! I Waa, (O)(b + k )a(b + k la') 
aa' 

Xexp( -! IWaa, (O)(b '+ k )a,(b '+ k )a') 
aa' 

X(Hbb'(k) + V(B)-l) 

now follows the required positivity condition. 
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Let us now make the approximation that the series in 
the expression for H bb , (k) is terminated after a finite number 
of terms, From Fubini's theorem then follows thatHbb' (k) is 
an integrable function on B. It is then straightforward to 
show that the conditions of Prop. 6 are fulfilled. 
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An ass.ociative ~lgebra of differential forms with division has been constructed. The algebra of 
forms m each dIffe~ent ~pace provides a practical realization of the universal Clifford algebra of 
that space. A classIficatIOn of all such algebras is given in terms of two distinct types of algebras 
l!k and Sk' The former include the dihedral, quaternion, and Majorana algebras; the latter 
mclude the complex, spinor, and Dirac algebras. The associative product expresses Hodge duality 
~s mu1tiplic~tion by a basis element. This makes possible the realization of higher order algebras 
m a calculatIOnally useful algebraic setting. The fact that the associative algebras, as well as the 
envelo~ed Lie a~gebras, are precisely those arising in physics suggests that this formalism may be a 
convement settmg for the formulation of basic physical laws. 

PACS numbers: 02.10.Tq 

1. INTRODUCTION 

The search for an appropriate algebraic setting for the 
description of physical laws has been a central problem of 
mathematical physics. Clifford, following Hamilton's suc­
cess with the quaternions lHl, generalized them to any dimen­
sion in the universal Clifford algebras. I As an example of 
their applicability, he gave a specific realization of one of 
these algebras, the biquaternions lHl allHl, and proceeded to 
apply them to specific problems.2 His untimely death pre­
vented him from fully realizing this end, and the biquater­
nions were not used again to any extent. 

Physicists developed the Spinor,3 Majorana,4 and 
Diracs algebras as defined by specific matrix representations 
but only later Hestenes6 gave a realization of the Spinor alge­
bra that was consistent with Clifford's original conception. 
More recently, there have been some attempts to apply larg­
er Clifford algebras to physics. 7

-
1O 

A classification of universal Clifford algebras was given 
by Atiyah, Bott, and Shapiro, II without however providing a 
specific representation in each case which could be used for 
algebraic manipulations. 

This paper gives precisely such a practical algebraic set­
ting by using as a basis the differential forms of each space. In 
doing this, the larger algebras in the classification II are real­
ized exactly, and turn out to include those associative alge­
bras that traditionally appear in physics. In addition, the 
unfamiliar algebras may be useful in constructing physical 
models that exhibit symmetry in an intrinsic manner. 12 

The universal Clifford algebra is defined by the multi­
plication of vectors a and b whose components are expanded 
on a basis cr' as a = ~ a'cr' and b = ~ b 'cr'. The product is 
defined with the quadratic scalar form (a,b) = ~ g'Ja'b J, as 
ab + ba = 2(a,b ), and a2 = (a,a). Here, g is the metric g'J 
= (cr',ai). 

In contrast to this, our approach is to provide an explic­
it realization of the associative product (directly), which is 
here defined as the "vee" product avb. 13.14 This is given in 
terms of the exterior product a A b and the scalar product 
(a,b), and satisfies avb + bva = 2(a,b) as a condition (and 

not as a definition). Furthermore, we extend the vee product 
to all higher rank forms such as A = ! ~A 'PrJ A a J , etc. 

We next show that the Hodge duality 15 is expressible as 
the vee product with the volume element. This result consid­
erably simplifies the manipulation of higher rank forms, and 
allows a classification of finite groups generated by the vee 
product among the differential forms in each space (Tables 
I-IV). These groups are in turn used to provide a representa­
tion and classifications of universal Clifford algebras (Table 
VI). 

The Lie and Jordan algebras contained in each univer­
sal Clifford algebra (and therefore representable by this con­
struction) are given in Sec. 6 (Ref. 16 and Table V). An ex­
plicit realization is described for the Lorentz-Minkowski­
Clifford algebra N 412.14 in spacetime M 1.3, by giving the com­
mutation and anticommutation relations (16), (18), (20), 
and (21). 

Of the several unfamiliar (to physicists) universal Clif­
ford algebras, the smallest of these, the "dihedral Clifford 
algebra" in two dimensional spacetime N I' is examined. It is 
shown that N I provides an example of a distinct associative 
algebra of the same dimension as the quarternions, which is 
not a division algebra. The formalism can be used to demon­
strate that Clifford algebras are not in general division 
algebras. 

The utility in actual manipulations follows from a sec­
tional divisibility, namely the existence in each algebra of a 
unique inverse to each homogeneous form. One can indeed 
divide in the case of each antisymmetric tensor field. 

In the Conclusion, the results obtained from an associ­
ative derivative are mentioned, as well as further extensions 
of the material presented in this paper. 

2. ASSOCIATIVE MULTIPLICATION OF DIFFERENTIAL 
FORMS 

Consider the n differential one forms if' = dxu
, 

a = 1, ... ,n of an n-dimensional carrier space M". We can 
construct a set of 2" basis p forms via the Cartan exterior 
product A .15 These are 
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( 1,a",a" A C7/3, ... UJ nl, a, /3 = l, ... ,n . (1) 

Here the volume element in n dimensions is labeled 

UJn = 171 A .. , A ~ . (2) 

The number of basis forms of each rank is given by a 
binomial coefficient. 15 In the carrier spaceMn, define a met­
ric as the scalar form ff' /3 14

: 

Definition: 

ff'/3 = (a",C7/3) . (3) 

The carrier space can be characterized by this metric 
(which we assume for the purposes of this paper to be diag­
onal and nondegenerate) as M p.q when 

ff'a = (+ 1, + 1, ... , - 1, - 1,..·) =g(p,q) , (4) 

p plus signs, q minus signs, andp + q = n. 
We define a multiplication v between a basis r form and 

a basis (s-r) form as the sum of permutations of basis forms in 
Eq. (1): 

Definition: 

(U<' A .. , A u<r)v(u<r + I A ... A U<S) 

= 1 L 2:. L! (- 1)"'( - 1)'" '( - 1)'" 
r!(s - r)! IT, IT, ,IT, k = 0 

xll,.1.' ... g.1. Zk ,.1."utZk
" A ... A 17.1.,. (5) 

Here ( - I )1T, is the sign of the permutation 

(11 2 ... r ) (6) 
U ,,1.2"',,1.,' 

It is easy to show that Eq. (5) defines an associative prod­
uct (this can be shown in general, and verified directly for 
simple cases; see Ref. 13). 

The vee product in Eq. (5) can be used to define an asso­
ciative product between antisymmetric tensor fields. These 
are real-component fields expanded on the differential form 
basis (1). For example, the vector fields a and b are described 
as 

a = f. a.1.,u<, and b = i b .1.,u<, . 
AI = I A:z= I 

The vee product between them is 

avb = i a.1.'b A,u<,VU<' 
'{,.'{,= I 

I aA'b A'(lf',{' + U<' A u<,) 
'{,.'{,= I 

= (a,b ) + a A b . (7) 

This simple case of vee multiplication of vectors serves 
to illustrate the fact that we can multiply any rank antisym­
metric tensor fields in the associative vee multiplication. The 
actual manipulations of vectors in three dimensions are pre­
sented in Ref. 13, and are a generalization and extension of 
the usual vector algebra. The product of higher rank tensor 
fields contains as special cases the tensor, matrix, and exteri­
or products. Manipulations of fields in Minkowski space­
time are described in Refs. 12 and 14. 

In this paper, we omit the machinery for the algebraic 
manipulations of tensor fields, and concentrate instead on 
the intrinsic algebraic structure. (See however examples of 
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inverses of tensor fields in Sec. 7.) It will be shown that this 
"associative algebra of forms" provides a realization of the 
universal Clifford algebra in each carrier space M M. For 
discussions on Clifford algebras, see Refs. 6 to 19, inclusive. 

3. DUALITY AND THE GROUP STRUCTURE 

One of the most useful properties of the vee product is 
that the duality of Hodge20 can be expressed algebraically. 
This leads to an ease of manipulations which makes this for­
malism useful for calculations. 

Theorem: The dual of any form is the vee product of 
that form with the volume elements 

*f ip) = ± UJ'v[iP). (8) 
r 

* Here,jlP) is ap form and r the duality in rdimensions (r<;n). 

The sign depends on p,r, the dimension n, and the signature t 
of the metric. The expression (8) can be used to express the 
embedding of duality in different dimensions as follows: 

~f = C~ / )VC7'. (9) 

In practice, we can label the higher rank forms by their 
duals. Then, the identities (8) and (9) allow their manipula­
tion in a simple algebraic manner. For example, in three 
dimensions we can label the twoforms as the duals of one 
forms: 

*171 = ~ A~, *~ = ~ A 17', *~ = 17
1 A~. (10) 

333 

The vee product is defined in Eqs. (4) and (6) with arbi­
trary indices, because the product between two elements of 
each algebra (which are antisymmetric tensor fields) involves 
the summation over these indices [see Eq. (7)]. For specific 
indices, however, the product of two basis forms of any rank 
will be a single basis form of some other rank. Hence, the vee 
multiplication associates a unique form in Eq. (2) to each pair 
offorms in Eq. (1). This property defines a finite group under 
the vee multiplication. In the following section, these groups 
are identified, and make possible a classification of each uni­
versal Clifford algebra in terms of its underlying group 
structure. 

Using the identification (10), we can give the multipli­
cation (Table I) of all basis forms in three dimensions. These 
define a group of forms GO,] under the vee multiplication. 

We display only the positive forms in the table. The 
finite group includes the negatives of these forms as well, 

TABLE I, The vee product between all basis forms in three dimensions. 

v v' cr CT' *v' *cr *CT 
, 

«) .' 

(T' -I *CT' -*cr {U' CT' -cr -*v' 
cr , 

- *tT -I *v' - CT' {U' v' -*cr 
tT' *cr _ *(T' -I cr -v' {u 

, 
- *CT' 

*v' w 
, CT' -cr -I *CT' -*cr -v' 

*cr 
, 

w 
, v' - *CT 

, 
-1 *v' -cr - CT 

*tT 
, cr _a' (V-' *cr -*v' -I -CT , 

{U' - *(T , -*cr - *CT' -v' -cr -CT , 
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TABLE II. Classification of all spaces M p.q by their dimension n = p + q. 
and their metric signature (P.q). 

n=O (0.0) 
n=! (1.0) (0.1) 
n=2 (2.0) (1.1) (0.2) 
n=3 (3.0) (2.1) (1.2) (0.3) 
n=4 (4.0) (3.1) (2.2) (1.3) (0.4) 

which is but a trivial extension of Table I. This specific exam­
ple has the Euclidean metric g" = ( -1. -1. -1 ). Note 
that even though the overall minus sign is usually a trivial 
convention. the related Clifford algebra is distinct. II Specifi­
cally. the Clifford algebra for gii = ( -1. -1. -1) is lHI Ell lHI. 
Clifford's biquaternions. while the corresponding Clifford 
algebra for gil = ( + 1. + 1. + 1) is S. the Pauli spinor alge­
bra (see Table VI). 

To analyze the group structure. we evaluate the order of 
each element in the group in the context of the vee product. 

An element a of the group is of order two. if 
ava = (a? = 1. and an element is of order four. if 
ava = (af = -1. i.e .• (a)4 = 1. The unit 1 is of order one. 
The order of the group is given by the order of the elements; 
when there are k elements of order 2 and m elements of order 
4. this is denoted as (1. k. m). The order of the group is just 
1 + k + m. From Table I. it is easy to see that the group of 
forms GO,3 is of order (1.3. 12). and is therefore isomorphic 
to the group of Biquaternions of Clifford B = Q4 ® 2 2 , We 
have used the fact that small finite nonabelian groups are 
isomorphic if the group order is the same. (This is however 
not the case for arbitrarily large groups. 21 In general. one has 
to identify the subgroup structure in detail.) 

Following this example. it is easy to see that every set of 
basis forms (1) defines a finite group under the vee multipli­
cation. These groups are labeled by the signature of the met­
ric of the carrier space; in general. a set of one forms satisfy­
ing the metric (4) will in this manner give rise to a group of 
forms G p.q. 

The collection of all such groups is now examined. and 
in each case the isomorphism to a known finite group is given 
whenever possible. 

4. CLASSIFICATION OF A CLASS OF FINITE GROUPS 

To each space M p,q of dimension n = p + q and metric 
signature (P.q) [see Eq. (4)] there corresponds a finite group 

TABLE III. Classification of finite groups corresponding to the spaces M P4, 

n=O 
1 No®No 
2 NI 
3 SI NI®No 
4 N4 N, 
5 N4®No S2 N,®No 
6 N, N, No 
7 S, N,®No S, N,,®No 
8 N 7 Nx Nx N7 
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No 

NI 

N, 

N" 

N7 

of dimension 2n 
+1 labeled G p.q. We can classify all such 

groups by displaying them in a triangular array. where the 
position (P.q) corresponds to the spaceM p,q with metric (4) 
(Table II). 

Our procedure following this is to explicitly calculate 
the order (1. k. m) of each of these groups. and use this as the 
basis for studying their structure. 

It is straightforward to evaluate the order of each ele­
ment of a given group. using the vee multiplication. One uses 
the fact that the total number of basis forms of a particular 
rank is given by a binomial coefficient. 15 (Details of these 
calculations are omitted from this paper.) 

Since the square of any basis form in the vee multiplica­
tion is either +1 or -1. then no element of the group has 
order higher than 4. The order of the group can therefore 
always be denoted by (1. k. m). 

This procedure reveals isomorphisms of these groups 
among themselves. which include the known identities G p,q 

= Gq fl.p--I .G p,q+4 ®Go = G p,q®Go,4.aswellasthepe-
riodicity of Bott G p,q \8 ® GO = G p,q ® G O.X. II Other rela­
tions between the groups appear new. 

All these identities can be succinctly and usefully dis­
played by identifying the nonisomorphic finite groups as the 
members of two series ofgroupsNk andSk, k = 0.1,2 .... The 
groups G p,q can then be listed in terms of the N" and Sf, 
notation in a manner that explicitly shows the above isomor­
phisms. In Table III. we have listed the finite groups up to 
order 512. The correspondence of the two notations em­
ployed for the groups is given by comparing an entry ofTa­
ble II to the corresponding entry of Table III. For example. 
the group G 3,0 from the entry (3,0) of Table II is the group 
lebeled S, in Table III. The usefulness of this labeling will be 
apparent when we specify the isomorphisms of these groups 
with the commonly known finite groups. 

The matter of identifying the groups Nk and Sf, with 
known finite groups is a straightforward one. and employs 
simple group-theoretical techniques. 2

' An example was giv­
en previously in the case of G 0.3 = N2 ® No = Q4 ® 2 2 , Here 
we merely list the results in Table IV, along with some useful 
identities. The notation employed is the following: 

2 n are the cyclic groups of order n, D n are the dihedral 
groups. 24 is also the complex group. 22 ® 22 is the Gauss­
Klein veergruppe. which is isomorphic to D2. Q4 is the qua­
ternion group of Hamilton. S = 24 ® 22 ® 22 is the spinor 
group. which was first discovered by Hamilton as the "com­
plex quaternions," The group M is the group of all possible 

So 
N, 

SI N,®No 
N4 N4 

S, N4®No S2 
N, N, N" 

S, N,®No S, N"®N,, 
Nk Nx N7 1'V'7 
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TABLE IV. Isomorphisms with known finite groups. 

n Order Elements 

0 NO=Z2 2 (1,1,0) 
I No ® No = Z2 ® Z2 = D2 4 (1,3,0) 

SO=Z4 4 (1,1,2) 
2 NI=D. 8 (1,5,2) 

N2=Q4 8 (1,1,6) 
3 SI = Z4 ® (ZZ)2 16 (1,7,8) 

NI®No=D4®Z2 16 (1,11,4) 

N2®No = Q.®Zz =B 16 (1,3,12) 
4 N,=M 32 (1,19,12) 

N4 32 (1,11,20) 
5 S2 = Z4 ® (Z2)4 = !iJ 64 (1,31,32) 

N4 ® No = NI ® Nz 64 (1,23,40) 
N, ® No = NI ® NI = N2 ® Nz 64 (1,39,24) 

6 Ns 128 (1,55,72) 

N6 128 (1,71,56) 
7 S3 = Z4 ® (Z2)6 = !iJ ® Z. 256 (1,127,128) 

Ns ® No = N3 ® N2 = N. ® NI 256 (1,111,144) 
No ® No = N3 ® NI = N4 ® Nz 256 (1,143,112) 

8 N7 512 (1,271,240) 
N. 512 (1,239,272) 

combinations of the 4 X 4 real Majorana matrices,4 which 
define a group of order 32. The 16 familiar combinations of 
the real gamma matrices along with their negatives are a 
representation of M.22 In distinction, the Dirac group .f2) 

defined by the 4 X 4 complex Dirac matrices is of order 64, 
since one has to include the complex elements separately. 
We note that Dirac's original matrices do not define fiJ, 
since he added the metric of the quadratic form (1,3) by 
hand.s 

The relationship between the Majorana and Dirac 
groups can be understood as a "complexification" in the 
context of the vee multiplication. i.e., .f2) = M $ iM. This is 
the reason why M is one half as large as fiJ. The complex unit 
i corresponds in this case to the five-dimensional volume 
element (i)s, which commutes with all elements of fiJ (and M) 
and has square (i)5 v (i)s = -1. This follows as a special case 
of some general theorems, which are given in the following 
section (see also Ref. 14). 

The groups Nk are seen to be the building blocks of the 
classification. They are the groups arising from defining the 
vee structure on the differential forms of an even dimensional 
space. The first four are well known as follows: No = Z2; 
NI =D4; N2 = Q4; andN3 =M. 

The groups Sk appear only when the dimension of the 
underlying space is odd, and may be called "generalized 
spin or groups." They have the intrinsically complex struc­
ture Sk = Z4 ® (Z2)2k. The first three are well known as 
So = Z4; SI = S; and S2 = fiJ. 

The series Nk and Sk contain many of the finite groups 
that have traditionally appeared in physics. This is an indica­
tion of the intrinsic physical interest of this classification. 
The group structure in turn determines the algebraic struc­
ture, which will be in Sec. 7. In the following section we give 
a few useful theorems on the group structure. 

Remark: The labeling of the groups Sk as generalized 
spinor groups reflects the historical development of general-
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lzing the complex numbers to the spin or algebra,3 then sub­
sequently generalizing the spinor algebra to the Dirac 
algebra.5 

5. THE GROUPS AS CENTRAL EXTENSIONS OF CYCLIC 
GROUPS 

It is instructive to give two theorems first derived by 
Clifford I on properties of the volume element (i)" in each 
universal Clifford algebra. These can then be applied to 
evaluate the center of each group of forms. 

Theorem: The volume element (i)n commutes with all 
elements a of G " for n = odd, and anticommutes for 
n = even: 

(i)"vO' = ( -1) n +1 (7V(i)" . (11) 

(This theorem is particularly useful in practical 
manipulations. 12, 13) 

Theorem: The square of the volume element in the vee 
multiplication is 

«(i)n)2 = (i)"vw" = (-1) "(" -1)/2 detg = ± 1 . (12) 

The proofs are direct;I,16,19 g is the metric tensor (4). 
These two theorems can now be used to give the center 

ofG". 
Theorem: The center of the group of forms G" is iso­

morphic to the finite group Z2' when n = even; Z4' when 
n = odd and (W")2 = -1; or Z2 ®Z2 = D2, when n = odd 
and (w"f = + 1. (13) 

The proof is as follows: We see that the center of each 
group of forms is generated by the elements ( 1, -lj for 
n = even and (1, -1,w", - wnl for n = odd (see also Ref. 
16). These sets define finite groups which are isomorphic to 
Zz, Z4' or Z2 ® Z2' by using Eq. (12). This theorem in turn 
leads to a key result in the group structure. 

Theorem: The factor group G modulo, the center of G, 
is the Abelian group (Z2)" = Z2 ® ... ® Z2 (n times). The dif­
ferent cases are 

n = even: Gn;Z2 = (Z2)" , (14a) 

n = odd: (wnf = -1, G";Z4 = (Z2y-1 , (14b) 

n = odd: (W")2 = 1 , G n;Z2 ® Z2 = (Z2)"-1 (14c) 

This theorem, presented here without proof (although 
it is very easy to check for the first few cases), can be rewrit­
ten as a corollary.23 

Corollary: The groups offorms G are the central exten­
sions of Z2' Z4' and Z2 ® Z2 by the Abelian group (Z2)"' (15) 

It seems, therefore, that those groups appearing in this 
classification scheme, which includes many of the groups 
used in physics, fall into a rather special class of finite groups 
having the above property. 

6. REPRESENTATION OF A CLASS OF LIE AND 
JORDAN ALGEBRAS 

The groups offorms G " can be used to represent certain 
Lie and Jordan algebras, by using a bracket operation de­
fined with the vee product. We define commutators and anti­
commutators as follows: 
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Definitions: 
[o"',(7P] = o"'V(7P - (7Pvo'" , 

! o"',(7P J = o"'V(7P + (7Pvo'" . 

(16a) 

(16b) 

The set of forms (1) with either of these bracket pro­
ducts is closed, and is isomorphic to some Lie or Jordan 
algebra, respectively. It is a straightforward matter to evalu­
ate the specific Lie and Jordan algebras, so the details are 
omitted. The first few cases are known, and the larger exam­
ples can at least be verified by evaluating the dimension. 

The Lie algebras obtained in this manner are given in 
the compact case of each manifold M n by the following 
theorem: 

Theorem: The Lie algebra corresponding to the com­
mutator vee structure on the space M n is 

SL(2n!2;R), for n = even, 

SL(2(n -1)/2 ;C), for n = odd. (17) 

What is of interest is the ability to use the explicit repre­
sentation provided by the vee product between all the differ­
ential forms in order to evaluate the Killing-Cartan metric 
form contained in each Lie algebra. This is obtained by iden­
tifying the orthogonal group SO(r,s) which is covered by each 
Lie group in Eq. (17). This is also rather straightforward 
once the representation is known. For example, the Lo­
rentz-Minkowski-Clifford group N4 in spacetime M 1,3 con­
tains the orthogonal conformal group SO(1,5). 

In Table V, we classify the orthogonal Lie groups 
SO(r,s) contained in each group offorms by giving the Kill­
ing-Cartan form (r,s). We note that the table contains the 
rotation, Lorentz, and conformal Lie groups. 

It is to be emphasized that the commutator of the group 
of forms gives a specific representation of the particular Lie 
group. This representation is precisely the fundamental re­
presentation, which can be verified by computing the Car­
tan-Casimir invariant. 

For example, the realization of the SO(3) subgroup by 
the three generators J 12, J 23, J 13 given below satisfies 
j(j + 1) = - (J 12)2 - (J23f - (J 13f = 3/4, and is there­
fore a spin one half representation. Similarly, the Lorentz 
group SO(1,3) is realized by six generators in a (j,j) = ( !, !) 
representation. This feature is indicative of the very specific 
nature of this algebraic scheme, The consequences of this 
particular characteristic to physics will be examined 
separately. 

As a specific example, we describe the Lie algebra gen­
erated from the Lorentz-Minkowski spacetime M 1,3 (see 
Ref. 12). The relevant group offorms is G 1,3 = N4 of order 

TABLE V. Killing-Cartan form of Lie groups SO(r,s) realized by each 
group of forms G P.4. 

n = ° (Abelian) SO(I) 
I (Abelian) (2,0) (0,2) 
2 (2,1) (1,2) (0,3) 
3 (3,1) (2,2) (1,3) (0,4) 

4 (5, I) (3,3) (3,3) (1.5) (1,5) 
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32. We can label the 15 nonscalar basis forms in a 6 X 6 anti­
symmetric array, utilizing the duality in both three and four 
dimensions in the labeling [see Eq. (10)], as well as the vol­
ume elements (2): 

* * * o 3~ - 3~ (71 A (74 4(71 (71 

* * 0 3(71 ~A(74 4~ ~ 

Ja P = 1 * .(18) 2 0 ~ 1\.(74 4~ ~ 

0 w3 (74 

0 _W4 

o 
The indices a, f3 run from 1, ... ,6. The Killing-Cartan 

form in this case is easily verified from the techniques of Sec. 
2 to be 

as 

gnu = ( -1, -1, -1, +1, -1, -1). (19) 

The commutation relations are given in canonicalform 

[rp,Jy<5] = gPYJab _ gPbJa y _ g'YJ Pb + g'0J PY. 
(20) 

Even though it is known that the Clifford bivectors of 
the space M 1,3 (which are here represented by the basis forms 
labeled Ja P with a, f3 = 1,2,3,4) provide a representation of 
the Lorentz group S0(1,3);24 the construction here present­
ed gives a representation of the much larger conformal group 
SO(1,5). 

Furthermore, the identification of each orthogonal Lie 
algebra of Table V as the one maximally contained in the 
universal Clifford algebra of the corresponding space M pro­
vides a set of examples to the Poincare-Birkhoff-Witt theo­
rem.25 This important theorem endows each Lie algebra 
with a unique universal associative enveloping algebra. Re­
presentations of these algebras are not known in general, but 
we can provide the universal associative enveloping algebra 
for each of the entries of Table V. The fact that these ortho­
gonal groups include those that are of physical importance 
makes this restricted result of some interest to physical 
applications. 

In a similar vein to the preceeding analysis of the Lie 
algebraic structure induced by defining the commutator 
product (16a), we can analyze the Jordan structure26 induced 
by the anticommutator product (16b). As in the preceeding 
case, we give as an example the anticommunication relations 
of the 15 nonscalar bases (18) corresponding to the space 
M 1,3. The Killing-Cartan formg'P [Eq. (19)] is the same as 
in the commutation relations (20): 

(21) 

Here E'" Py&!; is the entirely antisymmetric symbol of 
Levi-Civita in six indices, and E123456 = 1. 

The anticommutation relations for the basis forms la­
beled Ja6,a = 1,2,3,4 are trivially known, since they define 
the Jordan algebra as 

! d ' ,(7"J = 2g'w . (22) 
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T ABLE VI. Classification of universal Clifford algebras. 

n=O 
I JRQ)JR 
2 N, 
3 5 N,iIlN, 
4 N4 M 

5 N4 ill N4 D MiIlM 
6 N, N, No 
7 5, N, 9l N, 5, No 9l N6 
8 N7 N. NH N7 

[Here t H
' is the Lorentz-Poincare metric 

( -1, -1, -1, + 1) and not Eq. (19).] The inclusion of the 
other 11 basis forms in the expression (21), however, en­
larges the anticommutation structure, and displays an inter­
esting "skew" character. 

Since Eq. (22) is also the defining relation of the Clifford 
algebra by the extension theorem, II, 18,19 the Atiyah-Bott­
Shapiro construction 11 gives the universal associative envel­
oping algebra of each Jordan algebra. This is precisely the 
universal Clifford algebra, and provides the analog to the 
Poincare-Birkhoff-Witt theorem for the case of Jordan 
algebras. 

7. CLASSIFICATION OF ASSOCIATIVE ALGEBRAS 

The present formalism allows an identification and 
classification of universal Clifford algebras in terms of their 
underlying group structure. This analysis places the associ­
ative algebras used in physics in this scheme, as well as pro­
viding a practical realization for use in actual applica­
tions. 13.14 The first three algebras are the real numbers JR, the 
complex numbers C, and the quaternions lHl. In addition, it is 
possible to include the Spinor algebra 5, the Majorana alge­
bra M, and the Dirac algebra D. 

Each group of forms shown in Table III defines a real­
ization of a universal Clifford algebra which is displayed in 
Table VI. We have used the group terminology of Sec. 4 to 
label the algebras N k and 5 k , k = 0,1,2, ... , thereby singling 
out the nonisomorphic algebras by the notation. The isomor­
phisms to familiar associative algebras are the following: 

No = JR, N2 = H, N3 = M; 

50 = C, 51 = 5, 52 = D. 

The remaining algebras are not well known in physics. 
(References 8-10 and 27 are among the few to examine these 
larger Clifford algebras with regard to physical 
applications. ) 

A comparison of Table VI with the classification of un i­
versal Clifford algebras given in Atiyah, Bott, and Shapiro I 1 

will illustrate the differences resulting from this approach. 
The major advantage of this formalism, however, is in the 
relative ease with which practical manipUlations can be real­
ized. This is succinctly expressed by the following theorem, 
which is a key point of the construction. 

Theorem: Homogeneous forms are invertible in each 
algebra. (23) 

231 J. Math. Phys., Vol. 22, No.2, February 1981 

R 

N, 

M 

N6 

N7 

C 
H 

5 HiIlH 
N4 i'i. 

D N4 ill N4 II) 

N, N, N6 
53 N, 9l N, 5, N69l N6 

N. NH N7 N7 

Thus, any antisymmetric tensor field (which is a linear 
combination of basis forms of equal rank) will have a unique 
inverse in any given algebra of Table VI. The inverse is of 
course defined in terms of the vee multiplication. Again, ex­
amples from the Lorentz-Minkowski-Clifford algebra 
N4 12.14 in spacetime M 1,3 are presented. For a vector field 

a = I al-'d", Ii = 1,2,3,4. (24a) 

Then 

j24b) 

For a rank two tensor field, the duality in three dimen­
sions can be used for elegance (see Ref. 13) 

* F = ! I FI-'Vd" A (}'V = E A (}'4 - 3B, Ii,v = 1,2,3,4, 

with 

Then 

F-
1 = ----------~--~---------

ki + k~ 

where k 1 = (E,E) - (B,B), and k2 = 2(E,B), with 
(E,E) = '2E iE'. 

(2Sa) 

(2Sb) 

(The constants k (J k2' and k i + k ~ are recognized to be 
the invariants of the Lorentz and duality transformations of 
the electromagnetic field. This is analyzed in detail else­
where, 12 and serves to make the connection with physics.) 
The identity FvF = kl - k 20J can be used to verify the in­
verse of the field F [Eq. (25b)]. 

Clearly, one must have the full framework ofthe con­
struction in each particular case in order to use the algebra 
for practical manipulations. Details for the algebras N4 12.14 
and 5 13 have been given elsewhere. Note that a related but 
distinct description for 5 was given by Hestenes.6 

The other algebras of Table VI may be of value in cer­
tain physical problems, and will be presented in detail in the 
appropriate physical context in forthcoming pUblications. 
We comment here on the appearance of the associative alge­
bra N I' which we call the "dihedral Clifford algebra in a two-

Nikos Salingaros 231 



                                                                                                                                    

dimensional space-time" (from the corresponding dihedral 
group in Table IV). 

The algebra, although associative, and of the same size 
as the quaternions 1HI, does not appear to have been used in 
the past. A reason for this may be that N I is neither norm ed, 
nor a division algebra. (This is easily verified directly.) We 
note that, in general, the associative algebras of Table VI are 
not division algebras, as this would violate the celebrated 
Hurwitz theorem. 28 Thus, the inverse of a linear combina­
tion of all the basis forms (i.e., different rank tensor fields) 
may not exist. The only division algebras in the classification 
VI are the usual ones; a, C, and 1HI. 

The algebra N I is therefore an example of a relatively 
small associative algebra which is not a division algebra, yet 
has possible physical significance because it arises from two­
dimensional spacetime. Physical applications of this inter­
esting and curious algebra will be presented separately. 

8. CONCLUSIONS AND EXTENSIONS 

This paper has illustrated how universal Clifford alge­
bras can be generated by an associative multiplication of dif­
ferential forms in a computationally useful setting. The in­
troduction of Hodge duality, in particular, is a key tool in the 
algebraic manipulations. The simplicity of the reduction 
from the universal Clifford algebra to the Jordan and Lie 
algebras in each case illustrated how the topological envel­
oping is related to the algebraic structure via the commuta­
tor and anticommutator vee products. 

It is hoped that this formalism may provide a novel and 
useful framework to describe both internal and external 
symmetries in physics. The appearance of many physically 
significant groups and algebras in this classification is indic­
ative of the inherent applicability of the scheme. 

For most of the results on group structure, the algebraic 
basis can be considered in an abstract manner. However, the 
identification of the differential one forms as the basis is in­
deed crucial, as will be demonstrated in a subsequent com­
munication. There, an associative derivative in each space 
will give an expression of generalized holomorphy as well as 
a set offield equations. The equations in the case of Lorentz­
Minkowski spacetime are precisely the Maxwell equations 
(with electric sources). 
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The elements of the Racah algebra for a general compact group with time reversal symmetry are 
developed. As time reversal is antilinear it is not possible to treat these groups by representation 
theory but we may instead use Wigner's theory of corepresentations. The results we obtain often 
parallel those for linear groups but there are some important divergences. We illustrate these with 
the grey double point groups. 

PACS numbers: 02.20. + b, 03.65.Fd 

1. INTRODUCTION 

Over the years an extensive range of mathematical tools 
generally subsumed under the heading of "Racah algebra" 
has been developed to handle the problem of many electrons 
moving in a spherically symmetric potential. 1-4 These meth­
ods may be interpreted group theoretically as follows: (a) 
The set of vectors ! Um} : - J<,m<,J) form a basis for an 
irreducible representation (IR) ofSU(2). (b) If we couple 
two electrons, each with a sharp angular momentum, we are 
group theoretically forming the direct product of two IR's. 
This may be transformed by a unitary matrix into a direct 
sum ofIR's. The elements (j(J2JmUIJ2mlm2> are termed 
coupling coefficients and give 

1m 

This may be inverted as 

where 

(jIJ2m,m2IJIJ2Jm) = (jd2imlili2mlm2)*' 

(c) A high symmetry coefficient-the V coefficient of Fano 
and RacahS-may be constructed from this 

V(JI J2 J3) = (_1)2j,+j,+m, [j3]-II2 
ml m2 m3 

X (jlhmlm2/Jd2i3 - m3), 
where [J3) = 2i3 + I, which at most suffers from a sign 
change under permutations and time reversal. It is related to 
the equally symmetric 3) symbol of Wigner6 by 

v(J, J2 J3) = (-IY' +j, +f.(JI J2 )3). 
m 1 m2 m3 m I m2 m3 

An equivalent approach in representation theory relates this 
to the reduction of the triple direct product to the identity 
representation: 

-V(11 12 13) ( I)2J,('" /00) = - ilhhmlm2m3 • m, m2 m3 
(d) Ifwe couple three angular momenta together, the cou-

a)Present address: Department of Physics. Universiti Pertanian Malaysia. 
Serdang, Selangor. Malaysia. 

pIing may be carried out in different ways. The recoupling 
coefficient gives the transformation between these, and 
again there is a high symmetry coefficient related to this­
which is independent of the azimuthal quantum numbers 

{!I !2 !3} 
i4 is i6 

= I (_Vv(il 
allm m l 

with 
6 

1= L (J; -m j ). 

i= 1 

This is called either a Wor 6) coeffieiene·6 and is the first 
nontrivial invariant under any change of basis. This may be 
extended to the invariant recoupling coefficients of four or 
more particIes.7

-
11 (e) If an operator satisfies the same com­

mutation relations as a spherical harmonic Ylm , it forms the 
mth component of a spherical tensor of rank I. We may sepa­
rate out the radial and spherical parts, and by the Wigner­
Eckart theorem 12

•
13 

(J3m3IT(k1qtlIJ2m2) = (_ ly,-m,v( )3 
-m3 

X (J311 T(kIlII)2)' 
where the reduced matrix element (j31IT(kJ)IIJ2) repre­
sents the radial contribution. By considering various pro­
ducts of tensor operators in coupled schemes, relations be­
tween the different reduced elements which arise may be 
obtained.? 

The development of the Racah algebra for SU(2) has 
been largely based on the fact that this is a Lie group and so 
we may use the Lie algebra su(2) or the special function 
properties of the IR's to simplify the calculation of the Vand 
related coefficients. Although this approach may be utilized 
for other Lie groups, our interest lies in another direction, 
namely, in the finite and compact groups. Although work is 
currently being done on developing a Lie algebra-type ap­
proach to finite groups, 14,1S at present we are restricted to 
group or group algebra methods. 

Two approaches may be made to the problem. The first 
is to deal with the group in its own right and to develop the 

233 J. Math. Phys. 22 (2). February 1981 0022-2488/81/020233-12$1.00 © 1981 American Institute of Physics 233 



                                                                                                                                    

algebra using only the properties of the group. Koster16 has 
proven the Wigner-Eckart theorem using this method, and a 
large number of authors have determined the properties and 
values of V, 3j (or3jm) and higher symbols for the point 
groups and arbitrary compact groupS.17-21 The other 
aproach is to treat the group as a subgroup of another group 
for which a Racah algebra has already been developed and 
use descent in symmetry.22-32 Various authors have used a 
mixture of the two techniques. 33

-40 Racah's lemma4 shows 
that any of these methods give equivalent results. The papers 
by Derome and Sharpl7 and Derome18 have given the condi­
tions for the 3jm symbols to be multiplied by a simple phase 
factor only under permutations and complex conjugation, 
and symbols with this property may be found for all the 
double point groups. 

Many of these authors have used the operation of com­
plex conjugation K or of time reversal (J to relate the pairs of 
coefficients 

(rl r2 r3) (rl* r2* r3*) 
and * * *' a l a2 a3 a l a2 a3 

where the set of Ira) form a basis for the representation Dr 
and the set of IF *a*) for the representationD ro. These two 
operations are not completely equivalent for, whereas 
K 2 = I, (J 2 = ± I according to whether we have an even or 
odd number of fermions. These operators are antilinear: 

e(a\f) +f3\g»=a*e\J> +f3*e\g). 
For nonmagnetic materials, or for paramagnetic or dia­

magnetic ions, time reversal is a symmetry operator of the 
system. Kramers41 first demonstrated the importance of this 
operator with the Kramers degeneracy, but as it is antilinear 
it cannot be treated by the theory of representations but can 
only be dealt with by the theory of corepresentations devel­
oped by Wigner.42 A large number of papers have been pub­
lished concerning the corepresentations of linear/antilinear 
groupS43-48 but development of a Racah algebra has been 
slow compared to the linear groups. Methods for finding, 
and tables of, coupling coefficients have been published44-46 
and the Wigner-Eckart theorem has been proven,48 but to 
our knowledge that is all. 

In this paper we develop the Racah algebra for compact 
groups with time reversal symmetry. We take time reversal e 
as a commuting operator of the group49 and e 2 = I for bo­
sons or an even number offermions, and e 2 = - I for an odd 
number of fermions. These two properties allow us to sim­
plify the development from that which would be needed for a 
generallinear/antilinear group. In practice, we usually start 
from a compact group of linear operators H and extend it to 
G by adding in the antilinear operators a = (Ju, where u is 
linear. Since linear times anti linear is antilinear, and antilin­
ear times anti linear is linear, the coset group G I H is isomor­
phic to C2• As H is compact, from the homeomorphism 
/1i(U) =/«(}u), G - H is compact and hence G is compact. 
We shall see later that all irreducible corepresentations of G 
are obtained from irreducible representations of H, and so 
the compactness of H guarantees a complete set of corepre­
sentations of G. Finally, we shall often need to integrate over 
the group. G and H both possess invariant integrals, so we 
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may write 

( f(x) dx = ( feu) du + ( f(a) da. 
)c )H )C-H 

By simple substitution we have in particular 

\HI= (ldu= ( lda=! (ldx=!IGI. 
)H )C-H )c 

For finite groups these integrals reduce to sums. 

2. A COVARIANT NOTATION 

Throughout the fields of representation and corepre­
sentation theory there exists a wide variety of notations for 
the labeling of representation or corepresentation matrices 
and for the nj symbols, coupling coefficients, etc. Use of a 
naive notation often hides difficulties, but a more sophisti­
cated notation calls for more care in construction and ma­
nipulation. The papers by Derome and Sharpl? and Der­
ome 18 discuss the properties of the 3jm symbols of a compact 
linear group in a very general manner, and for this they used 
a covariant notation. In this paper we discuss the 3jm sym­
bols50 for a grey compact group, and to ensure that we do not 
"gloss over" difficulties we adopt a covariant notation here. 
The one we use here differs slightly from that of Derome and 
Sharp and is from spinor and rotor calculus.51

•
52 

Let S be a complex vector space with basis (e 1m) 

:m = 1,2,. .. j and S * be the conjugate space with basis (e (m) 

:m = 1,2,. .. j. Iffor a particular space S' the conjugate space 
S '* contains elements not in S', we extend S' by these ele­
ments so that we may always take S = S * . We may trans­
form to new bases Ie (m') :m' = 1,2,. .. ) and (e(,n') :m' = 1,2,. .. J 

by 

elm') = elm) pmm' (2.la) 

and 
- - pm e ,n' = e (m) m" (2.1b) 

The inverse transformations are 

elm) = elm') pm'm (2.1c) 

and 

elm) = elm') pm'm' (2.ld) 

with the convention ( pm m' ) -I = pm' m' Throughout primes 
will always indicate a transformed basis. We let the trans­
pose of pm m' be Pm' m and the complex conjugate be P m ,n' . It 
follows that 

P
m p n -T _ -T 

m' n' elm) eln ) - elm') e(,;'I' 
(2.2) 

Now e Iml~!; is the metric in the old basis, and on the right­
hand side we have the metric in the new basis. In group 
theory we usually consider only unitary transformations, 
i.e., those which preserve orthonormal bases. Thus unitary 
transforms are those P which satisfy 

pm m' P'i' liD,; m = D,;' m' , 

where 
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1 

o 
They also satisfy 

pmm,p,/,tr'il'=tr n, (2.3b) 

We now define the matrix of a linear operator u : S---+S 
by 

ue (m) = e (n) j(u)nm' (2.4) 

Note that we do not have primes here as we are not changing 
the basis. Under a change of basis, 

(2.5) 

The matrix of an antilinear operator a : S---+S ... is given 
by 

ae (m) = e (n) j(arm' (2.6) 

where we now have one dotted and one undotted variable. 
We may sum over covariant and contravariant indices; we 
make the further convention that we may only sum over a 
pair of dotted indices or a pair of undotted indices. With this 
the transformation of an antilinear operator is 

j(ar'm' = pn'ni(ar mpm m' 

and the multiplication rules are 

j(uaY'';, =j(u)mmj(a)m,,,, 

j(au)''',; = j(a)m,j,j(u)m, ';' 

j(a,a2)"'" =j(a,yn,nj(a2yn,,,, 

(2.7) 

(2.Sa) 

(2.Sb) 

(2.Sc) 

(2,Sd) 

We see how this notation automatically keeps track of 
complex conjugates. For example, in ordinary matrix nota­
tion Eq. (2.Sc) reduces to 

j(au) = j(a)j(u)*, 

which is the mUltiplication rule for such operators,42 

3. IRREDUCIBLE COREPRESENTATIONS 

Given a group G with a subgroup H of index 2, a core­
presentation of G is a set of matrices satisfying equations 
(2.8) with uEll and aEG - H. Usually, we have a complex 
vector space which carries a representation of H, in which 
case we may calculate these matrices by Eqs. (2.4) and (2,6) 
but this is not necessary for the formal theory. 

A corepresentation may be reduced if we can find a 
unitary matrix which block diagonalizes the corepresenta­
tion. As Maschke's theorem still holds,43 we can reduce each 
corepresentation to a direct sum of irreducible corepresenta­
tions (ICR's), However, only a weak form of Schur's lemma 
holds which gives the following rather unpleasant orthogon­
ality relations47

: 

r . ( )"" .. ()'i', d - 0 JHi , U ",i2 U ,I, U - , (3.1a) 
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(3.lb) 

ifj.=I=j2 and 

r j(u)m'n.J(ut'n, du + ( j(a)m'nj(at'n, da 
JH JG-H 

_ JQ..Gm,m'8 . 
- [j] n,n,' (3.lc) 

with [il equal to the dimension of). Note how n. and li2 are 
interchanged in the last integral. One small point is neces­
sary: in Eq. (3.lc) we have 8m ,m" where both m. and m2 are 
inner indices, Since we are not multiplying matrices in the 
normal manner, this does not contradict the matrix conven­
tion of summing over an inner and outer index. Setting 
m. = n., m2 = li2 gives 

(3,2) 

where Xj(u) [xj(a2
)] is the character ofj(u) [j(a2)]. 

By restricting the operations of G to the linear subgroup 
H, each JCRj of G subduces to a representation k of H. We 
may classify each ICR of G by the representation of H in the 
following manner43

: 

Type (a): k is irreducible and equivalent to k, where k (u) 
= k (a-·ua)* for arbitrary fixed a. The character test is 

(3.3) 

Type (b): k reduces to k. a1 k. with k.=k •. The charac­
ter test is 

In IXj(uJ!2 du = 21G I· (3.4) 

Type (c) k reduces to k. a1 k. with k.=I=k •. Here 

L IXj(uWdu = IG I· (3.5) 

For type (a) we may use the orthogonality relations for linear 
groups to simplify Eq. (3.lc) to 

Lj(Ul""n,J(Ut'n, du 

= r j(a)m'n,j(at'n, da 
JG-H 

= JQL 8m,m'8 . (3.6) 
2 [j] n,", 

We shall use this frequently for) = 0, the identity ICR. 
For the grey groups time reversal e commutes with all 

elements ofG 49 so that k = k ... and equivalence (nonequiva­
lence) is the equivalence (nonequivalence) of complex conju­
gate representions. Thus, we may make a further classifica­
tion according to the following: k equivalent to k ... and to a 
real representation (the first kind); k equivalent to k * but not 
to a real representation (the second kind); and k not equiv­
alent to k * (the third kind). Further, e 2 is either the identity 
or the negative identity, and we have this classification for 
the grey groups49: 

0 2 =1: 
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(A) k is irreducible and of the first kind: 

L IX/uWdu = LXj(u2)dU = IGI12, (3.7) 

(B) k reduces to kJ (fj kJ with kJ of the second kind: 

L Ix/uW du = 21G I and LXj(U2
) du = -IG I, 

(3.8) 

(C) k reduces to k J (fj k J. with k J of the third kind: 

L IXj(uWdu = IG I and LXj(U2 )dU = 0; (3.9) 

(}2 = _I: 
(D) k is irreducible and of the second kind: 

L IXj(uWdu = IG 1/2 and LXj(u2)dU = -IG 1/2, 

(3.10) 

(E) k reduces to kJ (fj kJ with kJ of the first kind: 

{IXj(uWdU = 21G I and {Xj(u 2)dU = IG I, (3.11) 

(F) k reduces to k J (fj k r with k 1 of the third kind: 

{IXj(uWdU=IGI and {Xj(u 2)dU=0. (3.12) 

Conversely, if we start from the IR's of H, the ICR's of 
G are constructed exactly according to the above scheme. 
Thus, time reversal only fails to increase the degeneracy for 
types (A) and (D). We observe that these ICR's are equivalent 
to their complex conjugates from the character tests of Ru­
dra.45 Each ICR matrix may be chosen to be unitary in the 
normal matrix sense43 which becomes in our notation 

(3.13a) 

and 

(3.13b) 

TABLE I. Clebsch-Gordan coefficients d -;, for ICR's in terms of the 

Clebsch-Gordan coefficients c;, of the linear subgroup. 

jl j, j, d;, 
(a) (a) (a) C~2 
(a) (a) (b) !ci, 
(a) (a) (c) C~2 
(a) (b) (a) 2C;2 
(a) (b) (b) C~2 
(a) (b) (c) 2e;, 

(a) (c) (a) C~2 + C~2. 
(a) (c) (b) !c·~ 2 + !c~ 2-

(a) (c) (c) C~2 + c-i2· 
(b) (b) (a) 4c;, 
(b) (b) (b) 2e;, 
(b) (b) (c) 4c;2 
(b) (c) (a) 2ei, + 2e;2' 
(b) (c) (b) C~2 + C~2. 
(b) (c) (c) 2C~2 +2c·:2 • 

(e) (e) (a) C~2 + c-il" + C~"2 + C~·2· 
(e) (e) (b) !C";2 + ~C-:2. + ~C~.2 + !c-i.z" 
(e) (e) (e) C-~2 + C·;2. + C~.l + C~.2. 
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TABLE II. The minimum nonzero multiplicity of the identity ICR in dou­
ble and triple products. Multiplicity free couplings ofiR's give the following 
multiplicities for the ICR's. If the IR coupling is not multiplicity free, Table 
I should be used. 

jl j2 j3 Multiplicity 
(a) (a) I 
(b) (b) 4 
(e) (e) 2 
(a) (a) (a) I 
(a) (a) (b) 2 
(a) (a) (c) 2 
(a) (b) (b) 4 
(a) (b) (c) 4 
(a) (e) (e) 2 
(b) (b) (b) 8 
(b) (b) (c) 8 
(b) (e) (c) 4 
(c) (e) (e) 2 

Rudra's proof that basis vectors for an ICR of type (b) are 
nonorthogonal45 contains an error, for although his projec­
tion operator maps a basis vector I ~iO) onto a basis vector 
I ~i)' it does not annihilate all other basis vectors. We shall 
later construct suitable orthogonal bases which preserve 
unitarity. 

Character tests may be used to reduce direct products 
oflCR's, but Eqs. (3.1) show that this will not be particular­
ly easy. If 

jl ®j2 = I d~:j, j3' 
}, 

Bradley and Davies43 have related this to the corresponding 
reduction of representations in H: 

kl ® kz = I CZ;k,k3• 
k, 

In Table I we reproduce the results as given in their Table V. 
Here we have a very important departure from representa­
tion theory. Whereas 

C~:j, = C~:j,. = CJ,j,j,*, etc., 

this is not in general true for ICR's. For instance, as we shall 
see later, in the grey tetrahedral group, d ~E = I, d ~T = 2, 
and d '}-TE = 2. If the multiplicity in the double product is not 
the same as the multiplicity in the triple product, then we 
clearly have a fundamental difference in the two reductions, 
which will influence our development of the 3jm symbols. 
The reduction of the triple product is independent of the 
order 

d J,j,j, = d J,j,f. = d J.iJ,' etc., 
and we shall base our 3jm symbols on this reduction. The 
multiplicity of 0 in double and triple products is given in 
Table II. 

4. leR's OF THE DOUBLE GREY GROUPS 

In this section we give the ICR's of each of the double 
grey groups and give a notation similar to Mulliken's53 
which will be used throughout. For the single group the grey 
group is the direct product of the point group and C2 (Dim-
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TABLE Ill. Reduction of the direct products of grey T*. 

A E T E' U' 

A A 
E E 2A+E 
T T 2T A +E+2T 
E' E' U' E'+U' A+T 
U' U' 2E'+ U' 2E' + 2U' E+2T 2A +E+ 4T 

mock and Wheeler4
) but this is not true for the double 

group, and we shall abuse notation by referring to a grey 
group by the usual double point group notation of Griffith. 55 

(a) SU(2), 0*, and K *: Each IR of these groups induces 
an ICR of types (A) or (D) and hence the Mulliken notation 
may be used to label the ICR's. The basis vectors of the IR's 
for 0* and K * given by Griffith,55 Golding,22,23 and McLel­
lan56 are also basis vectors of the ICR's. 

(b) The tetrahedral double grey group T*: The pair of 
representations r2 and r3 55 are of the third kind and hence 
induce the ICRE of type (C) and similarly E" andE '" induce 
the ICR U' of type (F). The reduction of the direct products 
is given in Table III and the multiplicity of A in the triple 
product in Table IV. It may be seen that the multiplicity 
problem for these groups is much worse than in groups with­
out time reversal. 

(c) The dihedral double group D * n with n odd 
(n = 2m + 1): The single group D n has two one-dimensional 
IR's A 1 and A2 and m two-dimensional IR's E 1 .. • Em all of 
the first kind. Thus, they all induce ICR's of type (A) and the 
generating matrices are 

A 1(Cn ) = A 1 (C2) =A 1(B) = 1, 

AiCn) = -A2(C2) =Aie) = 1, 

E/C
n

) = [exp~ ¢) 

E/Cz) = Ej(B) = [~ 

where ¢ = 21T'/n. 

exp( ~ ij¢ J 
~] , 

TABLE IV. Multiplicity of A in triple products in T*. 

Product Multiplicity 
AAA 1 
EEA 2 
EEE I 
TTA I 
TTE 2 
TTT 2 
E'E'A I 
E'E'T I 
U'E'E I 
U'E'T 2 
U'U'A 2 
U'U'E I 
U'U'T 4 
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The double group D * n has in addition m two-dimen­
sional IR's E 1/2 ... E;" _ 1/2 which induce ICR's of type (D) 
and a pair ofIR'sA 1 andBI which induce an ICRE' of type 
(F). Typical generators are 

E ;(Cn ) 

= [exp~¢) o ] E '(e) _ [ 0 
( ".1.)' j - 1 exp -lJ'I" - ~] , 

E'(Cn)=[~1 0], [i 0] 
_ 1 ,E (Cz) = 0 _ i ' 

and 

1 ] o . 
The multiplicity of A 1 in each triple product is given in Table 
V. 

(d) D * n with n even (n = 2m) 
The single group Dn has four one-dimensional IR'sA l' 

A z• B l' and Bz and (m -1) two-dimensional IR's 
E 1 ••• E(m -1)' The double group has the additional m two­
dimensional representations E 1/2 .. .E '1m _ (liZ) J' Each of 
these induces an ICR. The generators for Bland Bz are 

- B 1(Cn) = B 1(CZ) = B 1(B) = 1, 

- BiCn ) = - Bz(Cz) = Bz(B) = 1. 

The generators for the other ICR's follow D *(Zm + 1)' There 
is no point giving a table of triple products as the multiplicity 
of A 1 is always one or zero. 

(e) The cyclic double grey group C * n: The cyclic group 
C * n is isomorphic to CZn 49 and hence has 2n one-dimension­
al representations r m12 with - n < m<,n, where 

rm/2(Cn ) = exp(im¢ /2), 

with 

¢ = 21T'/n. 

A = ro induces an ICR of type (A). For l<,m<,n - I 
the character is complex and hence r m/2 and r _ m!2 induce 
a two-dimensional ICR EmlZ or E 'mIZ' If n is even, r nlZ 

induces an ICRA z, but ifn is odd, r nlZ is a spin representa­
tion ofthefirst kind andrnl2 ffJ r nl2 induces the ICRE '. The 
generators are 

exp( - ~m¢ /2)] , 

TABLE V. Multiplicity of A, in triple products in D·" (n = 2m + I). 

Product 

A,A,A, 

AzAzA, 
EjEjA, 
Ej Ej A2 

EjEkEj -k 
EjEkEj + k 

Multiplicity Product 

E;E;A, 
EjEjA2 
EjE~Ej k 

E;EkEj+, 
E'E;E"I2_j 
E'E;EnI2 +-J 

E'E'A, 
E'E'A2 

Multiplicity 

I 

2 

2 
2 
2 
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Em/2(e) = [~ ~], 
E' (C) = [eXP(im¢ /2) 0 ] 

m/2 n 0 exp( - im¢ /2) , 

E'm/2(e)=[~1 ~], 
and for n even 

A 2(Cn ) = -I, Aie) = I, 

whereas for n odd 

[
-1 

E'(C,.)= 0 

The triple direct product is given in Table VI. 

5. THE 3jm SYMBOL 

1] o . 

In representation theory it matters little whether we 
reducej, ®j2 toj'J: orj, ®j2 ®j3 to the identity O. However, we 
have already noted that for ICR's the two multiplicities are 
not necessarily the same so that there is a fundamental differ­
ence between the two reductions. We also noted that the 
multiplicity ofj'J: inj, ®j2 need not be the same as ofj~ in 
j, ®j3' etc., meaning that any attempt to base the 3jmsymbols 
on the double product will impose very restrictive properties 
on permutations of the ICR's However, the multiplicity of 0 
in j I ® j2 ® j3 is independent of the order of coupling and we 
base the 3jm symbol on this reduction. We shall return to the 
problem of the direct product of two ICR's later. 

We consider the unitary transformation which reduces 
the triple productjl ®j2 ®j3 and define the 3jm symbol to be 
the part of this matrix which reduces the product to the 
identity 0: 

jl(U)m'nj2(U)m'n, j3(U)m'n, 

(5.1 ) 

and 

jl(a)"" ,i.iia)"",ij3(a)"",i, 

- ( . J' J' )m,III,,,,, >c', (J' J' J' )". . Ell .. ' (5.2) - ) I 2 3 r 1 U r 1 I 2 3 11, nln,\ ' 

where br
, and b r,. are the linear and antilinear matrices, 

respectiv~iy, of the identity ICR and which are numerically 
equal to the identity matrix of dimension equal to t~e m~lti­
plicity M of 0 in the triple product. We have no pnmes III 

T ABLE VI. Multiplicity of A, in triple products in C ~. 

Product 

A,A,A, 

A,A,A, 
E,E,E" , 
E,E,E, , 

E,E,A, 

Multiplicity 

2 
2 
2 
2 

Product 

E;E;E" , 
E;E;E, , 
E;E;A, 

E ~E ;112 ,A 2 

£'E;"E/l /2 t J.. 

E'E;E"n , 
E'E'A, 

Multiplicity 

2 

2 

2 

2 

2 

2 

4 
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these definitions as we have all matrices in "standard" forms 
given by Eqs. (2.4) and (2.6). 

By integrating over the linear and anti linear operators, 
respectively, we find from the orthogonality relation (3.6): 

= _2_ i J' (u)m, J·,(u)m,). (u)m, du IGI If' n,_ n3 n, 

and 

2 ( . ()m, . ()"" . ()m, d 
= IGT JG- Hlt a n,h a ")3 a II, a, 

where 

(jljzj3Y,i"i"i. = b',(j,j2j3)'",Ii,/I,· 

The unitary equation (2.3a) gives 

(5.3) 

(5.4) 

(5.5) 

We cannot use Eq. (2.3b) as we have here only the first M 
columns of the reducing matrix, not all of them. 

We now show that any reduction yields a complete set 
of3jm symbols in the sense that any two reductions are relat­
ed by a unitary transformation in the multiplicity label inde­
pendent of m I' m 2, and m 3. Suppose we have two such reduc­
tions. Then, from Eg. (5.3), 

U I j2j3)m,m,m'r, UI j2j3)" n,n,n, 

= [jlj2j3]m,m,m'r, [jlj2j3r'n,n,n,. (5.7) 

Square brackets are used for the 3jm symbols of the second 
reduction. Multiplying throughout (and summing) by 
( . . .). s,s,.i'b . . . gives l1J2J3 r.l (SIS2S.,) (m 1m 2m.,) 

U, j2jX' n,lI,n, br", = [jl j2j3] m,m,m", I.i I i,idr, "i,s, 

X b(.i,i,.i.,) (m,m,m,) [j,j2j3] r'lI,n,n,. 

Setting 

(5.8) 

gives 

(jIJ2j3)"n,lI,n, = Ur'r, [jlj2i3]"",,,,n, (5.9) 

independent of nt, n2 ,and n3 as required. We may show it 
satisfies Eq. (2.3a) by using the unitarity ofthe 3jm symbols, 
and hence U" is unitary. Ifwe tum to the anWinear equa-r, 

tions, we find 

(5.10) 

and since b is numerically the identity matrix, U is numeri­
cally real. 

6. THE WIGNER TENSOR 

The Wigner tensorO, otherwise known as the Ij wm­
bol'7 or the ljm symboJ,z° plays a very important role not 
only in relating a matrix to its conjugate in ambivalent 
groups, but also in relating a 3jm symbol to a cou~1ing coeffi­
cient. We shall find such a tensor similarly useful III corepre­
sentation theory. It is straightforward to show that time re-
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versal may serve for this tensor using the commutativity of e: 
}(u)m'm, =}(eue-I)m'm, 

= }(e)m, ".l(u),,' "j(e-I)"'m,. (6.1) 

Now 

so 

(6.2) 

and 

}(ut'm, = }(e lm'",J(ul"',.,)(e l - In'm,. (6.3) 

Similarly, 

}(a)m'm, = }(e )m, ,.,,l(aY" nj(e) -In, m,' (6.4) 

}(O) is an operator from S to S * andiCe -I) is also, so that in 
matrix terms}(O)m,.,~j(O) andj(e-')m,,_j(e- '). However, 
j(O tl is an operator from S * to S and hence in matrix terms 
}(O) -Imn_}(et l. Equations (6.3) and (6.4) are therefore 

j(u) = }(O )j(u)*j(O t l 

and 

lea) =j(e)j(a)*j(eyl*, 

respectively, in the usual matrix formation. For later use we 
shall use the abbreviations 

}(e)m" = (m J and j(e)-I"m = [Ii m)' (6.5) 

giving for Eqs. (6.3) and (6.4) 

(ml ).. [li2 
}(u)m'm, = iii J(u)"'", 

and 

.( lm (ml J a ' = m, 

respectively. From the property}(e 2) = ( _1)n for n 
integral, 

and 

. ] = (-Iro"'",. n2 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

The transformation from an operator to its conjugate is not 
necessarily unique (for example, in a commutative group 
any antilinear operator will serve) but because of the central 
role played by time reversal, we feel justified in reserving the 
notation for this operator only. 

We shall now investigate to what extent}(e) may be cast 
into a simple form. Ideally, this would be diagonal but we 
shall see that this is not always possible. It is not necessary to 
use the covariant notation for this, as we are not considering 
components in any detail and we simplify notation by con­
sidering an antilinear operator T satisfying TT * = ± 1 and 
Tt = T- ' . The invariant eigenvector equation for an antilin­
ear operator is 

TV=AV, 
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with T*v = A *v. 
We first deal with the case TT * = 1. Choose any v in S 

and let 

w=Tv. 

Then Tw = V. If v = AW, we have an eigenvector. If v =I- w, set 
u = v + w. Trivially, 

Tu = ii, 

giving an eigenvector. If V is the subspace generated by the 
eigenvector, we turn to the orthogonal subspace VI and re­
peat the process. Thus, we can find an orthogonal eigenvec­
tor basis and diagonalize T. The eigenvalues are ± 1 from 
TT* =1. 

When TT * = -1 we have a different situation, for we 
can no longer produce eigenvectors as above. However, as 
before, we let 

Tv=w, 

for which 

Tw= -v. 

Again, if w = AV, we have an eigenvector. If not, we search 
for vectors which preserve the above form and are also or­
thogonal. By setting 

VI = V + aw and V2 = W - av, 

we have TVI = v2 and TV2 = - VI' We may normalize v so 
that it has modulus one, and from the unitarity of T, walso 
has modulus one. If v I and V2 are to be orthogonal, 

0= (v l lv2 ) = o(wlw) - a(vlv) + (vlw) - ao(wlv) 

or 

a - 0 = (vlw) - ao(wlv)* 

Ifwe let ao = 1, this is 

Im(a) = Im«vlw» 

since v, w are unit vectors. This equation can certainly be 
solved for a since ao = 1, and we have orthogonal vectors. 
We continue as before by considering the orthogonal sub­
spaces. Thus, we may transform T to 

AI 

o 
-1 0 

o 1 

-1 0 

where from T*Tv = - veach eigenvalue A is ± i. 
(6.10) 

The forms given here are not always the same as those 
used in practice. For example, in SU(2l with} half-odd inte­
gral, the Fano-Racah standardizationS gives}(O las 
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° -1 

-1 

° 
which may be obtained from the above by a real orthogonal 
transformation. It is convenient to havej(O) as a matrix with 
only one entry in each row and column, and we allow for 
such variations by taking 

j(o)mn = (m J 
to be nonzero for only one Ii for each m, and similarly for 

j( 0 ) - I n m = [Ii m]' 

7. THE COUPLING COEFFICIENT 

We have already discussed some of the problems associ­
ated with the reduction of the direct product and we shall 
give an example which apparently creates more difficulties 
but which in fact shows the way out. First, we give the defini­
tion. The coupling coefficient (jd2Ij3)m,m'rm, is given by 

Uu)m, n)iu)m'n, 

= L (jlj2U3)m,m'rm,jiu)m'n, (jlj2U3)rn'n,n, (7.1) 

and 

. ()m . ( )m " (. . I . ) m m II a 'n, l2 a 'n, = ~ hl2 l3 "rm, 
jJ 

X8r
rj3(a)m,,,, (jli21}3)"";.,n" (7.2) 

where as before we have no primes. 
Consider the coupling in grey C r, E ' ® A 1 = E'. Under 

the generators C3 and 0 we need to find a unitary matrix P 
such that 

(
-1 

P ° o )p_1=(-1 
-1 ° 

and 

It is elementary to verify that any of the four matrices 

will serve. The multiplicity is only one and we see that we 
have, in contradistinction to the 3}m symbols, reductions 
which are not related by a unitary transformation in the mul­
tiplicity label (which here would be multiplication by an sca­
lar). The saving point is that we have here four independent 
reductions which is exactly the multiplicity of A I in 
E' ® E' ®A I> and is also the number of independent matrices 
which commute with E'. Thus, the problems of the coupling 
coefficient (j1}2! }3) divide into three: (a) the number ofma­
trices which commute with}3' which gives the number of 
independent sets of coupling coefficients; (b) the determina­
tion of the relation between each set and the 3}m symbols; 
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and (c) the relation between all sets of coupling coefficients 
and the 3jm symbols. 

The first of these is a form of Schur's lemma for grey 
groups: 

Lemma: If the multiplicity of 0 inj ®jisM, there areM 
linearly independent nonsingular matrices P commuting 
with}: 

Pj(u) =}(u)PandPj(a) =j(a)P*. 

This is proved by considering each type of I CR in tum and 
applying Schur's lemma for linear groups. For type (a) the 
I CRj of G subduces to an IR k of the linear subgroup H, and 
hence P = d, giving one independent matrix 1. For type (b) 
the ICRj is of the form43 

j(u) = (k bU) k ~u) and 

. (0 ± k (aO -I) P) 
l(a) = _ k (aO -I) PO' 

The four matrices 

(~ ~), C~ _Oil) , 

C~ ~,and (~1 ~ 
commute with these, and there are no more linearly indepen­
dent ones. For type (c), 

. (k(U) 0) . (0 k(aO-
1») 

leu) = ° k *(u) and lea) = k *(aO- I ) ° ' 
with two commuting matrices 

(~ ~) and C~ 
Comparison with the multiplicities in Table II gives the 
result. 

Now these matrices P may be written in coupling coeffi­
cient notation as 

pm'm, = (joU)m,Om" 

giving that, if (jl }2! j3)m, m, rm, is a coupling coefficient, so is 

( .. ! . )m m (. 01 . )m 0 1 I 12 h "rm, h 13 ., m.· 

Thus, if the multiplicity of 0 inj3 ®j3 is M I , we have M J sets 
of coupling coefficients. Each set obeys the usual orthogona­
lity relations, but as the example shows, different sets need 
not be orthogonal when summing over m I and m 2 • 

The second problem, that of the relation between a set 
of coupling coefficients and the 3jm symbols, may be solved 
by use of the orthogonality relation (3.lc). From Eqs. (7.1) 
and (7.2), 

(jl j2! j3) m, m'r,m, j3(U)m'n)3(U)m·n• 

= il(U)m, n)z{u)m, n, i/U)m·,i. (jl i21 j3)n, n'r, n, (7.3) 

and 

(jlj2!}3)m,m'r,m, jiar'n. Ua)m·n, 

= Ua)m, ,i, jia)m'n, }ia)m·n, (j1}2! i3)n,n, r,n.· (7.4) 

Replacing the conjugated matrices on the right-hand sides of 
these equations by 
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. [m4 iiu)m'it, = mJiiU)m'n, Cs nJ 
and 

. [m4 i3(a)m'n, = m
5

] i3(ar'n, C5 nJ, 
respectively, we may integrate over G and G-H to give 

(j,i21i3)m,m'r,m, I/3(U)m, nj3(U)m·nfu 

= I~ I [m4 mJ(Jlj2i3)m,m,m'r, 

and 

(j,j2\i3)m,m'r,m, r i3(at'nj3(a)m\.da 
JG-H 

= \~ \ [m4 mJ(J,j213)m,m,m'r, 

Adding and using orthogonality gives 

with U r'r, as the real rectangular tensor 

[ . ] 1/2 
U r, = ()n,n .• _1_3 __ 

r, 2 

(7.5) 

(7.6) 

(7.7) 

. ) (jl121 i3)n,n'r,n, (JJi2i3)"n,n,n, 
n4 

nJ <J,12\13)n'ir'r'it,UI12i3)"n,it,n,} . 

(7.8) 

For each r l , we may perform an orthogonal transform in the 
3im multiplicity space to give 

(7.9) 

where the normalization of the coupling coefficients and the 
3jm symbols has been used to give I U \ = 1. These 3jm sym­
bols possess the orthogonality property 

( . . ')m m m (... )r, {)r 8m [.] - I (7 10) 1J 1213 ' , ·'r2, 1 I 12J3 m,m,m. = 'r, 'm, J3 , . 

where, however, '1 and '2 are not free to vary over the 31m 
multiplicity space, but only over the coupling coefficient 
multiplicity subspace. 

If the multiplicity ofh injl ®j2 isM2 , and the multiplic­
ity of 0 injl ®j2 ®i~ isM3 , the coupling coefficients only span 
on M 2-dimensional subspace of the 3im multiplicity space. 
However, if the multiplicity of 0 in)3 ®13 is M I , then as 
M) = M IM 2, all the sets of coefficients span this space. Thus, 
all the 3jm coefficients may be found from one set of cou­
pling coefficients and the commuting matrices 

241 J. Math. Phys., Vol. 22, No.2, February 1981 

pm,m, = (jOlJ)m,Om, 

given earlier. 
The third problem may be tackled by considering 

(i, i21 j3)m,m, r,m)3(ut' n)3(ut'n, 

We further expand the left-hand side by 

j3(u)m, n .• i3(Ur'n. 

(7.11) 

and use, this time, the orthogonality equation (3.6) to give 

(j112 I i3)m,m'r,m, (j3i31 0 )m,m'r,0 (i3i31 0)"on,n. 

= U 1 j2i3)m,m,m'r, U I i2i3)" n,n,n, (j li21 i3) n,n'r,r, . 

Setting v r
, r, r, as the square invertible tensor 

V r (. . ')r (.. I . ) n n <.. 10) n,n. ·'r,r, = 111213 'n,n,n, 111213 "r,n, 1313 r,O 
(7.12) 

gives 

(jli21J3)m,m'r,m, (j3j310)m,m'r,0 = V r'r,r,(jlj2j3)m,m,m·r,· 
(7.13) 

The corresponding antilinear equations show that V is real. 

In representation theory the coupling coefficient 
(j3j310)m,m'r,0 is ofmuItiplicity one and is simply related to 
the Wigner tensor. Thus, this equation has an analog in re­
presentation theory, where it would be equivalent to Eq. 
(7.7), but here the multiplicity may be as high as four, and 
the two equations are distinct. 

We have not completely answered the third problem, in 
that the left-hand side of Eq. (7.13) is not a coupling coeffi­
cient, but the coupling coefficients 

(J301j3)m,om. and <J3i310)m,m'y,o 

are given in terms of 3jm symbols by Eq. (7.9) which are 
related by the transformation properties discussed in the 
next section, and it is a straightforward matter to write the 
equation in terms of the fuH set of coupling coefficients. 

We conclude this section with some brief comments on 
the Wigner tensor. Settingl, =13 and12 = 0 in Eq. (7.9) gives 

(jIOIJI)m,olm. 

Trivially, a set of coupling coefficients is 

(jIOIJI)m,Olm, = 8m
, tn .• 

so that 

[m4 ) = + [j ] 1/28m,m'(j 01 )1 ms - I J I nlJ Om1\ 

by Eq. (7.10). It must be stressed though that this equation 
should not be used to give the Winger tensor as happens in 
representation theory. There is an arbitrariness in the 3jm 
symbol which would make it hard to decide which to use, 
and besides, an standard form for the Wigner tensor has been 
given in the last section. Rather, this equation should be 
regarded as giving one of the 31m symbols. 
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8. PROPERTIES OF THE 3jm SYMBOLS 

With minor preparation, we may almost quote these 
from Derome and Sharpl7 and Deromel8. Firstly, 

(Jli2i3)m,m,m'r, (jli2i3)" n,n,n, 

= _2_ (J' (u)m, J' (u)m, J' (u)m, duo IG I JIf I n, 2 n 3 n, 

Using 

il(ut'n, = [ml 

this gives 

= (ml m) (m2 mJ (m3 

X [ri4 n.l [ris nJ [ri6 

] ,etc., 
n l 

Taking (jli2j3)"n,,,,n, to the other side and setting 

A (123)''r, = [ri4 nJ [ris nJ [ri6 nJ 
X (jlj2i3Y\.n,n, Uli2i3)",n,,,'r, (8.2) 

gives 

(jli2i3)m,m,m'r, = A (123)'\, 

X (jli2i3t·m,m",. (8.3) 

The antilinear expression gives similarly 

X Uli2i3)"".n,n, Ulj2i3)",n,n'r, (8.4) 

so that A is numerically real. 
Let us now consider two different reductions of the tri­

ple product, one withjl andj2 permuted. From Eq. (5.3) 

UI i2j3)m,m,m'r, (jli2j3)" n,n,n, 

= (j2j I j3)m,m,m'r, (j2j I j3)" n,n,n, 

so that 

with 

M(12,3),'r, = (jZil/1Y''',,,,,,, (jljd1)"'''''''r, . (8.6) 

From Eq. (5.4), 

M (12,3Y' r, = 8r'r, (J2il i3Y"i,,,, ,i, (JI jzi.,)" , ",'i'i, 

so that M (12,3) is numerically real. This reality in fact forms 
the only difference between the analyses of Derome and 
Sharp 17 and Derome 18 and the corresponding analysis need­
ed here. Since their results are not in any manner dependent 
on Mbeing nonreal, we may use them without modification. 
Weare most interested in the possibility of diagonalizing M 
over the multiplicity space, and from Deromel8 we find the 
following: 

(a) If none ofil,jz,i3 is equivalent, M may be diagona-
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lized to the identity matrix, 
(b) If exactly two are equivalent, then every transposi­

tion may be diagonalized to 

and every cyclic permutation leaves the 3jm symbol 
invariant, 

(c) Ifil i2 i3' M may be diagonalized iff 

( [X(u)Pdu= ( X(u 3 )du. 
)11 J 11 

This equation refers to the character of the I CR -not of the 
IR. If the ICR is of types (b) or (c), there is the possibility 
that the 3im symbols of the grey group may be diagonalized 
even if the 3jm symbols of the linear subgroup may not be 
(and vice versa). 

Finally, in this section, we give some simple conditions 
that ensure the reality of the 3im symbols. So far we have 
only used the operator B to generate the antilinear coset 
G - H from H. However, any antilinear operator will serve 
for this.43 Suppose, then, that we have an antilinear operator 
if which is numerically the identity matrix in all three ICR's 
jl,i2' andj3' From Eq. (5.4) 

( . . ')r 2 (. . ')r 
JIJ213 ,i,,,,n., = IGT Jlhh m,m,m, 

We may replaceil(a)m, n, byjl(uif),n, ,i, = jl(U)m, ",8n
"i" etc, 

to give 

X { jl(U)m, "jiu)'"'"jiu)m,,,, duo 
JII 

= on'n, on'n, on, n .• (jl i2i3)'n.",,,., (8.7) 

giving reality. In a similar manner, we may show the follow­
ing possibilities: 

(a) If if = I for all three, the 3im symbols are all real. 
(b) If if = ~ !for two of the ICR's and + !for the 

third, the symbols are again real. 
(c) If if = ~ I for all three, or - I for one and + I for 

the other two, the symbols are all imaginary. 

There is no guarantee that an operator if exists satisfying any 
of these conditions, but if it does this is a very quick test for 
reality or nonreality. An important special case is grey SU(2) 
where in Fano-Racah standardization 

if=C~B-' 

to give case (a). 

9. THE WIGNER-ECKART THEOREM 

Aviran and Zak4H give a form of the Wigner-Eckart 
theorem for generallinear/antilinear groups, but this is un­
satisfactory in some respects. For an irreducible tensor T (kq) 
their Eqs. (3) and (4) for the matrix elements become in our 
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notation 

U,m,iT(kq,)ii2m2) 

and 

U,m,1 T(kq,)fj2m 2) 

- 2 ( ). (a)'" k (a)i;, -IGT JG _ H' m, q, 

Xi2(at"m, U,n,IT(kq2lV2nZ)* duo 

(9.1) 

(9.2) 

They consider the reduction of the product k ®jz toiT, but as 
we have already seen, this causes difficulties. It would also be 
equally valid to reducejT ® k tofT orjT ®i2 to k • and exami­
nation of their results shows that this would give forms ap­
parently dependent on the reduction used. These problems 
may all be avoided by reducing the triple product to the 
identity ICR. Use of the Wigner tensor for the grey groups 
will also yield a more familiar form. In Eq. (9.1) we have 

U,m,/T(kqtlU2m2) 

= I~ 1 L (iiI n)j,(Ut'm, [m3 "J 
Xk(U)Q'qj2(ut'm, Uln,IT(kq2)li2n2> du 

( Ii I )( . k' )n II n (. k' )' = n
3

}1 72 "'r JI 'J2 m,q,m, 

x[m3 "J <i,n,IT(kq2)1}2n2)' 

Setting the reduced matrix element 

(i dl T(k )llJz) r 

gives 

(J,m,1 T(kq,)fj2m Z) 

= <i,IIT(k)IU2)r[m
3 

]( ·k·)r . J, 'J2 m,q,m, ' 
m, 

(9.3) 

(9.4) 

which is the desired result. The corresponding antilinear 
equation gives the reduced matrix element as numerically 
real. 

10. RACAH'S LEMMA 

Racah's lemma4 has proved to be a fundamental result 
for any application of the descent in symmetry technique. 
Briefly, for IR's it relates the 3jm symbols of a group G to the 
3}m symbols of a subgroup K by a factor or unitary transfor­
mation independent of the m values. To use the descent in 
symmetry technique in grey groups we shall find the lemma 
of equal importance. However, as the proofs we have sighted 
for linear groups directly use Schur's lemma,4,40 and Schur's 
lemma only holds in a restricted sense for grey groups, we 
offer a proof based on the orthogonality relations. We may 
distinguish between two different types of subgroup of a grey 
group and the lemma will assume a different form for each. 
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These are the foIIowing: a grey subgroup, consisting of both 
linear and antilinear operators, and a subgroup consisting of 
linear operators only. 

We consider first a grey subgroup K of grey G. We label 
the ICR's of G by j as usual, and of K by k. Upon restriction 
to K, each ICR of G may be reduced to a direct sum oflCR's 
of K by some unitary transformation. Applying the inverse 
transformation to the ICR's of G, we obtain "symmetry 
adapted" ICR's of G-i.e., on restriction to K the matrices 
are already in block diagonal form: 

k(u) o 
k'(u) 

i(u) = 

o 
and similarly for the antilinear operators. We reduce the 
triple product in G in the usual way, i.e., if the multiplicity of 
o inj, ®j2 ®j3 is M

" 
the first M, col urns of the reduction 

matrix U are the 3jm symbols, with the other columns of U 
being formed from the other ICR's in this triple product. 
Upon restriction to K some of these may reduce to the identi­
ty ICR of K and we would have the form 

flu) 

flu) 

If we sum over the unitary elementsH ' of K, we shall certain­
ly get the 3jm symbols as in Eq. (S.3)but we shall also get the 
unitary elements from these other occurrences of the 
identity 

(j I J2j3)m,m,m'r, (j Ji2j3)" n,n,n, 

+ (J d2j3)m,m,m3 rJ (J I j2j3),J n,n,n, 

= _2_ r j,(ut'nj2(ut'n)3(ut'n duo (10.1) 
[KI Jw ' 

However, as U is unitary, we may pick out a particular 3jm 
symbol by orthogonality: 

( • . ')m m m 2 (. . ')n n n 
JIJ2J3 ' , \ = IKT J,J2}3 "\, 

X r i,(U)m'njZ(ut'n,i3(U)m'n, duo Jw 
(10.2) 

We let the reduction matrix of(k, $ ... ) ® (kz $ ... ) ® (k3 $ ... ) 

be V, and if the multiplicity of 0 in k, ® k2 ® k3 is M 2, the first 
M2 columns of Vbe the 3jm symbols (k,k2k 3)m,m,m'r,. Then 
for m" n,<[k,J, m z, n2 <[k2], m3, n3<[k3] we have 

(k ,k2k3)rn, m,m, r, (k ,kZk3)" II, n,n, 

= 1:1 t. k,(u)m'll,kiu)m'n,k3(ur'", du 
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= _2_ i J' (u)m, J' (u)m, J' (u)m, du. IK I H' I n, 2 n 3 h., 
(l0.3) 

For m,<[k ,] butn , > [k ,], etc., we may take the 3jm symbols 
for K as zero and substitute into Eq. (10.2) to give 

(Jl j2j3)m, m,m", 

= (k tk 2k 3)m,m,m", (k tk 2k 3Y'n,n,n, (J,j2j3t' n,n", . 

Defining the isoscalar by 

(10.4) 

gives us 

j3)" (k k k )m,m,m.. (10 5) k t 2 3 r,' . 
3 r, 

(10.6) 

As we might expect, the antilinear equations show the iso­
scalar is numerically real. 

For a linear subgroup the analysis proceeds as above, 
but of course, as we have no antilinear operators, we have no 
reality condition. This is to be expected as we have a free 
choice of phase for 3jm symbols ofa linear group which we 
do not have for a grey group. 

The properties of the isoscalar under permutations fol­
low from the properties of the two sets of3jm symbols in Eq. 
(l0.4). If M(12,3) is the transposition matrix in G, and 
N (12,3) the transposition matrix in K, from Eq. (8.5) 

(10.7) 
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Shift operator techniques are used to treat the irreducible representations of the superalgebra 
Osp(2, I). Apart from obtaining the well known gradestar dispin representations which arise when 
the even part is the compact SU(2) algebra, the case when the star conditions on the even part are 
those satisfied by the noncompact SUfi, 1) algebra is also treated. In this case no gradestar 
representations arise, and the star representations are found to consist of the direct sum of two 
discrete series representations ofSU( I, I). One of these representations can be realized in terms of 
functions of a single complex variable, and turns out to be a simple example of a metaplectic 
representation. 

PACS numbers: 02.20.Qs 

1. INTRODUCTION 

The superalgebra Osp(2, 1), which is the subject of this 
paper, has been considered by several authors. 1-4 A basis for 
the even part of this algebra consists of the SU(2) [or SI(2)] 
generators 10' I ± ,and the odd part has basis elements q ± 112' 

which form a two-dimensional tensor representation of the 
SU(2) algebra. The commutation and anticommutation rela­
tions satisfied by these elements are: 

[/0,1 ± ] = ± I ±' [I + ,/_ ] = 210' 

[/o,q ± 112 ] = ± ~q ± 112' [I ± ,q =t' lid = q ± 1/2' (1.1) 

!q±ll2,q±1I2} = ±l±, !ql/2,q-1I2} = -10' 
In this paper we classify the representations of Osp(2, I) 

using SU(2) shift operators developed by Hughes and Yade­
gar,5 restricting our considerations, however, to those repre­
sentations which are star or gradestar. 2 The case where the 
star (or Hermiticity) conditions on the even part are those 
appropriate for the SU(2) Lie algebra, namely 16 = 1o, I t± 
= - I =t' ' is dealt with first, and we merely rederive the well 

known dispin representations obtained by other authors. 
These turn out to be all gradestar, as was shown by Nahm, 
Rittenberg, and Scheunert. 3 

We then consider the case where the even part satisfies 
the star conditions 16 = 1o, I t± = - I =t' ' in other words we 
look at representations ofOsp(2,1) which subduce to the 
infinite dimensional Hermitian representations of the non­
compact SU(I,I), or SI(2), Lie algebra. Although the shift 
operator techniques of Hughes and Yadegar have been used 
for the analysis of representations of many different Lie alge­
bras with respect to an SU(2) or 0(3) subalgebra (see for 
instance Hughes and Backhouse6 and references therein), 
this is the first time they have been used for algebras contain­
ing the noncompact SU(l, I) subalgebra. Also, the author 
believes this to be the first case where the infinite dimension­
al irreducible representations of a simple superalgebra have 
been classified. The term "Osp(2, I)" is usually used to de­
note the case where the even part is SU(2), so here we are 
extending the use of the term to cover the case where the 
even part of the superalgebra is SU(l, 1). 

In this case we find that no gradestar representations 

can occur, but we get two classes of star representations, 
depending on whether we take qt± 1/2 = q =t' 1/2 or qt± 112 

= - q =t' 112' Both star conditions give rise to "dispin" re­
presentations, although again the term "dispin" is used rath­
er loosely to include the case where the SU(I, I) Casimir L 2 

has eigenvalues I (l + I) where I is nonpositive half-integral. 
We find that, for qt± 112 = q =t' 1/2' the irreducible star repre­
sentations of Osp(2, I) consist of the direct sum of two 
SU(l, I) discrete series D - representations,7 whereas if 

t D+' f q ± 1/2 = - q =t' 1/2' we get two representatIons 0 

SU(1, I). Since the two cases give rise to mutually contragre­
dient sets of star representations, only the latter case is con­
sidered in detail. 

One of these representations, namely that for which I 
has the values - land - ! turns out to be a particular exam­
ple of a metaplectic representation, considered in more gen­
erality by Sternberg and Wolf.8 These authors show that 
every symplectic group Sp(2m) has a special two-valued re­
presentation called the metaplectic representation, which is 
a reducible representation with two irreducible components. 
For the particular case where m = I, Sp(2)=SI(2)=SU( I, I) 
and the metaplectic representation is, at the Lie algebra lev­
el, just the above reducible "dispin" representation of 
SU(I,I). 

Sternberg and Wolf also show that in the general case 
Sp(2m) can be embedded in a larger algebra Sp(2m) + lR 2m 

which admits of a Hermitian structure with respect to which 
it becomes the orthosymplectic superalgebra Osp(2m,I). 
The metaplectic representation of Sp(2m) extends to an irre­
ducible representation of Osp(2m, I), which can be realized 
in terms of the space JY' of all holomorphic functions 
IC m_c such that II f(zW exp( - Iz12) dJ. (z) < 00, where;{ 
is the Lebesgue measure on cm. On restriction of the meta­
plectic representation to Sp(2m), the two irreducible compo­
nents are supported by the subspaces JY'± of JY', where 
JY' + and JY' - are the closed spans of the set of functions zn 
= (z7',· .. ,z~·'), naE Z, with Inl = };na even and odd, respec­
tively. The results of this paper show that for the case where 
m = 1, the metaplectic representation of Osp(2, I) is generic 
in the sense that every irreducible star representation of 
Osp(2, I) shares this property of having precisely two irredu-
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cible components on restriction to Sp(2)~SU(l,I). 
Also, for the case where m = 1, the central extension of 

Sp(2) + R2, which we shall refer to in a following paper as 
C (SI(2),1 T2), also has an irreducible representation which on 
restriction to SI(2) yields the metaplectic representation. We 
shall show there that for this Lie algebra, the metaplectic 
representation is not generic, but in fact pathological, being 
the only "dispin" irreducible representation it possesses, and 
moreover the only irreducible representation it has in com­
mon with Osp(2,1). 

In Sec. 2, we summarise the algebraic properties of 
Osp(2, 1), and write down the shift operators which will be 
used in the analysis of its representations. In Sec. 3 we reder­
ive the well-known representations of the compact version, 
and in Sec. 4 we classify the infinite dimensional representa­
tions of its noncompact version. Finally, in Sec. 5 we consid­
er the metaplectic representation in more detail. 

2. THE SUPERALGEBRA Osp(2,1) 

The defining relations of Osp(2, 1) have already been 
given in Eqs. (1.1). Osp(2,1) possesses a single invariant 

K2 = L 2 + ~(qI/2q -1/2 - q -1/2 ql!2)' (2.1) 

where L 2 is the SU(2) Casimir operator, L 2 = I _ I 1- + I ~ 
+ 10 , Now using Eqs. (1.1), one may show that 

(q1/2q -112 - q -1/2 ql!2)2 = L 2 + (qJl2q -1/2 - q -112 qJl2)' 

so one can derive the following relation satisfied by K 2 : 

K~ = (L 2 + !)(2K2 - L 2). (2.2) 

Given an irreducible representation (I.R.) of Osp(2, 1) 
for which K2 has the eigenvalue a, then acting on a state 
I I,m) of the I.R. with both sides ofEq. (2.2), one obtains 

a = !I (21 + 1), or W + 1)(21 + 1). (2.3) 

The fact that a has the same value for all the states of the I.R. 
therefore shows that the range of permissible I values is se­
verely restricted by Eq. (2.3); in fact only two distinct I val­
ues can arise, as we shall see shortly. 

The shift operators we shall need in order to analyse the 
I. R. of Osp(2, 1) are particular cases of more general opera­
tors derived by Hughes and Yadegar.5 These shift the eigen­
values I and m of Rand 10 by ±!, where R (R + 1)= L 2, 

when acting to the right on eigenstates of these operators, 
and are given by 

0112.I12=qldR + /o+ I)+q_1/2 / + ' 
(2.4) 

a - 1/2. - 1/2 = - q--I12 (R + 10) + ql/2 / -

The fact that there is only one pair of such operators means 
that no I-degenracies can occur within the LR. of this 
algebra. 

It will often be more convenient to use the normalized 
operators whose action on eigenstates I/,m) are related to 
those of the above operators by 

A )/2 = (I + m + 1) -1/
2 0 !.~.I12, 

A ,-112 = (I + m) - 1/2 0 1-;,.112. -112. (2.5) 

The following L 2-commuting operators form the basis of the 
following analysis: 
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A!121/2 A j-1/2= -1(2K2 -(2/+I)(l+I», (2.6) 

A 1-+I~;2A JI2 = (I +1) (2K2 -/(21 + 1». (2.7) 

These two operators contain the whole structure of the 
irreducible representations in that minimum and maximum 
I values are determined entirely by the vanishing of their 
eigenvalues. In addition to (2.6), (2.7), we also have the 
identities 

A !;I12A)l2 =A 1--:-YJ2A 1- 1/2 = O. (2.8) 

These show that it is impossible to change the I values of 
states within an I.R. of Osp(2, I) by more than ~ so that only 
two distinct I values occur, Le., that the I.R. are "dispin". 
Hence I must have a minimum value, 1= i, say, for which 
A 112 A - 1/2 - 0 -j-1I2 j -. 

Using Eq. (2.6), this gives 

i(2K2 - (2i + 1)(J + 1» = 0, (2.9) 

so that we have two possibilities: A:K2 = !(2i + I)(j + 1) 
and B~= O. 
A. Using K2 = !(2i + l)(j + 1) in (2.6) and (2.7) gives 

A j~I(J2Ay21J) = (j + 1)(2i + 1) Ii), (2.10) 

AJI2Aj~I(J2 li+!> =(j+l)(2i+l) Ii +P, (2.11) 

and 

A - 1/2A 1/2 I' 1) 0 
jt I j +1/2 } +;; = . (2.12) 

Thus I has the two valuesi and (J + !). 
B.i = O. In this case we obtain from Eqs. (2.4) and (2.5) 

A - I12A 112 I 0) - 2K I 0) 1/2 0 - 2 , 

A b12A 1/;/2 I !) = - !(2K2 - 3) I !) 
andA 1- 112A :~~ I!) = 3(2K2 - 1) I !). However, using Eqs. 
(2.3), we see that either (0IK210) = 0 or l' and either 
( 1 IK21 ! ) =! or~. Since K2 has the same value for both 

states, we see that K2 = l' in which case A 1- 112A :~~ I !) = 0, 
as we should expect since the I.R. must be dispin. However, 
i = 0, K2 = 1 is just a special case of A, so case B gives noth­
ing new. 

The actual permissible values ofi depend on the star or 
gradestar conditions imposed on Osp(2, 1), and this we con­
sider in the following sections. 

3. FINITE DIMENSIONAL REPRESENTATIONS OF 
Osp(2,1) 

We consider in this section those I.R. of Osp(2, 1) satis­
fying star or gradestar conditions which on the even part of 
the algebra reduce to the usual Hermiticity conditions for 
SU(2), i.e., we require Ii; = 10 and I t± = l+,' First consider 
star (Hermiticity) conditions on the odd part of Osp(2, 1), 
i.e., if B is an odd operator and (x I y) is a positive definite 
bilinear form on the representation space, then (B tx I y) 
= (x I By), and (B t)t = B. Now it is well known9 that 

when, as in this case, one has an even dimensional tensor 
representation ofSU(2), it is not possible to close the tensor 
representation with respect to the star operation, i.e., for our 
case, no complex, a, b, c, d can be found such that 

ql12 = aql!2 + bq _1/2·qt_ 1/2 = cql/2 + dq _ 1/2 , 
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is compatible with the SU(2) Hermiticity conditions'and the 
commutation relations in Eq. (1.1). Hence no statrepresen­
tations of Osp(2, 1) can occur when the even part is taken to 
be SU(2). 

One can, however, have gradestar representations. Let 
again (x I y> be a positive definite bilinear form on the repre­
sentation space and A an element of Osp(2, 1). Then its gra­
destar adjoint A is defined by2 

(A~xly)=(-l)aS(xIAy), (3.1) 

so that 

(AB)~ =( _l)a{3B *' A*', (A *)* = (-1)aA, (3.2) 

where a, /3,5, are the degrees of A, B and Ix), respectively, 
i.e., a = 1 if A is odd, a = 0 if A is even, etc. In this section we 

still require Iff = 10 , I ~ = 1+= ; one can show that the odd 
part can be closed in self consistent manner with respect to 
the gradestar operation if and only if 

qt!2 = bq -1/2 ,q~-1/2 = - bq - I12 , 

where b is either 1 or -1. 
We now investigate what restrictions are imposed on 

the I.R. by these star conditions. First of all, the conditions 
on the even operators require that I, and thereforej, be non­
negative half-integral, i.e.,j = O,~, 1, .... [Actually,j = - ~, 

- 2, - ~, ... are also permissible but equivalent to the above 
dueto theinvarianceofl 2 = 1(1 + 1) under 1_ - (I + 1).] To 
proceed further we need the following Hermiticity proper­
ties of the shift operators, which can easily be worked out 
using results of Hughes and Yadegar5: 

(0 1/2.1/2)'*'(2R + 1) = - b (0 - I12. - I12)(2R ), (3.3) 

(0 - 1/2, - I12)*(2R + 1) = b (0 1/2,1I2)(2R + 2). (3.4) 

From these equations it is easy to show that 

(I ± 1 IA ± 1/211 ) = + b (21 + 1) 
2 I (21 + 1 ± 1) 

X (I ± ! I (A Ij/(}2)* II), (3.5) 

and 

(I IA I~ 1(;2 A I± 11211 ) 

= +b(_l)s(2/+ 1 ± 1) I(/+IIA ± 1I2 11)I2 (3.6) 
- (21 + 1) - 2 I , 

where 5 is the degree of the states II ± p, 
Now recall that I has only two values within an I.R., 

namely 1= j or (j + !), wherej is a nonnegative half- integer. 
Let the I = j state have degree a; thus using Eqs. (2.10) and 
(3.6) we obtain 

I (j +! IA )12 I j) 12 = b ( -1)" + 1(2j + 1)2/2. (3.7) 

This shows that b ( _l)ct r I = 1, so if b = 1, the I = j state 
must be odd in order to preserve the star conditions; if 
b = - 1, then the 1= j state must be even. 

Using (3.7), it is now easy to show that, with a suitable 
choice of relative phase for the states, 

. [ (j + m + 1) J 1/2 • 
ql/2 I;,m) = 2 II + ~,m + ~>, 

247 J_ Math. Phys., Vol. 22, No_ 2, February 1981 

. [ (j - m + 1) ] 1/2 . I I 
qI/2IJ,m)= . 2 IJ+ z,m- 2), 

(3.8) 
. I [ (j - m + (1/2» ] - 1/2. I 

q]/21; + 2,m) = 2 I;,m + 2)' 

I . + I ) - - [ (j + m + (1/2» J 1/2 I' _ I) q -1/2; 2,m - ;,m '1' 
2 

The results obtained here are in complete agreement 
with those obtained by Nahm, Rittenberg, and Scheunert. 3 

4. INFINITE DIMENSIONAL REPRESENTATIONS OF 
Osp(2,1} 

We now consider I.R. ofOsp(2, 1) for which the star (or 
gradestar) conditions on the even part of the algebra are 
those appropriate to the noncompact SU(l, 1) [or SI(2,R ), or 

Sp(2)] algebra, i.e., we require 16 = 10 , I t± = - 1+= . The sit­
uation here is the reverse of that of the last section, in that 
nOw no grades tar representations can arise; it is a straight­
forward matter to check this and so we omit the details here. 

On the other hand, the star conditions qt± 112 = bq += 112 are 
easily seen to be compatible with the commutation relations 

and It = - I += provided b = ± 1. We shall give detailed 
analysis for the case b = - 1, and just state the results for 
b = + 1. 

For the case where qt± 1/2 = - q += 112' one obtains the 
following analogs of Eqs. (3.3) and (3.4): 

(0 112,i/2)t(2R + 1) = (0 - 1/2. - 1/2)(2R ), (4.1) 

P - I12, - 1/2)t(2R + 1) = (0 1/2,1/2)(2R + 2). (4.2) 

From these one obtains 

(I + 1 m + 11 0 ± 1/2. ± 1/21l m) 
- 2' - 2 I,m , 

and 

(21 + 1) ( 
I ± !,m ± ! I (0 I~ I(}i.! 1[~/2)t II,m) 

(21 + 1 ± 1) 
(4,3) 

(I,m 10 += 1,12, += ,112 0 ± 112, ± 1/211 m) 
I ± ~,m ± 2 I,m , 

= (21 + 1 ± 1) I (I + ! m + ! 10 ± 112, ± 11211 m) 12 
(21 + 1) - 2' - 2 I,m ,. 

(4.4) 

The reason that, unlike in the last section, we give relations 
for the 0 ± il2, ± 1/2 rather than the normalized A ± 1/2 here is 

because since we are now dealing with the SU(1,I) subalge­
bra, whose I.R.'s are somewhat more complicated than 
those ofSU(2), we need to take more careful account of the 
internal structure of these I.R. 

From (4.3) and (4.4), we see that 0 -1/2, -1/20 1/2,112 is 

positive for 1< - 1 and for I> -!, but negative for 
- 1 < 1< -!. On the other hand, 0 1/2, 1120 - 1/2, - 112 is 

positive for 1 < -! and for I > 0, but negative for - ! < 1 < O. 
Before proceeding, we give a brief summary of the I.R. 

ofSU(1, 1). These fall into four classes (apart from the trivial 
representation): the principal series D P for which 

1= -! + ip, wherep is an arbitrary real number and where 
m takes on an infinity of values differing from one another by 
integral amounts; the supplementary series D S for which 

JW-B_ Hughes 247 



                                                                                                                                    

- 1 < 1 < 0 and m again has an infinity of values; the positive 
discrete series D + for which 1 is an arbitrary real number 
and m has a minimum but no maximum value, and finally 
the negative discrete series D - for which again 1 is an arbi­
trary real number but now m has a maximum but no mini­
mum value. Note that in the case of D ±, since the eigenval­
ue 1 (/ + 1) of L 2 is unchanged by the replacement 
1-+ - (I + 1), there is symmetry about 1 = -!, i.e., for ev­
ery I.R. corresponding to an 1 value> -!, there is an equiv­
alent I.R. for which 1 < -!. One could therefore restrict 1 to 
either of these ranges with no loss of generality, but usually 
one takes 1 < -! to distinquish these I.R. from the I.R. of 
SU(2) for which one conventionally takes 1>0. Here we shall 
actually find it more convenient to take 1 < 0 rather than 
1 < -! for reasons that will become apparent. 

To return to the I.R. ofOsp(2, 1), recall that 1 has two 
values,} and} + !. Since if} = -! + ip then} + ! = ip, 
which is not a permissible value of 1 for an I.R. ofSU(1,l), 
i.e., which violates the star conditions on 1 ± ' we see that the 
principal seriesD P ofSU(l, 1) cannot occur. To see which of 
D S or D ± occur, we use the positivity and negativity condi­
tions for the 0 +' 1/2, +' 1/20 ± 112, ± 1/2 stated above. 

Now we saw in Sec. 2 that 

(j,m 1 0 - 1/2. - 1120 1/2,1/2 1 j,m > 
= (j + !,m + ! 1 01/2.1120 - 112. - 1121 j + !,m + !> 
= (j + m + 1)(j + 1)(2j + 1). (4.5) 

Using (4.5) together with the positivity and negativity condi­
tions on the operator, we see that the star conditions are 
always obeyed if (j + m + 1 »0 and never obeyed if 
(j + m + 1) < O. Hence for the 1 = j state we must have 
m> - (j + 1), so m has a minimum value and hence the I.R. 
ofSU(I,I) which occur are the positive discrete D + 

representations. 
Choosing the relative phases of the states appropriately 

we obtain from Eqs. (4.4) and (4.5): 

0112.112 lJ,m) 

=(2j +1)[ (j+~+l) r2

1J+!,m+!), (4.6) 

o - 112. - 1/2 1 j + !,m + !) 
= (j + 1)[2(j + m + 1) ]1/2 Ij,m) . (4.7) 

From these one obtains the following actions of q ± 112' 
together with those of 1 ± : 

. _[(j+m+l) ll12 . I 
ql/2 11,m) - 2 II + !,m + 2)' (4.8) 

. _ [ - (j - m + 1) ]112 . 1 _ 1) (4.9) q_1I211,m)- 2 l1+z,m 2' 

[ 
( . ) ] 1/2 

ql/2 Ij + !,m +!) = - 1
2
- m Ij,m + 1), (4.10) 

• I 1 __ [ (j + m + 1) ]112 . 
q ~- 1/2 II + 2,m + 2) - 2 11,m), (4.11) 

1+ I/,m)=[-(/-m)(/+m+l)] 1/2 1/,m+l), (4.12) 

_ I/,m)= -[-(/+m)(/-m+1)]1/21/,m-1), 
(4.13) 
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where in the last two equations 1 = j or j + !, 
The question as to what is the minimum m value for the 

two D + occuring in the above 1 = j,j + ~ I.R. ofOsp(2,1) 
needs to be answered with care, and we need to consider 
again the above-mentioned invariance of the set of I.R. of 
SU(I,I) under the replacement 1-+ - (I + 1). When 1>0, in 
order to satisfy the SU(l, 1) star conditions 1_ 1 + 

= (/- m)(l + m + 1)0;;;0 and 1+1_ 
= (I + m)(l- m + 1)0;;;0, we see from Eq. (4.13) that m has 

the minimum value 1Jl = (I + 1). Similarly if 10;;; 1, the star 
conditions require 1Jl = - I, and for any D + corresponding 
to an I> 0, the replacement 1-+ - (I + 1) yields an equivalent 
D + corresponding to an 10;;; - 1. 

When - 1 < I < 0, the situation is more complicated. If 
- ! < 1<0, then we still get a D + with 1Jl = (/ + 1), but 

now, as can easily be checked, the star conditions are also 
satisfied if 1Jl = - l. Similarly, if - 1 < I < -~, we still get a 
D + with 111. = - I, which is equivalent to a D + with 
- ! < 1<0 and 1Jl = (I + 1), but we can now also have aD + 

with 111. = (I + 1) which is equivalent to aD + with 
- ~ < 1<0 and 1Jl = - I. Hence we get two, not just one, 

inequivalent D + for any I where - 1 < 1<0. 
Thus, for the I.R. I = j, j + ! of Osp(2, 1), we see that if 

jo;;; - 1, then there is a D + with I = j and 111. = - j coupled 
by the q ± 112 to aD + with 1= j + ! and 1Jl = - (j + D· 
However, if -1 <j < -!, we can either have an I.R. of 
Osp(2, 1) containing aD + with I = j and 1Jl = - j coupled 
to aD + with I = j + ! and 1Jl = - (j + D, or we can have 
an I.R. of Osp(2, 1) containing aD + with I = j and 
1Jl = (j + 1) coupled to a D + with I = j + ! and 
1Jl = (j + ~ ); thus for any}o;;; - 1 there is just one I.R. of 
Osp(2,1), but for ajwith - 1 <j < -!, there are two inequi­
valent I.R.'s ofOsp(2,1). 

There is just one exception to this, nemaly the case 
whenj= -i,so/= -i, -!.Inthiscase/(/+ 1)= - it; 
for both I values since they are symmetrically spaced either 
side of - !, so the representation of Osp(2, 1) where I = - a, 
1Jl = a and I = -!, 1Jl = ! is in fact equivalent to the repre­
sentation where I = - i, 1Jl = ! and I = -!, 111. = a. This is 
the metaplectic representation which we shall consider in 
more detail in the following section. 

Finally in the section we summarise the I.R. obtained 
for the star condition q t+ 1/2 = q +' 112' In this case the star 
condition obtained for 0 +' 112, +' 1120 ± 112. ± 112 require that 
any lJ,m) state of the I.R. must have mo;;; - (j + 1), so here 
m has a maximum value and the negative discrete represen­
tations D - ofSU(I,I) occur. The action of q ± 1/2 on I},m) 
and I j + !,m + P for this case are 

[ 
- (j + m + 1) ] 1/2 I' I I) 

qllz!J,m)= 2 1+2,m+ z ' 
(4.14) 

. [ (j - m + 1) ] 1/2 . 1 I 
q_1/2IJ,m)= 2 11+2,m- z), 

(4.15) 

(
j_m»)1/2. 

ql!2 Ij + !,m +!) = 2 l1,m + 1), (4.16) 
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[ 
(j+m+I) ]1/2 • 

q -1/2 U + !,m +~) = - 2 11,m), 

(4.17) 

and the actions of I + are as given in Eqs. (4.12) and (4.13). 
If}, - 1, then there is a unique I.R. ofOsp(2.I) with a 

D - with I =}andin=}coupledbytheq± 112 toaD - with 
I = } + ~ and in =} + !. If -1 <} < -~, there is in addition 
an I.R. of Osp(2, 1) containing aD - with I = j and 
in = - (j + 1) coupled to aD - with I=} + ! and 
in = - (j + ~), except for the case where} = - ~ when the 
two I.R.'s ofOsp(2, 1) so obtained are in fact equivalent, this 
being the counterpart for qt± 112 = q += 112 of the metaplectic 
representation discussed above and in the following section. 

5. THE METAPLECTIC REPRESENTATION 

In this section we shall consider in more detail the 
} = - ~ I.R ofOsp(2, 1), which we refer to as themetaplectic 
representation since on restriction to SU (1,1) it yields the 
metaplectic representation of that algebra. S The states of the 
representation are I/,m) = I - M + n), I - M + n) where 
n = 0,1,2, ... , and the actions of the elements of Osp(2, 1) on 
these states are given by 

ql/2 I - ~d + n) = [ n ~ 1 r21 -!, l + (n + 1», (5.1) 

q _ 1/2 I - id + n) = - [ 2n: 1 r2 

I -!,a + n), (5.2) 

qI/21-Ad+ n)= [2n;1 r21 -id+ n), (5.3) 

q _ 112 1- !d + n) = - [ ~ r21 - ~d + (n - 1», 

(5.4) 

1+ 1- ad + n) 

= [ (n + I);n + 3) 
]

1/2 

I - ~, a + (n + 1», (5.5) 

I I-~, i + n) 

= _ [ n(2n
2
+ 1) 

]

112 

I - ~d + (n - 1», (5.6) 

I + I - Ad + n) 

= [ (n + I);2n + 1) 
]

112 

I - Ad + (n + 1», (5.7) 

I I - A,! + n) 

= _ [ n(2n
2
-I) 

]
1/2 

I - Ad + (n - 1». (5.8) 

The metaplectic representation of SUI 1,1), has been 
considered, explicitly or implicitly, by many authors, 10-12 the 
most extensive work being due to Sternberg and Wolf.8 Let z 
be a complex variable; then the above operators can be real­
ized as 

10 = Az(d /dz) +!f, 1+ = (i/2)Z2, 

1_ = (i/2)(d 2/dz2
), (5.9) 

q1l2 = ~e - 3i1T/4Z, q -112 =!e - i1T/4(d /dz). (5.10) 

A simple calculation verifies thatL 2 = - ft., K 2 = - -h [in-
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cidentally this is the minimum possible value of K2 for any 
star representation ofOsp(2,1)], so only the metaplectic re­
presentation can be realized in this way. 

The states of the representation can be realized in terms 
of powers of z as follows: 

rz2n + 1 

I-a,i+ n)= [21T(2n+I)!]1/2' 
(5.11) 

r'n + 3I2lz2n 

I - A, A + n) = [21T(2n)!] 1/2 ' 
(5.12) 

where the constants of proportionality have been chosen to 
exactly correspond to the actions of the operators as given by 
Eq. (5.1)-(5.8). 

In this realization, the star conditions 16 = 10 , I t± 
= -I + ,qt± 112 = - q+= 1/2 reduce to the Fock condition 

(d / dz)t-= z. The inner product on the ring of polynomials in 
z for which the Fock condition is satisfied, and with respect 
to which the states I - i, a + n), I -i, A + n), n = 0,1,2, ... , 
are orthonormal, is given by 

(5.13) 

This inner product can be expressed as an integral in 
more ways than one. Sternberg and Wolfs realize the meta­
plectic representation in terms of the space J¥' of all holo­
morphicfC---"C such that f 1/(zW exp( - Iz12) dli (z) < 00, 

where Ii is Lebesque measure on C. Then the inner product 
which corresponds to (5.13) can be expressed as 

(J,g) = 2 J /(z)g(z) exp( - I z 12) dli (z). (5.14) 

An alternative method of expressing the inner product 
is as follows. Let r be the unit circle with origin as center in 
C, and for any fr ---..r, denote by Lf the Laplace transform of 

f Denote by J¥" the space of all/such that ~ r LiZ)/(z) dz 
< 00. Then the inner product on J¥" which corresponds to 
(5.13) is 

(J,g) = - i i Lf(Z) g(z) dz. (5.15) 

Clearly in this definition of J¥" and the inner product, r 
could be replaced by any smooth contour in C which encir­
cles the origin and does not intersect itself. 

We see that the two component I.R.'s ofSU(I,I) con­
tained in the metaplectic representation of Osp(2, I) are sup­
ported by the subspaces of J¥' consisting of, respectively, 
even and odd functions of z. This is just a particular example 
of the more general result of Sternberg and Wolf 8 for the 
metaplectic representation of Sp(n) quoted in the introduc­
tion to this paper. 

In a following paper the star representations of the cen­
tral extension of the semi-direct product Lie algebra 
SU(l,I)A T2 will be classified. There we shall find one I.R 
which can also be realized in terms of the metaplectic 
representation. 
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Separable systems of coordinates for the Helmholtz equation Ll d '/I = E'/I in pseudo-Riemannian 
spaces of dimension d have previously been characterized algebraically in terms of sets of 
commuting second order symmetry operators for the operator Ll d' They have also been 
characterized geometrically by the form that the metric ds2 = gik (x)dxidxk can take. We 
complement these characterizations by a group theoretical one in which the second order 
operators are related to continuous and discrete subgroups of G. the symmetry group of Ll d' For 
d = 3 we stud y all separable coordinates that can be characterized in terms of the Lie algebra L of 
G and show that they are of eight types. seven of which are related to the subgroup structure of G. 
Our method clearly generalizes to the case d > 3. Although each separable system corresponds to 
a pair of commuting symmetry operators. there do exist pairs of commuting symmetries S "S2 that 
are not associated with separable coordinates. For subgroup related operators we show in detail 
just which symmetries S"S2 fail to define separation and why this failure occurs. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

The purpose of this article is to investigate the relation­
ship between separation of variables in the Helmholtz equa­
tion for a pseudo-Riemannian space and the subgroup struc­
ture of the invariance Lie group of the equation. The article 
thus brings together the results of three different research 
programs that have been actively pursued during the past 
few years. These are (i) a systematic algebraic approach to 
the separation of variables in p.d.e. I

-
18; (ii) the classification 

of Lie subgroups of Lie groups 1,19-28; (iii) applications of dis­
crete subgroups of Lie groupS.29-33 

Historically. the approach to separation of variables has 
been in terms of Riemannian and differential geometry.34-38 
In the algebraic approach l

-
18 for a d-dimensional manifold 

the Helmholtz equation 

Lld '/I = E'/I (x) (1.1) 

is considered. where x = (xI>X2, ... ,Xd ) is a local coordinate 
system and..:1 d is the Laplace-Beltrami operator on the 
manifold. It is assumed that Eq. (1.1) has the Lie symmetry 
group G. Its Lie algebra L consists of first orderlinear opera­
tors X satisfying [Ll d.x] = O. and we choose a basis 
IXI.···Xn 1 for L. Separable coordinates for Eq. (1.1) are as­
sociated with (d -1 )-tuplets of commuting second-order 
symmetry operators IS a 1 for Ll d' A classification of the sets 
of operators! Sal into orbits under the action of G provides a 
classification of separable systems of coordinates. The sep­
arable functions 

d 

'/I(x) = IlUsJ (1.2) 
i= I 

"'Supported in part by the National Research Council of Canada, the Min­
istere de l'Education du Gouvernement du Quebec and the National Sci­
ence Foundation. 

are the common eigenfunctions of the operators Lld and Sa 
(1 <;a<;d -1). 

There are some puzzling aspects to the algebraic ap­
proach. First of all. while there is a mechanical procedure for 
computing the symmetries! Sa 1 from a separable system of 
coordinates. the precise relationship between the! Sa J and 
the subgroup structure of G has remained unclear. Further­
more, there exist commuting symmetries! Sa 1 that do not 
correspond to any separable coordinates at all! The discov­
ery of practical criteria to determine precisely which com­
muting symmetries lead to variable separation remains one 
ofthe most important problems in this theory. Here we show 
for d = 3 the relation between the subgroup structure of G 
and the coordinate systems yielding separation of variables 
for the Helmholtz equation on the manifold. (This analysis 
clearly generalizes to the case d> 3.) Furthermore, for sub­
group related operators! Sa 1 we show in detail which sym­
metries fail to define variable separation and why this failure 
occurs. 

Section 2 is devoted to the general theory. We show that 
separable coordinates fall into different classes, depending 
on how many of the operators in the set ! Sal are squares of 
the linear operators X (these correspond to Abelian sub­
groups of G), how many are invariant operators of nonAbe­
lian Lie subgroups, and how many are invariants of discrete 
subgroups. In Sec. 3 we treat three-dimensional manifolds of 
constant curvature in some detail. 

2. GENERAL THEORY 

LetLl d be the Laplace-Beltrami operator on ad-dimen­
sional pseudo-Riemannian manifold with metric 
ds2 = 2,1J~ Igijdxidxj

, i.e., 

Lld '/I = I g -1/2a;(g1/2gijajt/!) , 
iJ 

(2.1) 
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where g = det(gij), ai = al axi, and "i.jg'jgjk = 6~. The Helm­
holtz equation for this manifold is 

L1d If/ = EIf/ , (2.2) 

where E is a nonzero constant. In Refs. 17 and 18 the possi­
ble coordinate systems that permit separation of variables 
for the Helmholtz equation have been classified in the cases 
d = 2,3,4. The classification of separable types is closely re­
lated to the symmetry algebra ofEq. (2.2). A first order sym­
metry operator X for Eq. (2.2) is an operator 

d 

X = I 5i(xf)ai , (2.3) 
i= I 

such that [X,Ad ] = 0, where [0,.] is the usual commutator of 
differential operators. (This is equivalent to the assertion 
that! 5i ] is a Killing vector.) The set of all first order symme­
tries of Eq. (2.2) forms a Lie algebra L with 
dimL<,d (d + 1)/2. If(xl, ... ,xd

] is a separable system forEq. 
(2.2), we say the variable Xl is ignorable provided X = aiEL, 
i.e., provided the tensor gij in these coordinates is indepen­
dent of Xl. 

In this paper we restrict ourselves to the case d = 3. For 
d = 3 each separable system ! x I ,x2 ,x3] is characterized by a 
pair of second order differential operators ! S I ,S2] such that 

[SI,S2] = 0, [Sj,L1d = 0, j = 1,2. (2.4) 

Here the corresponding separable solutions 
I/J = A (xl)B (X2)C (x3) ofEq. (2.3) have the characterization 

SjI/J = AjI/J, j = 1,2, (2.5) 

where the eigenvalues Aj are separation constants. 
As shown in Ref. 17 the separable systems are of eight 

distinct types: (I) Three ignorable variables: 

ds2 = (dXI)2 + (dX2)2 + E(dx 3)Z,E = ± 1, 
SI = a~ ,Sz = a~ . (2.6) 

Here, L contains a three-dimensional Abelian subalgebra 
generated by L j = aj,j = 1,2,3, and the manifold is flat. 
Note that the operator S3 = a~ is automatically diagonalized 
in this case. (II) Two ignorable variables: 

(2.7) 

Here, L contains a two-dimensional Abelian subalgebra A 
generated by L j = aj,j = 1,2. The coordinates may be non­
orthogonal. The subalgebra A must be maximal Abelian 
since otherwise the system would be type I. (III) One ignora­
ble variable: This case splits into four subtypes, for each of 
whichL contains the operator LI = ai' and wehaveSI = ai: 
(III I) Centralizer coordinates (orthogonal): 

(1IIZ) Centralizer coordinates (nonorthogonal): 

ds2 = 0"2 [0"3(dxz)z + 2dx ldx2 + (dX3)Z] , 
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(2.8) 

(2.9) 

(1113) Subgroup coordinates: 

ds2 = 0"3(dx3)2 + O"P2[(dx l)2 + E(dx2?] , 
(2.10) 

S2 = J... (a~ + Ea~). 
O"z 

(1114) Generic type III coordinates: 

dsz 
= (0"2 + 0"3)[dx2)2 + EI(dx3?] + EPP3(dx l )2 , 

S ( 
1 1 )a2 1 2 2=E2 -- - 1+ (0"3a2 -EIO"zaD (2.11) 

0", 0", 0"2 + 0", 

112 (O"P; a EIO"z0"3 a) + -- z- --- 3' Ej = + 1. 
(O"z + 0"3) O"z 0"3 -

(IV) No ignorable variables: }fere there are two sUbtypes: 
(IV I ) We have 

ds2 = ~(dXI)Z + O"I(O"Z + 0"3)[(dx2)2 + E(dx3f] , 

(IVZ) Generic coordinates: 

dsz = (0"1 - O"Z)(O"I - 0"3)(dxl)Z + (O"z - O"d(O"z - 0"3)(dxZ)2 

+ (0"3 - O"d(0"3 - 0"2)(dx3)Z, (2.13) 

S 0"2 + 0"3 a2 0"3 + 0"1 a2 
I = ----='--~-- I + 2 

(0"1 - 0"2)(0"3 - 0"1) (0"2 - 0"3)(0"1 - 0"2) 

+ E(O"I + O"z) aj , 
(0"3 - 0"1)(0"2 - 0"3) 

O"P3 a~ + 0"30"1 a~ 
(0"1 - O"Z)(0"3 - 0"1) (0"2 - 0"3)(0"1 - O"z) 

+ E(O"IO"Z) a~ . 
(0"3 - O"I)(O"Z - 0"3) -

In all of the above expressions O"i = O"i (Xl). We refer to 
systems 1114 and IV 2 as "generic" since all other systems of 
types III and IV are degenerate cases of these two. It is only 
for Minkowski space E 2•1 that all eight separable types actu­
ally occur. As shown in Ref. 17, types I, III I, and 1112 do not 
appear for space of nonzero constant curvature. 

In this paper we are concerned with a purely group 
theoretic characterization of the various separation types. 
To successfully characterize a separable system! xi] for Eq. 
(2.2) in terms of the symmetry algebra L it is necessary that 
the defining operators SI'SZ for the system belong to the en­
veloping algebra of L. If this is so, we say that the coordinates 
! xi] are of class I; otherwise they are of class II. Reference 17 
contains a derivation of all class I coordinates for all types 
except IV2 • 

We now describe a general group theoretic procedure 
for characterizing all class I coordinates associated with the 
Helmholtz equation on a three-dimensional Riemannian 
manifold with symmetry algebraL. The validity of this pro­
cedure will be demonstrated using the results of Ref. 17 but 
will also be illustrated by examples in 3. The procedure is as 
follows: 

First we determine if L contains a maximal Abelian 
subalgebra of dimension 3. This will be the case if and only if 
the manifold is flat and corresponds to type I (Cartesian) 
coordinates. Then we find the (conjugacy classes of) maxi-
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mal Abelian subalgebras of dimension 2. Each such subalge­
bra determines a type II system. 

Next we determine the conjugacy classes of one dimen­
sional subalgebras of L. LetXbe a representative from such a 
class and let cent(X) be the centralizer of X in L. There are 
four possibilities: 

Type IIII: cent(X) = [X J al (cent(X)/[X J), cent (X) non­
Abelian: (2.14) 
LetLx = (cent(X)/(X J ) and decompose the space of second 
order elements in the enveloping algebra of Lx into orbits 
under the action of the normalizer Nor(X) of X in G. Every 
type 1111 system with SI = X 2 has the property that S2 is a 
representative from one of these orbits. Two representatives 
from the same orbit correspond to equivalent coordinates. 

Type 1112: cent(X) # !X) al (cent(X)/!X j), cent(X) non­
Abelian: (2.15) 
Decompose the space of second order elements in the envel­
oping algebra of cent(X) into orbits under the action of 
Nor(X). Every type 1II2 system withSI = X 2has the proper­
ty that 52 is a representative from one of these orbits. Class I 
coordinates of this type arise only for flat space. 

Type 1113: Subgroup type coordinates: (2.16) 
Given the one-dimensional subalgebra X, find all subalge­
bras A of L such that (1) A:JX (properly), (2) A is non­
Abelian, and (3) A has a second order Casimir operator S2' 
not equal to..:1 3 or to a linear combination of..:1 3 and the 
square of an element of L. Every type 1113 system is of the 
formSI =X 2,S2· 

Type 1114: Generic type III coordinates: (2.17) 
Let X be as above and determine the space S of all second 
order elements Y in the enveloping algebra of L such that 
[X, Y] = O. Decompose S into orbits under the adjoint action 
of Nor(X) and let S2 be a representative from such an orbit. 
Every type 11I4 system is of the form SI = X 2,S2 such that 
this commuting pair has not already been included under 
types 1-1113 listed above. 

The remaining two types characterize all pairs SI,S2 for 
which neither operator is a perfect square: 

Type IV I: Semisubgroup coordinates: (2.18) 
Consider the three-dimensional subalgebras A of L with 
properties (2) and (3) discussed above in 1113• Take SI to be 
the Casimir operator of such an A and S2 to be a second order 
elemen t in the en voloping algebra of A . (Operators S2 and S ; 
are considered equivalent if they lie on the same orbit under 
the adjoint action of the maximal group of symmetries 
whose Lie algebra isA.) Every type IV I system is of the form 
SI,S2· 

Type IV 2: Generic coordinates: (2.19) 
This is the generic case. Here SI,S2 are simply a pair of com­
muting second order symmetries in the enveloping algebra 
of L, classified into orbits under the action of the symmetry 
group G, and such that this pair has not already been includ­
ed under types I-IVI above. 

For types I, II, and 1113 both operators SI and S2 are 
invariants of Lie subgroups ofG. For 1111,1112,1114, and IVI 
only SI has this property; for IV 2 neither of the operators is 
directly related to a Lie subgroup. The group G also contains 
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discrete subgroups and is itself not necessarily connected. 
We shall see below that those operators SI that are not invar­
iants of Lie groups can be characterized by the fact that they 
occur as invariants of discrete subgroups of G. 

Now we demonstrate the validity of our group theoretic 
classification of defining operators for class I separable co­
ordinates on a three-dimensional Riemannian manifold. 
First we note that every orbit of two-dimensional vector 
spaces, each space composed of mutually commuting second 
order elements in the enveloping algebra of L, belongs to 
exactly one of the eight classes listed above. Thus, it will be 
sufficient for us to show that the defining operators 5 1,S2 
corresponding to a class I separable system of a given type 
(2.6)-(2.18) themselves have the group theoretic character­
ization for the corresponding type listed above. For this we 
draw on the results of Ref. 17. 

The group theoretic characterization of types I and JI is 
obvious. 

(111 1) Centralizer coordinates (orthogonal): It follows 
from the results of Sec. 5 in Ref. 17 that the separable system 
(2.8) is class I precisely when 

ds2 = (dXli + d(li(X2,X3
) , 

where du/ is the metric for a two dimensional Riemannian 
space of constant curvature [with Lie algebra L ' isomorphic 
to one of e(3), e(2,1), 0(4), 0(3,1), 0(2,2)] and S2 a second 
order element in the enveloping algebra of L ' which is not a 
square. HereL:2[X J alL', whereX = ai' so thepairSltS2 is 
of the form (2.14). 

(JIlz) Centralizer coordinates (nonorthogonal): Ac­
cording to Ref. 17, coordinates (2.9) are class I only for flat 
space and the possibilities are listed in Sec. 4 of that paper. 
One can directly verify that in each case the operators SI,S2 
are of the form (2.15). 

(1113) Subgroup coordinates: In Ref. 17 it is shown that 
coordinates (2.10) are class I precisely when 

ds2 = u3(dx3? + u3d(i)2(XI,X2) , 

where d(i)2 is the metric for a two dimensional space of con­
stant curvature, X = al is a Lie symmetry of d(i)2, and S2 is 
the Laplace-Beltrami operator for this two-dimensional 
space. With X = al,SI = X 2 it follows that SI,S2 is of the 
form (2.16). 

(III4) Generic type III coordinates: According to Ref. 
17 coordinates (2.11) are class I if and only if the manifold is 
a space of constant curvature. These coordinates cannot be 
type III3 because, as is straightforward to verify for spaces of 
constant curvature, the subalgebras A in the definition of 
type 1113 must have Casimir operators that are Laplace-Bel­
trami operators on two-dimensional manifolds. The opera­
tor SI [Eq. (2.11)] is clearly not a Laplace-Beltrami opera­
tor. The coordinates cannot be type III2 because among the 
symmetry algebras for spaces of constant curvature only 
e(2, 1) contains an element X such that cent(X) # [X J al Lx 
and cent(X) is non-Abelian. For this case all corresponding 
orbits of operators S2 in the enveloping algebra of cent(X) 
were computed in Ref. 17 and the coordinates were shown to 
be of the form (2.9). If the coordinates (2.11) were type 1111, 

then the manifold would be flat, because among the symme-

Miller, Patera, and Winternitz 253 



                                                                                                                                    

try algebras for constant curvature spaces, only e(3) and 
e(2, 1) contain elements X such that cent(X) = [X 1 G'J Lx 
with cent(X) non-Abelian. These cases are classified in the 
following section and shown to correspond to coordinates 
(2.8). Thus, class I coordinates (2.11) correspond to opera­
tors of the form (2.17). 

(IV I) Semisubgroup coordinates: It is shown in Ref. 17 
that coordinates (2.12) are class I provided 

ds2 = £Ti(dxlf + CT ldUl2(X2,X3) , 

where dUl2 is the metric for a two-dimensional subspace of 
constant curvature. It is clear from Eq. (2.12) that SI is the 
Laplace-Beltrami operator on this subspace; hence, the Ca­
simir operator for the symmetry algebra L ' of the subspace, 
where L 'c;;,.L. Since S2 is defined on the subspace and com­
mutes with S I, it must be expressable in terms of second 
order elements in the enveloping algebra of L '. Thus, opera­
tors S J ,S2 are of the form (2.18). 

(IV z) Generic coordinates: Class· I coordinates (2.13) 
cannot be of operator types I-III since we can see by inspec­
tion that one cannot construct from a linear combination of 
SI and S2 an operator which is a perfect square of a Lie 
symmetry. The operators cannot be of type IV I because the 
only possible choices for the algebra A are e(2), e( 1, I), 0(3), 
0(2,1) acting as transitive symmetry algebras on a two-di­
mensional submanifold. It follows in these cases that the 
Casimir operator of A is the Laplace-Beltrami operator on 
the submanifold, and hence that SI,S2 can be written in the 
form (2.12) for appropriate coordinates. Since a set of or­
thogonal separable coordinates is uniquely determined by its 
defining operatorsSI,S2 (see Ref. 34), these coordinates must 
be of the form (2.12), a contradiction. Hence, class I coordi­
nates (2.13) correspond to operators (2.19). 

The above results hold for all Riemannian manifolds 
admitting class I separable coordinates, and there are an infi­
nite number of such manifolds. However, of special interest 
are the manifolds of constant curvature, since they have the 
property that all separable coordinates are class I. In the 
following section we shall study the symmetry algebra L of 
each of the three-dimensional constant curvature spaces to 
see in detail how the subalgebra structure of L corresponds 
to the separable coordinates I-IV I' We provide a complete 
orbit analysis for all pairs of commuting operators that cor­
respond to proper subalgebras of L, i.e., for all operator types 
except IV 2' In a number of cases we will uncover orbits of 
type III4 operators that do not correspond to variable 
separation. 

3. THREE-DIMENSIONAL SPACES OF CONSTANT 
CURVATURE 

In this section we illustrate the general theory by con­
sidering all spaces of constant curvature. 

A. Group E(3) 

The algebra e(3) of the group E(3) is generated by the 
infinitesimal rotations Li and translations Pi' satisfying the 
commutation relations 
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It has two Casimir operators, namely, 

Ll = p 2 = Pi + Pi + P ~ and 
Ll ' = L-P = L ,PI + L 2P2 + L 3P3 • (3.2) 

For the representations considered here we have Ll' = 0 (a 
space of scalar functions in Euclidean space). 

The subalgebras of e(3) have been classified into orbits 
under the action ofE(3), e.g., in Ref. 19, where the results are 
presented in a diagram. Let us use this classification to inves­
tigate different types of separable coordinates for the equa­
tion LlI/I = EI/I, following Sec. 2. 

I. Three ignorable variables 

The algebra e( 3) has precisely one class of maximal Abe­
lian subalgebras (MASA) of dimension 3 represented by 
I Pp Pz,P3 1· This provides Cartesian coordinates for which 

Sj =P7, i= 1,2,3; Ll =SI +Sz +S3' (3.3) 

II. Two ignorable variables 

The algebra e(3) has precisely one class of MAS A of 
dimension 2, represented by {L3'P 31. This provides cylindri­
cal coordinates, for which 

(3.4) 

III. One ignorable variable 

To find coordinates of type III, and 1112 we must con­
sider separately a representative X of each class of one-di­
mensional (Abelian nonmaximaI) subalgebras and find its 
centralizer centX in e(3). We are only interested in non-Abe­
lian centralizers. The only type of element of e(3) having a 
non-Abelian centralizer can be represented by P3 , where 

cent( P3) = ( P3 1 ffi ( L 3,P
"

P2 1 ' (3.5) 

i.e., centP3 splits into a direct sum of P3 and 
(cent( P3) III P3 1. Hence, no IIIz type coordinates exist in 
this case. Type III I coordinates (orthogonal centralizer type 
coordinates) are obtained by putting 

SI = P~ , (3.6) 

S2 = aq + b (L3 PI + PtL 3) + C(L3 Pz + PZL 3) 

+d(P~ -':'P~)+2e(P1P2)+f(P~ +P~), (3.7) 

i.e., S2 is the most general symmetric second order operator 
in the enveloping algebra of e(2) = {L3,P

"
P2 1. We must now 

classify the operators (3.7) into orbits under Nor( P3 ), i.e., the 
normalizer of P3 in E(3). This is a well-known problem. I. IS 

These orbits can be represented by 

pLL L L ~ + a( P~ - P~),(a>O), and L 3P2 + PZL 3 • (3.8) 

The first two operators should be omitted, since they are 
squares of generators and lead back to the case I or II. The 
last two operators provide type 1111 coordinates, namely, 
elliptic cylindrical and parabolic cylindrical coordinates, 
respectively. 

Type 1113 coordinates (subgroup type) are obtained by 
taking a representative X of each orbit of generators of e(3) 
and finding all proper subalgebras of e(3) that properly con­
tain X, are non-Abelian, and have a second order Casimir 
operator, not equal to Ll = p 2 or to a linear combination of Ll 
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and the square of a generator. The only such chain of subal­
gebras is 

e(3):Jo(3):Jo(2) , 

and we have 

S, = L L S2 = L2, (3.9) 

i.e., S2 is the Casimir operator of 0(3), providing spherical 
coordinates. 

Type 1114 coordinates are obtained by running through 
all representative generators X, and for each X finding the 
most general second order operator S2 in the enveloping al­
gebra of e(3) satisfying [X,S2] = O. We find a representative 
of each orbit and eliminate representatives already encoun­
tered, i.e., corresponding to squares of generators, members 
of the enveloping algebra of cent(X), or Casimir operators of 
subalgebras. Let us examine each case separately. 

(i) X = L, nor L3 = !L3,P3J, and 

S2 = aL2 + b (L,P2 + P2L, - L 2P, - P,L2) 

+ c(Pi + PD + dL 3P3 (3.10) 

[we have dropped the Casimir operator of e(3) from Eq. 
(3.10)]. Separable coordinates (u,v,<P) of this type satisfy 

a a a 
L3=-=X--y -

a<p ay ax 

= ax ~ + ay i. + az a 
a<p ax a<p ay a<p az 

Hence, we have 

ax 
-= -y, 
at:/> 

ay -=x, 
at:/> 

The relations (3.12) imply 

(3.11) 

(3.12) 

x = f(u,v) cos<P, y = f(u,v) sin<P, z = h (u,v) . (3.13) 

The operators 

S, = L j and S2 

in Eq. (2.11) are invariant under the reflection t:/>-+ - t:/> (i.e., 
y-+ - y). Since L 3P3 does not have this invariance, property, 
we must put d = 0 in Eq. (3.10), i.e., operator (3.10) with 
d #0 does not correspond to variable separation. We can 
now use the translation expaP3, belonging to the normalizer 
of L3 in E(3), to simplify S2' For a#O we can reduce Eq. 
(3.10) to 

(3.14) 

For c > 0 and c < 0 this corresponds to oblate and prolate 
spheriodal coordinates, respectively. If a = 0, b #0, we can 
reduceS2 to 

S2 = L,Pl + P2L, - L 2P, - P,Ll , (3.15) 

corresponding to parabolic coordinates. 
If a = b = 0 we return to type II coordinates. 
(ii) X = P3; nor P3 = ! L J,P"P2,P3 J: We have 

S2 = aL ~ + b (L3 P, + P IL 3) + C(L3 P2 + P2L 3) 

+ dL3 P3 + CikPiPk • (3.16) 

The coordinates (U,V,x3) satisfy 

P3== ~ = ax ~ + ay i. + ~i.. 
aX3 aX3 ax aX3 iJy aX3 az 
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Hence, 

x = x(u,v), y = y(u,v), z = X3 , 

and L 3P3 changes sign under the reflection z-+ - z. Hence, 
d = 0 in Eq. (3.16) in order to yield variable separation. Simi­
larly, Ci3 = C3i = O. 

If a #0, we use the normalizer of P3 to reduce S2 to 
S2 = L j + c( Pi - P ~ ), corresponding to II or III, .type co­
ordinates.lfa = O,b 2 + c2 #0, weobtainSz = L 3P, + P IL 3, 

corresponding to the type III I' If a = b = c = 0, we obtain 
type I coordinates. 

(iii) X =L3 + aP3; nor (L3 + aP3) = [L 3,P3J: A 
straightforward computation shows that in this caseS2 satis­
fying [X,S2] = 0 can be reduced to 

(3.17) 

Since L3 and P3 commute, a diagonalization of P3 and L3 
separately is equivalent to a diagonalization of any polyno­
mials in L3 and Py We thus.reobtain case II. 

(IV) No ignorable variables: Neither of the operatorsS\ 
or S2 is the square of a generator of e(3). 

Type (IV,): We return to the non-Abelian subalgebras 
of e(3) discussed above in 1113 , We take SI to be the Casimir 
operator of such a subalgebra and S2 some second order ele­
ment of the enveloping algebra of the corresponding subalge­
bra. These operators S2 must be classified into orbits under 
the group A whose Lie algebra is A. Only one such case oc­
curs for e(3), namely 

S, =L2, S2=Li +rLL O<r<l, (3.18) 

corresponding to spheroconical coordinates (S2 is not al­
lowed to be the square of a generator). 

Type (IV2): Here S, and S2 are simply commuting sec­
ond order operators in the enveloping algebra of e(3). Nei­
ther of them is the square of a generator nor a Casimir opera­
tor of any Lie algebra. This is the generic case with the lowest 
symmetry. The remaining coordinates ellipSOidal and para­
boloidal are of this type. 

This completes the list of all 11 types of separable co­
ordinates in Euclidean 3-space. 

Finally, let us discuss the question of discrete symme­
tries that further characterize some of the coordinate sys­
tems. Indeed, for coordinates of the type III" 1114 , and IV, 
only one of the diagonal operators is characterized by the 
fact that it is an invariant operator of a one or higher dimen­
sional Lie algebra. For coordinates of the type IV 2 neither S, 
nor S2 has this property. These operators will, in general, be 
invariants of certain discrete subgroups ofE(3). No operator 
of the type 

S = a,kLiLk + bikPiPk + Cik(LiPk + PkLJ (3.19) 

is left invariant by discrete translations (unless aik = Cik = 0 
and we have continuous translational invariance). We can 
hence restrict ourselves to point groups and indeed to groups 
of reflections in planes through the origin. Let us use X, Y, 
and Z to denote a reflection of the coordinate x,y, and z, 
respectively, and 12n (A " ... ,An) to denote the Abelian group 
of order 2n generated by A " ... ,An. By inspection we see that 
the operators Si not related to Lie subgroups have the fol­
lowing invariance groups: 
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L~ +a(P~ -PD 

L 3P2 + P2L 3 

L lP2 + P2L l - L 2P l - P lL 2 

L2 ± a(P~ + PD 
L ~ + aL i + bP ~ } 

LZ + bPi + aP~ + (a + b )P~ 

L ~ - C2p~ + c(L2P I + P IL 2 + L l P2 + P2L I )} 

L 2P I + P IL 2 - LIPz - P2L I + c( P~ - Pi) 

Thus, the operators SI,S2 for each of the 11 separable 
coordinate systems can be viewed as corresponding to a cer­
tain subgroup reduction ofE(3) and both Lie subgroups and 
discrete subgroups figure in the reductions. The subgroups 
will determine the symmetry properties of the separated so­
lutions of the Helmholtz equations. In particular, the dis­
crete subgroups are often important in physical applications, 
especially in the context of "symmetry adapted basis func­
tions" in molecular physics and general many body 
theories.5.z9-JJ 

The results of this section are summarized in Table I. 
We do not spell out the explicit form of the coordinates. The 
ones used are listed, for example, in Ref. 38. 

B. The group 0(4) 

Separable systems of coordinates in SJ' the unit sphere, 
were first obtained by Eisenhart34 and studied from the alge­
braic point of view in Ref. 13. Let us now classify them from 
the subgroup point of view. The continuous subgroups of 
0(4) are listed, for example, in Ref. 20 (they were first ob­
tained by Goursae9). 

Using the isomorphism 0(4)~0(3) 6) 0(3) we write the 
algebra 0(4) as IA;,B;,i = 1,2,3, j, satisfying 

[A;,Ak] = €;k/A /, [B;.Bk] = €;k/B/, [A;,Bk] = O. 
(3.21) 

The algebra 0(4) has precisely one MASA [up to conjugacy 
under 0(4)], namely, IA3,B3J. Hence, no class I systems ex­
ist and just one class II system. The one-dimensional subal-

TABLE 1. Separable coordinate systems for E(3). 

: IiX,y) , 

: Ii Y), 

: IiX,y) , 

: liZ, X y), 

: I8(X,Y,Z) , 

(3.20) 

gebras areA 3,AJ + xBiO <x < 1), andA 3 + B3 • No type IIII 
or IIIz coordinates exist on S3; III2 is excluded because 
cent(A J) is a direct sum and IIII is not realized because the 
operators (A ~ ,B i + k 2 B ~) would correspond to separation 
on S2 ®S2 rather than sJ (the 1111 and IIIz type coordinates 
only exist on flat three-dimensional manifolds). The only 
non-Abelian subalgebra of 0(4) with a second order Casimir 
operator that is not a Casimir operator of 0(4) is IA I + B I , 

Az + B2,AJ + B3J. This provides 1113 coordinates for 

SI = (A 1+ BI)Z + (A z + B2)2 + (A3 + B3)Z, 
S3 = (A3 + BJ)Z , (3.22) 

and type IV I coordinates for 

SI = (AI + BI)Z + (A z + B2)Z + (AJ + B3)Z, 

SJ = (A I + B 1)2 + k 2(A2 + Bz)Z (0 < k Z < 1) . (3.23) 

Type 1114 coordinates are obtained from A3 + B3 only. The 
operator Sz commuting with A3 + B3 can be reduced to 

Sz = AIBI + A2B2 + aA3B3' a>O,a# 1 

and we distinguish between 0 < a < 1 and 1 < a 00 • 

Type IV I coordinates were discussed above and type 
IV 2 also occurs. 13 

Notice that only pairs of operators SI,sZ that are invar­
iant under parity IT, i.e., 

IT:(X I ,X2,X3,X4)-( - Xl' - XZ, - X 3,X4), (3.24) 

lead to separable coordinates on S3' as was shown in Ref. 13. 
Here, 

x~ + xi + x~ + x~ = 1 . 

Type Coordinates Diagonal operators Subgroup chain 

I Cartesian P"Pz,P, T(3) 
II Cylindrical L"P, 0(2) ® T(l) 
III, Elliptic cylindrical P"L; +a(P; -P~) a>O E(2) ® T(l):Jl4(X,y) ® T(l) 

Parabolic cylindrical P"L,P, + P,L, E(2) ® T(l):JI,( y) ® T(l) 
III, Spherical L"L; +L~ +Lj 0(3)::)0(2) 

III, Parabolic L"L,P, + P,L, - L,P, - P,L, 0(2) ® IiX, y) 
Oblate spheroidal L"L; +L~ +Li +a(P; +Pi) a>O 0(2) ® I.(Z,xy) 

Prolate spheroidal L"L; +L~ +L;-a(P; +Pi) a>O 0(2) ® I.(Z,XY) 

IV, Spheroconical L; + L ~ + L i,L; + rL ~ O<r<1 0(3)::) I.(X, Y,Z) 

IV, Ellipsoidal L~ +aL; + bPi, a>b>O 
L; +L; +Li +bP; +aP; +(b+a)Pi I.(X,Y,Z) 

Paraboloidal L i - eZPl + c(L,P, + P,Lz + L,P, + PzL,), 
L,P, + P,L, - L,P, - PzL, + e( P; - Pi) c>O 14(X,y) 
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TABLE II. Separable coordinate systems on 5" 

Type Coordinates Operators Subgroup reduction 

II Cylindrical L ;,J~ 0(2) X 0(2) 
III, Spherical L; + L; + L ;,L ~ 0(3):)0(2) 
III. Elliptic cylindrical I and II L; + L; + L i + a(L i - J D,L i (a 7"" 0) 0(2) X I.(X"X,,x,,x.) 
IV, Spheroelliptic L; +Li +Li,L; +rL; (O<r<l) 0(3):::lD, 

IV, Ellipsoidal L;-J;+ l-a+b(L;_J;)+ l+a-b(L~_J;), D, 
a+b-l - a+b-I· 

L 2 + J' + b - a-I (L 2 _ J ') + a - b (L 2 + J' ) 
, , a + b _ I 2 2 b (a _ I) , , 

+ a(b-I)(a-b-I) (L; -J;) (1 <b<a) 
b(a -1)(a + b -I) 

The results of this paragraph are summarized in Table 
II, together with the discrete subgroup properties of each 
system. Again I zn (A ", .. ,An) will be a group of reflections in 
hyperplanes through the origin with, for example, X reflect­
ing the Cartesian coordinate x only. We write the invariant 
operators SI and Sz in terms of Li = Ai + Bi and 
Ji = Ai - Bi, rather than Ai and Bi directly (the J j do not 
constitute a subalgebra). 

C. The group 0(3,1) 

The subalgebras of 0(3, 1) have been classified 1 under 
the action of 0(3, 1) and the results are reproduced in, for 
example, Ref. 20. 

The algebra 0(3,1) is generated by the rotations Li and 
boosts K" satisfying 

[Li,Lj] = EijkLk,[Li,Kj ] = EijkKk,[Ki.Kj ] = -EijkLk' 
(3.25) 

The Casimir operators are.1 = L 2 - K2 and.1 ' = L·K (we 
have.1 ' = 0). All separable coordinates for 0(3,1) hyperbo­
loids were obtained by 0levskir6

; the pairs of commuting 
operators SI and S2 corresponding to these 34 coordinate 
systems are also known. 14 

The algebra 0(3,1) has two MASA. Both are two-di­
mensional, namely, 

IL3,K31 and ILl + KI,L I - K21 . 

We hence have no type I coordinates and two type II coordi­
nate systems. 

The one-dimensional subalgebras are [L3 I, [K 31, 
[Lz + KI j, and {L3 + aK3;a >01. None of these have non­
Abelian centralizers, so we obtain no III I or IIl2 type coordi­
nate systems. Subgroup type coordinates 1113 are obtained 
from the subgroups 0(3), 0(2,1), and E(2). The correspond­
ing pairs of operators are 

(L2,L ~),(K~ + K~ - L LL ~),(K~ + K~ - L j,K~), 
(3.26) 

(K~ + K~ - L ~,(KI + L 3?) and 
«KI + L2? + (LI - K2)2,L ~) . 

Now let us consider III4 type coordinates: 
(i) SI = L ~, nor(L3) = [L3,K31: The most general sec­

ond order operator S2 commuting with L3 can, after linear 
combinations with.1,.1 " andL ~ have been accounted for, be 
written as 
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S2=a(K~ +K~ +L~ +L~)+b(K2LI+LIK2 

- KIL2 - L2K I) + cK~ + dL3K3' (3.27) 

The transformation expaK3 induces a hyperbolic rotation 
between the first two terms. Hence, ifJal < Ib I, we can trans­
form a into zero; if lal > Ib I, we can transform b into zero; 
and if lal = Ib I, the first two terms reduce to 
(LI + K2? + (L2 - KI)2. In these coordinates we have 
L} = a/a¢J and the termL3K3 will be odd under the transfor­
mation ¢J--.. - ¢J which should leave S2 invariant. Hence, 
d = O. Iflal = Ib I,KJcan be used to scale the valueofa (and 
b) with respect to c. Using expaKJ , parity, and linear combi­
nations with A we can finally reduce S2 to one of the forms: 

Ki +K~ +aKLL IK2 +K2L, -L2KI -KILz +aK~ 
(a,> 0) (3.28) 

(L[+K2)2+(L2-KI?+EK~ (E= ±1). 

In the first case we distinguish between the regions 
O<a< 1,1 <a< 00, and - 00 <a<O. 

(ii) SI = K j, nor(K3) = [L3.K31: Imposing 
[K ~ ,S2] = 0 and using linear combinations with .1 ,.1 " and 
K~ we have 

S2 = a(L i - K ~ - L ~ + K i) + b (L IL2 + L2L 1 + K IK 2 

+K2K I)+c(Li -K~ +L~ -KD+dL3K3' 
(3.29) 

In these coordinates we have K3 = a/ap and L3K3 
changes sign for p- - p. Hence, d = O. The operator 
expaL 3 will rotate between the first two terms. Hence, we 
can always rotate b in zero (the case a2 + b 2 = 0 would lead 
back to type II coordinates). We thus obtain 

S2=Ki -L~ +a(Li -KD, O<lal<1 (3.30) 

and we distinguish between 0 < a < 1 and -1 < a < O. 
(iii) SI = (KI + L2)2, 
nor(K I + L2) = [K3.K1 + L2.K2 - L d : 

(3.31) 

The operator S2 satisfying [K[ + L 2,S21 = 0 can be written 
as 

S2 =a(Ki +K~ - LD + b [(K, +L2)L3 +L}(K, +L2) 
+ K3(K2 - L I) + (K2 - L[)K3] 
+ c[(K2 - L[)2 + (K[ + L2)2] 
+ d (KI + L 2)(K2 - L I) . 

(3.32) 
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The separable coordinates (U,v,t) will be such that 
KI + L2 = alat • The term (KI + L 2)(K2 - L I) will be odd 
under the reflection t-+ - t; hence, d = O. If a =I- 0, we put 
a = 1 and use expa(K2 - L I) to transform b-+O. Further 
exp(3K) will scale c with respect to a. We obtain 

S2=K; +K~ -L~ +E[(K2 -LI)2+(KI +L2)2] , 
E = ± 1 . (3.33) 

(c = 0 is excluded, since it would lead to type III).) If a = 0, 
b =1-0, we put b = 1 and use expa(K2 - L I) to transform 
c-+O. Finally a = b = 0 is excluded, since it would lead to 
type II. 

(iv) SI = (L3 + aK3)2, nor(L3 + aK3) = I L 3,K3 J: 
(3.34) 

The most general second-order operator commuting with 
L3 + aK3 (a =1-0) can be reduced to, for example, 
K}(bL3 + cK3) and hence leads back to type II coordinates. 

Type IV I coordinates are obtained similarly as type 1113 
ones. Indeed, we consider the subgroups 0(3),0(2,1), and 
E(2) of 0(3, 1) and take SI as the corresponding Casimir op­
erator. The operator S2 will then be a second-order operator 

in the enveloping algebra of 0(3),0(2,1), or e(2), respectively. 
These operators must be classified into orbits under 0(3), 
0(2,1), or E(2), as the case may be, and orbits corresponding 
to squares of generators must be excluded. For 0(3),0(2,1), 
and E(2) we obtain one, six, and two orbits, respectively. IS 

Finally, we are left with the generic case IV 2' The opera­
tors SI and S2 are such that neither of them is the square of a 
generator or a Casimir operator ofa subgroup of 0(3, 1) [nor 
is it conjugate under 0(3,1) to such operators]. 

A further subclassification is obtained by considering 
discrete subgroups of 0(3, 1) leaving the individual pairs of 
operators invariant we omit all details here but summarize 
the results in Table III, where we give the invariant opera­
tors, the subgroup reductions, and identify the coordinate 
system by the number it carries in Refs. 14 and 36. 

D. The group 0(2,2) 

We shall consider this case in somewhat less detail than 
the previous ones. Separable systems of coordinates on the 
hyperboloid x~ + x~ - x~ - x~ = 1 were discussed in Ref. 
16. The subalgebras of 0(2,2) were classified in Ref. 20 and a 

TABLE III. Diagonal operators and corresponding subgroup chains for separable coordinate systems on the 0(3,1) hyperboloid. 

Type Diagonal operators 

II L;X; 
(L, + K2)2,(L2 - K,)2 

III, L; + L i + L ;,L ; 
K; + K; - L i,L ; 
K; +K~ -L;X; 
K; + K; - L i,(K, + L3)2 
(L, - K2)2 + (L2 + K,)2,L i 

III. L;,K; + K i + aK i 

L ;,L,K2 + K2L, - L2K, - K,L2 + aK; 
L i,(L, + K2)2 + (L2 - K,)2 + EK; 
K;,K; -L~ +a(L; -Ki) 
(K, + L2f,K; + K; - L; + E[(K2 - L,)2 + (Kl + L2)2] 
(K, + L2)2,(K, + L2)L, + L,(K, + L2) + K,(K2 - L,) + (K2 - L,)K, 

IV, L; + L; + L i,L; + aL i 
K; +K; -L;'L; -aK; 
K; +K; -Ll,K; +a(K2L,+L,K2) 
K; + K; - L ;,L l + (L,K2 + K2L,) 
K; + Ki - L lx; + (L,K2 + K2L,) 
K; + K; - L ;X,K2 + K2K, + K2L3 + L,K2 
(K, + L2f(K2 - L,)2,L i + (K, + L2)2 
(K, + L2)2 + (K2 - Ll,L3(K, + L2) + (L2 + K,)L3 

IV2 M; + bMi + aMi - (a + b)K; - (a + I)Ki - (b + I)K;,abK; + aKi + bK;, 
M; -aK; -bK;-(a+b)K; +(a+ I)M; +(b+ I)M;, 
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abK; -aMi -bM;, 
2aM; - (a + I)(Ki - Mi) - a(Ki - Mi) - b(K2M, + M3K2 - M2K3 - K,M2), 
(a l + b 2)M; - a(Ki - Mi) + b(K3M2 + M2K3), 
(K2 + M3)2 + (K, + M2)2 + (a + I)K; + K;- Mi + aIM; - Ki), 
(K, + M212 - a(K2 + M,l2 + aK;, 
(K2 + M3)2 + (K3 + M212 - (a + 11K; - Mi + K; - arK; - Mi), 
(K, + M2f - a(K2 + M3)2 - aK; 
(K2 + M3f - (K3 + M2f - (a -11K; - Mi +K; - aIM; - Kil, 
(K2 + M,l2 - arK, + M2)2 - aK; 
M; - Ki - M; - (M2 - K,l2 - M,(M2 - K3) - (M2 - K3)M" 
(M2 - K,f - K,(K2 - M,) - (K2 - M,)K, 
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O<a< 1,1 <a< ao 
or - ao <a<O 
a;;.O 
E= ± I 
o < a < I or - I < a < 0 
E= ± I 

O<a<1 
a< - lorO<a 
O<a 

Subgroup chain 

0(2)®0(I,I) 
T(2) 
0(3PO(2) 
0(2,IPO(l,I) 
0(2,IPO(I,I) 
0(2,IPT(I) 
E(2PO(21 

0(2)XI.(Z,T) 
0(2)XI4(X,Y) 

0(2)XI.(X,Y) 
O( 1,1) X I ,.(X, Y,Z,T) 
T(I)XI 4(X,Y) 

T(I)XI2(X) 
0(3)::JI,.(X,Y,Z,T) 
0(2,1)::lI,.(X,Y,Z,T) 
0(2,1)::H4(Y,Z) 
0(2,1) ::1I.( Y,Z) 
0(2,1):::) 1.( Y,Z I 
0(2,lPI2(Z) 

E(2PI4(X,Y) 
E(2PI2(X) 
1'6(X,Y,Z,T) 
1'6(X,Y,Z,T) 

1.(Y,ZI 

I.(Y,Z) 

1.(Y,ZI 

14(Y,Z) 

I.(Y,Z) 
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FIG. I. The 0(2,2) conjugacy classes of subalgebras of 0(2,2). The param­
eters take the following real values: 
E = ± 1,0< ici<I,d)O,e> 0./#0,0< igi <I,O<h < I. A line connects 
each algebra with its maximal subalgebras. A solid (broken) line indicates 
an inclusion for all (some) values of the parameters involved. 

diagram of them is given in Fig. 1. We use the isomorphism 
0(2,2) - 0(2,1) Ii) 0(2,1) and write the algebra 0(2,2) in the 
form IA;,B; l: 

[AI.Az] = -A3, [A3.A.l =A2, [A Z.A3] =A I , 

[BI,Bz] = - B3, [B3,BI] = Bz, [Bz,B3] = B I , (3.35) 

[A;,Bk] = 0, i,k = 1,2,3 

(A3 and B3 are the compact elements). 
Let us discuss the individual classes of coordinates. 
Type I: The algebra 0(2,2) has no MASA of dimension 

3, and hence this class does not occur. 
Type II: There exist six different MASA of dimension 2, 

each corresponding to a different system of coordinates. Sys­
tems 11, 12, and 13 of Ref. 16 are orthogonal and correspond 
to the subalgebras IA z,B3l, IA l ,Bl j, and 
1 A I - A 3,B I - B3 j, respectively. Systems 14, 15, and 16 are 
nonorthogonal and correspond to the subalgebras 
IA J,BI - BJj, IA l ,BI - B3l, and IA 3,B2j, respectively. 

Type IIII and 1II2 : These do not occur since the centra­
lizers of all one-dimensional subalgebras are either Abelian, 
or reductive of the type 

IA3l Ii) IBpBl,B3l, IAzl Ii) IB I,B2,B3l , 
or (AI -A3l Ii) IBI,Bl,B3)· 

These do not lead to separable coordinate systems on the 
considered hyperboloid [they would on the direct product of 
two 0(2,1) hypt:rboloids]. 

Type IIIJ : The algebra 0(2,2) has three non-Abelian su­
balgebras with second order Casimir operators distinct from 
the Casimir operators of 0(2,2). These are 

(i)e(1,I):(A z -Bz.A 1 -AJ,BI -B3l 

[here SI = (Al - Bzf,Sl = (A I - A3)(B I - B3) leads to one 
coordinate system], 

(ii) 0(2,1): (A I + BI.A z + BZ.A3 + B3l ' 

(iii)o(2,I):(AI-BI.Al+Bz.A3-B3l· 

Each of the 0(2,1) subalgebras leads to three different sub­
group type coordinate systems. 

Type 1II4 : The one-dimensional subalgebras providing 
1114 type coordinates are IA3 +B3l, (A3 -B3l, (A z +Bzl, 
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{AI - A3 + BI - B3j, and (AI -A J - BI + B3j, leading to 
two, two, nine, three, and three systems, respectively. 

Type IVI : The same subalgebras e(1,I) and 0(2,1) as in 
case 1113 lead to these "semi subgroup" type coordinates, of 
which there exist 8 +6 +6 = 20. 

Type IVl : The remaining generic case leads to 22 more 
coordinate systems. 16 

Thus, altogether 74 separable coordinate systems exist. 
Of these exactly six are nonorthogonal. We shall not discuss 
their discrete symmetries here. 

E. The group E(2,1) 

Separation of variables in three-dimensional Min­
kowski space has not been investigated with the same 
amount of detail as in the other three-dimensional spaces of 
constant curvature. The coordinate systems can however be 
extracted from Refs. 17 and 14. The subgroup structure of 
E(2,I) on the other hand is known. 21 We write the algebra 
e(2, 1) in the form 1 KI .K2,L3,PO,PIPzl : 

[KI,Kl] = - L3,[L3.K1] = Kz,[L3.K2] = - KI , 

[K;,Po] = P;,[K;.Pk ] = D;kPO,[L3,PoJ = 0, (3.36) 

[L3,P.l = P2, [L J ,P2 J = - PI' [ P" ,Pv ] = 0 , 

(i,k= I,2;/l,v=0,I,2). 

Type I: There is one three-dimensional MASA: 
1 Po,PI,P2 l corresponding to Cartesian coordinates. 

Type II: There are four different MASA of dimension 2. 
Two of them IK I ,Pl l and (L 3,Po l correspond to orthogonal 
coordinates, and two others correspond to nonorthogonal 
ones. These are 

SI = (Po - Pzf, Sz = (L3 + KI?: 
x =X2X3, y =XI - ~X~X3' t = -XI +x3 + ~X~X3' 

and 

SI = (Po - PZ)2, Sz = (L3 + KI + Po + Pz)z: 

X = X2(X2 + X3)' Y = x I + Xz - x~ ( ~z + X3 ) 
2 ' 

t = - X I + Xz + X3 + x~ ( ~z + i1
). 

Type IIII: Among the nine types of one-dimensional 
subalgebras of e(2, 1) precisely three algebras have non-Abe­
lian centralizers, two of which are direct sums. These are as 
follows: (i) ( Pll with cent( PI) = PI Ii) (Kz,Po,Pzl: Hence, 
SI = Pi and Sz is an element of the enveloping algebra of 
e( 1,1), not equal to the Casimir operator, nor to the square of 
a generator. This leads to eight orthogonal coordinate sys­
tems. (ii) ( Pol with cent( Po) = Po Ii) (LJ,PI,Pzl: Hence, 
SI =P6 andSz iseitherL3P I +PIL30rL~ +a(Pi -PD 
with a > 0 (two orthogonal systems). 

Type IIIz: The only element of e(2, 1) that has a nonse­
parable centralizer is (Po - Pz) with 
cent( Po - P2) = (L3 - KI,Po + PZ,PI,PO - Pzl (this is a 
nilpotent algebra). In this case we have nor 
(Po - Pz) = (Kz,L J - KI,Po + P2,PI,PO - Pzl. The choice 
SI = (Po - Pz)2 and Sz a member of the enveloping algebra 
of cent( Po - Pz) (not equal to a square of a generator, nor to 
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a Casimir operator) leads to three nonorthogonal coordinate 
systems. These are as follows: 

0) S2 = P.(L3 - K.) + (L3 - K.)PI , 

X = X3V X 2 , Y - t = XI - !x~ , 
y + t = 2x2 ; 

Oi) S2 = (L3 - K.)2 + 4P~ , 

x=x3Vl +xL y-t=XI-~~X2' 
y + t = 2x2 ; 

(iii) S2 = (L3 - KI)2 + 8aPI (PI - P2), a> 0 , 

y + t = 2x2 • 

Type III3: Subgroup type coordinates in this case only 
originate from the 0(2,1) subgroup. We obtain three coordi­
nate systems, corresponding to Sf = L ~,K Lor (L3 - Kl)2 
and S2 = K ~ + K ~ - L ~ . 

TypeIII4:TakingS. = L LKLor(L3 - K2f we obtain 
10 orthogonal coordinate systems. 

Type IV.: Semisubgroup type coordinates again origi­
nate from 0(2,1) only and six types of them exist. 

Type IV2: The generic class here consists of 22 types of 
coordinates. 

The total is 54 orthogonal coordinate systems, and five 
nonorthogonal ones. We shall not go into the problem of 
discrete symmetries here. 
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A number offixed-plethysm generating functions are given for SU(2); a fixed -plethysm 
generating function gives the content of the component with definite exchange symmetry of the 
direct product of a given number of copies of an irreducible representation R I, with I running 
through all values. New symmetries are found relating antisymmetric to symmetric products, and 
relating plethysms in which the number of factors is interchanged with the factor representation 
label I. Expressions for two-box plethysm generating functions for SU(3) and for fixed-plethysm 
generating functions for SU(2) based on reducible representations are also given. 

PACS numbers: 02.2OQs 

1. INTRODUCTION 

For over a century there have existed examples of a 
certain type of generating function 1 related to the represen­
tation theory of the group SU(2). 

Consider the tensor product of p copies of a representa­
tion RI of SU(2) 

R{®· .. ®R I = ED nl;I(A]XR s ' (1.1) 
[A). , 

The sum is over representations s ofSU(2) and those repre­
sentations [A ] of the permutation group Sp whose Young 
tableaus have no columns exceeding I + 1 in length. The 
dimension of the SU(2) representationR{ (or R,) is I + 1 (or 
s + 1); thus I (or s) is twice the angular momentum associated 
with the representation I (or s). The partial sum ED snl; IR, in 
(1.1), to be denoted by R lA I, is the plethysm of exchange 
symmetry [A ] based on the representation R I; the coefficient 
ni,A I is the multiplicity of the representation Rs in the pleth­
ysm. The Sp representation [A ] is more explicitly written 

[I A',2A
" ... /,] where the non-negative integer Ai is the num­

ber of rows oflength i in its Young tableau. The Ai satisfy 

i iAi =p. (1.2) 
i=1 

Cayley, Sylvester, 1 and collaborators long ago calculat­
ed a rational form of the generating function 

F(PS)= ~ n[AlpPS' 
I' k Is , (1.3) 

p,,=o 

for the symmetric pelthysm R 1 pI, 0<.1<.12. 
Analogous generating functions have been given2

-4 for 
groups (including finite groups) other than SU(2) and for 

I 

2. SOME FIXED-SYMMETRY GENERATING FUNCTIONS 

more general plethysms. We describe such generating func­
tions as being of the Cayley-Sylvester, or fixed-I, type. For 
practical reasons, RI is usually restricted to representations 
of fairly low dimension. 

Multiplicities nl; I ~fthe symmetric part or nl, of the 
full tensor product were studied previously (cf. Ref. 5 and 
references therein). 

Recently4 examples have been given of a new type of 
generating function 

¢[A I(L,S) = L n); I L 'S', (1.4) 
I" 

We describe them as being offixed-plethysm, or fixed-sym-
metry, type. The Young tableau [A ], for practical reasons, is 
restricted to have a fairly small number p of boxes. This 
paper is concerned with fixed-symmetry generating 
functions, 

In Sec. 2 we give explicit expressions, for a number of 
fixed-symmetry generating functions; their interpretation is 
explained. 

Section 3 points out some remarkable symmetries con­
necting apparently unrelated plethysms and their generating 
functions. 

Section 4 explains how the generating functions of Sec, 
2 are derived. 

Section 5 contains a brief discussion of possible generat­
ing functions of more general type. Fixed-symmetry gener­
ating functions of type [2] and [12] are given for SU(3) repre­
sentations. Generating functions for plethysms [1], [2], (12], 
[3], W], [2,1] based on reducible SU(2) representations are 
also shown, 

Fixed-symmetry generating functions of symmetric type [p], 0<.p<.5, are4 •6 

¢[ol(L,S)=(I-L)-I, (2.1) 

(2.2) 

(2.3) 

1,6[1 I(L,s) = (1 -LS)-I, 

1,6[2 I(L,S) = [(1 - L 2)(1 _ LS2)] -I, 

"Supported in part by the Natural Sciences and Engineering Research 
Council of Canada and by the Minist~re de I'Education du Qu~bec. 
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tP[3)(L,S) = (1 + L 3S3)[(1 - L 4)(1_ L 2S2)(1 _ LS 3)]-I, 

tPI41(L,s)=(1 +L 3S6)[(I-L2)(I_L3)(I_L 2S4)(I_LS4)]-I, 

tPI51(L,S) = [(I-L 4)(I_L8)(I_LS5)(I_L 2S2)]-1 

(2.4) 

(2.5) 

X [( 1 - L 2 S 6) -111 + L 3 S 9 + L 4S 6 + L 5(S 7 + S 9) + L 6(S 4 + S 10) 

+ L 7(S5 + S7 + L M(S2 + SM) +L IISlIj + (1- L 12)-IIL3(S3 +S5) 

+L 4S4 + L5(S + S3) +L 6S2 + L 7S + L 8S4 +L 9(S3 +S5) +L 10(S2 +S4) 
+ L II(S + S3) + L 12 + L 13S + L 14S4 + L 16S2 + L 18j] . (2.6) 

Fixed-symmetry generating functions tP[IP J of antisymmetric type [F), 1 <,p, are related to the fixed-symmetry generat­
ing functions of symmetric type through 

tP[I',)(L,s) = LP- I tP[p)(L,S). (2.7) 

For mixed symmetry [2,1] the generating function is 

LS 
tP12.I) = (1 _ L 2)(1 - LS)(1 - LS 3) 

(2.8) 

For the three mixed symmetries with four boxes the generating functions are 

L 2S2 
tPI2,1' )(L,S) = (1 _ L )(1 _ L 2)(1 _ LS2)(1 _ LS4) = LtP13.1 )(L,S) , 

L +L 4S6 
tP12' )(L,S) = (1 _ L 2S4)(1 _ LS4)(1 _ L)(1 _ L 3) 

(2.9) 

(2.10) 

For the rectangular Young tableaus with six boxes we find 

_ 1 (L+L5S4+L5SI0+L7S6+L8S4+LIO+LIOS6+LI4SI[) tPP' )(L,S) - ---:-::~~----
- (I_L2)2(I_L6)(I_L 2S8) (I_L 2S4)(I_L4) 

+ L 2S2 + L 3St. + L 4S4 + L 5S M + L 5S 10 + L 5S 12 + L 6S6 + L 7S6 + L 7S8 + L 7S 10 + L 8SM + L 9S 12 

(1 - LS6)(1 - LS2) 
+ L 2S6 + L 4St. + L 4S8 + L 4S 12 + L 6S4 + L 6S6 + 2 L 6SM + L 6S 10 + L 8S4 + L 8S 10 + L lOS I[) 

(1 - LS6)(1 - L 2S4) 
+ L 4S2 + L 4S6 + L 5S2 + L 5S6 + 2L 6S2 + L 7S2 + L 7S6 + L 8S6 + L 9S2 + L 9S6 + L lOS 6) 

(1 - Ls2)(1 - L 4) 
= L -l tPI2 ,)(L,S) . 

The generating functions (2.1 )-(2.5), their antisymme­
tric counterparts, and (2.8) are given in Ref. 4. They are re­
produced here for the sake of completeness, because of 
changes in notation, and to correct misprints in Eq. (7.11) of 
Ref. 4. 
ofthe indicated symmetry based on any SU(2) representation 
R I • For example, the plethysm of exchange symmetry [22] 
based on the SU(2) representation R4 is given by the coeffi­
cient of L 4 in the expansion of tP[2' )(L,S), Eq. (2.10), namely, 

2+2S 4 +S 6 +2S 8 + S12. (2.12) 

This implies that the component of the direct product offour 
1= 4 representations (angular momentum 2) with exchange 
symmetry [22] contains the SU(2) representations 12, 8 

twice, 6, 4 twice, 0 twice. 
I t is interesting that the spinor representation R I never' 

appears in the symmetric or antisymmetric plethysm for 
three copies of any R (but it does appear just once in the 
plethysm of mixed symmetry [2,1]). 

3. RELATIONS BETWEEN PLETHYSMS 

Some seemingly unrelated plethysms apparently have 
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(2.11) 

identical SU(2) decompositions. 
Consider the plethysm of symmetry [x Y

] (rectangular 
Young tableau) based on the SU(2) representation RI , with 
I = y + z + 1. The six plethysms obtained by permuting the 
three positive integers x,y,z appear to have the same SU(2) 
content. That is, the multiplicities of (1.1) satisfy 

[x') _ [y') _ [zYJ - ( 1) ny+z_. I,s - nx+z-I,s - nx +y-I.s - etc. x,y,z;;;' . 
(3.1) 

Here the first equality holds also when z = O. In terms of 
generating functions 

L -y+ I tP[x'J(L,S) = L -x+ I tP[y'J(L,S) 

=F~+y_I(L,S)=etc. (3.2) 

The generating function F I in (3.2) is a fixed -I (I = x + y - 1) 
generating function for rectangular plethysms of y rows; its 
dummy L carries the number of columns. It is a special case 
(allA; = OexceptAy = L ) of the fixed-I generating functions 
for general plethysms described in Ref. 4. 

With the help of branching rule tables 7 we have checked 
numerous examples of (3.1). Although no complete proof 
exists, the following argument makes (3.1) extremely plausi-
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ble. First consider the dimension of the plethysm [xY ] based 
on I = y + z - 1. It is the dimension of the representation 
(0, ...• 0,x.0 •... ,0) (yth label = x; for definition of the notation 
see Ref. 4) of SUI y + z). This is found to be 

x+y+z~1 x~1 y~1 z~1 

II i! IIj! II k! II h! 
j~O j~O k=O h=O 

(3.3) 

which is symmetrical in x. y,z. Also the highest representa­
tion R s in the plethysm has s = xyz. again symmetrical in 
x.y,z. 

As the second case. consider the plethysm of symmetry 
[x.l y ~ I] (hook-shaped Young tableau) based on RI with 
1= y + z - 1. The two plethysms obtained by permuting x 
and y. keeping z fixed, seem to have the same SU(2) content. 
That is the mutiplicities satisfy 

[x,1 ,. ') _ [y,I' ') 
ny+z~ I,s - nx+z~ I,s' x.y>O. (3.4a) 

and the generating functions are related by 

LX tP[x,I' I )(L,s) = LY tP[yy-' )(L,s). (3.4b) 

We have applied the same checks as for the relations (3.1). 
This time the dimension of the plethysm is 

(x+y+z-l)! 

(x + y - l)(x - l)l(y - l)!zl • 

and the highest s is 

z(x + y - 1) + 1. 

both symmetric in x and y. 

(3.5) 

(3.6) 

We have a complete proof of the relations (3.1) for x = 1 
[they then include the relation (3.4) with x = 1]. Begin by 
showing 

[I'J _ [yl ( 0) 
ny+z~l,s-nz.s y> • 

which is equivalent to the conjectured Eq. (8.1) 

tP[II')(L.S) =LP-I tPlpl(L.S). O<p, 

(3.7a) 

(3.Th) 

of Ref. 4. Equation (3.7) states that the symmetric plethysm 
ofy boxes based on the SU(2) representation R z has the same 
SU(2) content as theantisymmetric plethysm ofy boxes 
based on R z + y ~ I' The proof proceeds by showing that the 
weights in the antisymmetric plethysm are identical to those 
in the symmetric one. Start by giving all y weights their 
maximum values; in the symmetric plethysm they are all 
equal to z; in the antisymmetric case they are respectively 
z + y - 1, z + y - 3, ... ,z - y + 1; in both cases the maxi­
mum total weight is zy. Now any other assignment of the y 
weights is obtained from the initial one by specifying z + 1 
integers ij satisfying 

z 

O<io<il < ... <iz ; I ij = Y ; (3.8) 
j~ 0 

ij is the number of weights which have been reduced by j 
from their original values; in the antisymmetric case, to 
make the ij unique it is agreed that no weight will jump past 
any other when their values are decreased. Since the same 
sets of ij describe the symmetric and antisymmetric weights. 
the two plethysms contain the same weights. and hence the 
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same SU(2) representations. Hence (2.7) and (3.7) are proved. 
Because of conjugation symmetry [the yth fundamental 

representation of SUI y + z) has the same SU(2) content as 
the zth] we have 

[ty) - [I') 0 
ny+z~ l,s - ny+z~ I,s' y, z> ; 

substituting (3.7) in (3.9) shows that 

n[yl = nlzl • 
z,s y,s 

(3.9) 

(3.10) 

Equation (3.10) represents the surprising (to us) result that 
the symmetric plethysm of y boxes based on R z has the same 
SU(2) content as the symmetric plethysm ofz boxes based on 
R y • In terms of generating functions. (3.10) implies that the 
Cayley-Sylvester fixed-l generating function FI (p,s) of Eq. 
(1.3) (see also Ref. 5) is equal to the fixed-symmetry tP[ P I(L,S) 
of Eqs. (2.1 H2.6) when I and P are identified with p and L, 
respectively. 

4. DERIVATION OF GENERATING FUNCTIONS 

To derive (2.11). start with Eq. (3.7) of Ref. 4. in which 
A I' A 3• A 4• A5 have been set equal to O. The result. 

.702' MI' M 2 ) 

= [1-A ~)(I-A2Mi)(I-A ~ M~)]~I. (4.1) 

is the generating function for 0(5) representations (labels 
carried by MI' M 2 ) contained in rectangular two-rowed 
plethysms (number of columns carried by A z) based on the 
(01) representation of 0(5). To convert (4.1) to the generating 
function for SU(2) representations contained in rectangular 
two-rowed plethysms based on R4 ofSU(2). substitute it into 
Eq. (23) of Ref. 2. the generating function for 0(5):J SU(2) 
branching rules. The form of(4.1) indicates that only the part 
of Eq. (23). Ref. 2, even in UI • Uz is required; call this part 
Y'(Ui, UL A ). Then. according to (3.2). we find 

L ~ I tPP' I(L.S) = L ~ 2 tPl2' I(L.S) = F; (L.S) 
= (1 - L 2) ~ I ;1'(L.L 2.S). (4.2) 

where tP13' I(L.S) and tP[2' I(L.S) are given in (2.11). 
We now sketch the derivation of the mixed-symmetry 

generating functions (2.9) and (2.10). For each Young tab­
leau it is straightforward to establish counting rules for 
weights. Thus for [2.1Z] each set off our distinct m's is count­
ed three times and a pair of equal m's with two distinct m's is 
counted once (the number of times a set ofm's is counted 
depends only on the partition of P. not on the particular m 
values.s One can then write a recurrence formula for multi­
plicites of (total) weights 

N12.I'1 - N12,I'1 + NII'I + N12.11 
I,m - I - 2, m - I I - 2, II/ I I - 2.m - I 

NII'I N12,11 + 1 - 2.m + 1 + 1 - 2.m + 1 

11'1 11'1 + N 1 ~ 2,m ~ 21 + N 1 - 2.m + 21 

+ NI~2.m + 2NI~12.m + NI~2.m~1 
+N)~2.m+I' (4.3) 

N ),-:"1 is the multiplicity of the total weight m in the plethysm 
of symmetry [A ] based on the representation R I; the terms on 
the right-hand side of(4.3) correspond to choices of weights 
from the representation RI ~ z together with zero. one. two 
or three weights ± I. Using n ).~ I = N i,-:"I - N ),-:"1 + 2 • one 
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finds the recurrence formula 

n[2.1'1 I.s 

= n)2.I~~s + n) ~12.s _ I 

n[I'1 + n[2.11 n[2.11 - 1- 2.1- s - 2 1- 2.s - I - 1- 2.1- s - 2 

[1-'1 [2,1 I [1'1 [1'1 
+nl - 2.s+1 + nl _ 2.s+ 1 + nl - 2,s-2/- nl_2.2/_s_2 

+ [1'1 + n[21 + 2n[I'1 n 1- 2,s + 21 1- 2,s 1- 2,s 

+n)lJ2,s_l- n)lJ2'/-S_2 + n)lJ2,s+I' (4,4) 

It is understood that n ).; I vanishes if either subscript is nega­
tive. Now multiply (4.4) by L 'Ss and sum over I and s. The 
result is a recurrence formula 

<P12.1'I(L,S) 

= LVJ[2,1'I(L,S) + L 2S2rP [I' I(LS,S) - L 2rP[I' I (LS,S -I) 
+ L 2S2 <P12,1 I (LS,S ) - L 2 rP{2,1 I(LS,S -I) 

+ L 2S -2 <P[l' I(LS -I,S) 
+ L 2S -2 rP[2.1 I(LS -I,S) + L 2S4 rP[I' I(LS2,S) 
- L 2S2 rP[1' I(LS2,S -I) 
+ L 2S-4 <p[I'l(LS -2,S) + L 2 rPI21(L,S) 
+ 2L 2 <p[I'I(L,s) + L 2S2 <P[l I(LS,S) 

- L 2 <P[I I(LS,S -I) + L 2S -2 rP[1 I(LS-I,S). 
(4.5) 

It is understood that negative power of S are to be discarded 
on the right-hand side of(4.5); this may be done with the help 
ofEq. (7.6) of Ref. 4. 

Relation (4.5) expresses the generating function rP[2,1' I 
of (2.9) in terms of generating functions of lower plethysms 
which are all known. 

The derivation of rP[2, I' I(L,S) described above can be 
repeated for any plethysm. It turns out, however, that this is 
not always the most practicable way of deriving a fixed 
plethysm generating function. The generating function for a 
plethysm with a rectangular Young tableau can be found 
from an appropriate fixed-I plethysm; thus the method used 
to derive Eq. (4.2) gives very simply the result 

A. (L S) _ L~(O,L,S) 
'1'[2' I ' - 1 _ L ' (4.6) 

in agreement with (2.10); the function ~ in (4.6) is given by 
Eq. (23) of Ref. 2. 

It is also possible to find a generating function by in­
specting plethysms of the symmetry in question for a number 
of low values of I (method of elementary multiplets9

). The 
plethysms are found from SU(I + 1)::J SU(2) branching rules. 

A simple label-counting argument shows that the num­
ber of denominator factors in a fixed-plethysm generating 
function equals 

r+(p-l)b, (4.7) 

where r is the number of representation labels (rank) and b is 
the number of internal labels of the group in question. For 
SU(2), one has r = b = 1; therefore the number of denomina­
tor factors is p, the number of boxes in the Young tableau of 
the plethysm. For SU(3) one has r = 2, b = 3, and the num­
ber of denominator factors is 3p - 1. 

The symmetry (3.7), which relates symmetric to anti­
symmetric plethysms, can be used to simplify a result of Ref. 
4. Equation (7.5) of Ref. 4, satisfied by generating functions 
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rP[ I p ](L,S) for antisymmetric plethysms implies an analogous 
equation for generating functions rP[ p I(L,s) for symmetric 
plethysms. It turns out to be 

(1 - L 2) rP[ p I(L,S) 
= LS p rP[P-1 I(LS,s) + LS -p rP[p- I I(L IS, S) 

- LS p- 2 rP p_1 (LS,l/S) 

+rP[p_21(L,S)+8pO(1 +L)+8pl ' (4.8) 

which replaces the much more complicated (7.10) of Ref. 4. 
Negative powers of S are to be discarded from the expansion 
of the right-hand side of (4.8); <p[ p I(L,s) = 0 if p is negative. 
Similarly, Eq. (7.9) of Ref. 4 is equivalent to the much 
simpler 

[pI _ [pI + [p- II n,s - nl _2,s nl_ I.s-I-p+ I 

+ n~~l?_I,s+ I+p- I - n)I'I./~p -s- 3 

+ nU - II + 8,,0 8108,Q + 8,,08, I 8,Q + 8pI D,o D,Q . 
(4.9) 

n)/I = 0 if any subscript or superscript is negative. 

5. CONCLUDING REMARKS 

(1) Fixed-I generating functions may be reinterpreted as 
generating functions for fixed plethysms of type [p] or [1 P] 
[Eq. (3.10)]. The form in which they are given by Franklin 
and Sylvester is inconvenient because their series expansions 
contain negative terms and consequent cancellations. They 
are being rederived in completely positive form. 10 

(2) Fixed-plethysm and fixed-I generating functions are 
not the only kinds one might define. For example consider 

Y(P,L,S)= ! n)/I PPL'Ss , (5.1) 
p,/,s=O 

the generating function for all symmetric plethysms. It con­
tains the fixed-I generating function (1.3) as the coefficient of 
L I and the fixed-plethysm generating function <p[ p I(L,S) as 
the coefficient of P p. 

Multiplying Eq. (4.8) by P p and summing over pleads 
to a functional equation satisfied by Y(P,L,S), 

(1 - L 2 _ p 2) Y(P,L,S) + ~ Y(PS,LS, ~) 

PL (P L ) - PLSY(PS,LS,S) - s Y S' S ,S 

= 1 + L + P . (5.2) 

Negative powers of S are to be discarded from the expansion 
of the left-hand side of (5.2). The symmetry [Eq. (3.10)] of 
Y(P,L,S) in P and L is obvious in (5.2). The solution of (5.2) 
would contain all the results hitherto obtained for symmet­
ric and antisymmetric plethysms, and much more. 

The generating function 

d(P,L,S) = ! nit'] P PL 'Ss, (5.3) 
p,l,s = 0 

for all antisymmetric plethysms is related to Y(P,L,S) be­
cause of(3,7). We find 

d(P,L,S) =L -1[Y(PL,L,s) - 1]. (5.4) 

In deriving (5.4) one has to take into account also the trivial 
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relation <P[l" I(L,S) = <PIO I(L,S) = (I - L )-1 excluded in 
(3.7). 

Besides fixed-l and fixed-plethysm generating functions 
one may define symmetric and antisymmetric fixed-s gener­
ating functions defined by the summations 

! nJ/1 pp L 1 and ! n)s\P] p P L I. (5.5) 
p.I~O p.I~O 

They are the coefficients of S sin Y(P,L,S) and d(P,L,S), 
respectively. No closed expression is known for such gener­
ating functions. 

(3) Fixed-plethysm generating functions are not re­
stricted to the group SU(2). For example 

FI2 I(A,B,a,b ) 
I +ABab +A 2Bab 2 +AB 2a2b 

= (I-Aa2)(I-Bb 2)(I-A 2b 2)(I_B 2a2)(I_AB) , 

and (5.6) 

F[1' I(A.B,a,b) 
Ab + Ba +ABab +A 2B 2a2b 2 

= (I_Aa2)(I_Bb2)(I_A2b2)(I-B2a2)(I_AB) , 

are generating functions for the symmetric and antisymme­
tric parts of the Clebsch-Gordan product of two equal repre­
sentations ofSU(3). The dummies A,B play the role of Lin 
the case ofSU(2); they carry the labels of the representations 
being multiplied; a,b play the role of S and carry the labels of 
the representations into which the product decomposes. 

(4) Using the well known relation4 between Young tab­
leaus and irreducible representations of the groups SU(n), 
one can translate the symmetries (3.1) and (3.4) into the equa­
lity of dimensions of certain representations of SU(n) groups 
of different ranks. Denoting a representation of SU(n) by 
non-negative integers A. i , i = I, ... ,n, equal to the number of 
columns oflength i in the corresponding tableau, one con­
cludes from three of the six relations (3.1) that the 
representations 

A. i = YOix, i = 1,2, ... ,x + z - 1, 

Ai = ZOiY' i = 1,2, ... , Y + x - I , (5.7) 

Ai = xo'z, i = 1,2, ... ,z + Y - I , 

of the groups SU(x + z), SUI Y + x), and SU(z + y) have the 
same dimension for any positive integers x,y,z. For example, 
putting x = I, y = 2, Z = 3, one gets the representations 
(0010), (200), (03) ofSU(5), SU(4), SU(3), all being of dim en­
sion ten. 

Similarly from (3.4), one finds that the representations 

Ai =(x-I)oil +OiY' i= 1,2, ... ,y+z-l, 
(5.8) 

Ai=(y-I)OiJ +Oix, i=I,2, ... ,x+z-l, 

ofSU( y + z) and SU(x + z) have the same dimension for any 
non-negative x, y,z. An example is the coincidence of dimen­
sions for (WI) ofSU(4) and (21) ofSU(3). 

(5) It is also possible to define fixed-plethysm generating 
functions based on reducible representations. Rather than 
discuss the general problem we mention here some simple 
examples for the group SU(2). Define 
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A.. (L L S) ~ n lAI LI'LI,ss (5.9) 'PIA I I' 2' = ~ 1,I,s \ 2 , 
11,11,s=0 

where njj,! is the multiplicity of Rs in the plethysm [A ] based 
on the reducible representation R I, e R I, . Each <P [A I is a sum 
of generating functions corresponding to all possible split­
tings of the Young tableau [A ] into two disconnected tab­
leaus. For that purpose the trivial tableau' with zero boxes 
has to be taken into account. The lowest cases then are 

<p[\ I(L\,L2,s) 

='0 +0·=------
(I - L tl( I - L 2S ) 

I + , 
(I-L\S)(I-L2) 

<P[2 I(L1,L2,S) 

=. m + 00 + m . 

(I-LI)(I-L~)(1-L2S2) 

1 + --------------------
(I - L\L2)(1 - L\S)(I - LzS) 

I 
+ 2 2 ' (I -L dl -L,S )(1 - L 2) 

<p[" I(L,,L2'S) 

=. B + 00 +B· 
L2 

(I-L,)(I-L~)(I-L2S2) 

I +------------
(I-L,L2)(I-L\S)(I-LzS) 

L, 
= 2 2 ' (1 - L 1 )( 1 - L ,S )( I - L 2) 

<P[3 I(L1,Lz,S) 

=·cm +om +mo+cm 
1+ L ~S3 

(I-Ltl(I-L~)(1-L~S2)(I-LzS3) 

1+1 
+ 2 2 2 (I - L 2 )( I - L 1 L 2)( I - LIS)( I - L 2S ) 

(5.10) 

(5.11) 

(5.12) 

+ {L I-L2 J ' (5.13) 

<P[I'I(L I,L2,S) 

='§+oB +8 o +§' 
L~ +L~S3 

=-----------=------==-----------
(I - LI)(I - L ~)(1 - L ~S2)(1 - L 2S

3) 

L2 +LIL~S 
+ 2 2 2 (I-L2)(I-L IL2)(I-L IS)(I-L2S ) 

+ {L 1-L2 L (5.14) 

<P[2.II(LI'L2,S) 

= .. EP+( 08+ OeD) 

+( 80+ coo )+ EP· 
LzS 
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(5.15) 

In (5.10)-(5.15) we indicate symbolically the correspondence 
between a split Young tableau and its contribution to 
<p[). I(L 1,L2,S). In each split tableau the left factor refers to 
the variable L 1, the right one refers to L 2 • The variables S 
from each factor have been combined by means of the gener­
ating function for SU(2) Clebsch-Gordan series (Eq. (10) of 
Ref. 11]. 

(6) Finally, one may wonder why the symmetries dis­
cussed in Sec. 3 are limited to plethysms with Young tab­
leaux of two types only (rectangular and hook shaped). Is this 
not a particular case of a more general symmetry? We have 
only a partial answer to that question: The symmetries [cf. 
(3.1), (3.4a), (3.7a)] imply relations between two generating 
functions [cf. (3.2), (3.4b), (3.7b)]. If the two generating func­
tions in each of these relations are to differ by a power of the 
variable L, then the symmetries we describe are the only ones 
possible. 

Note added in proof' B. G. Wybourne has pointed out to us 
that Eqs. (3.7a) and (3.10) were known to Murnaghan. See 
F. D. Murnaghan, Proc. Nat. Acad. Sci. 37,439 (1951) and 
40,832 (1954); also B. G. Wybourne, J. Math phys. 10,467 
(1969). 
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It is the aim of this paper to obtain the general form ofU(n) raising and lowering operators. The 
raising and lowering operators constructed previously by several authors are then compared. The 
Hermiticity properties of these operators are also investigated. The methods presented extend, 
with trivial modifications, to the orthogonal groups. 

PACS numbers: 02.20.Qs, 02.20.Rt 

1. INTRODUCTION 

In the 1960's a great deal of interest was generated in 
extending the angular momentum techniques ofWigner and 
Racah to the general unitary and orthogonal groups. This 
has led to the introduction of the group-theoretical concept 
of operators that lower or raise the highest weights of repre­
sentations of a subgroup contained in an irreducible repre­
sentation of the group. Such operators may be regarded as a 
generalization of the raising and lowering operators L + ap-
pearing in the theory of angular momenta. -

Such operators were first constructed for the unitary 
groups by Nagel and Moshinsky! who applied them to the 
analysis of many body problems.2 Subsequently raising and 
lowering operators were constructed for the orthogonal 
groups by Pang and Heche and Wong.4 Following the defi­
nition of Nagel and Moshinsky! the lowering (raising) oper­
ators shall be polynomials of the group generators that, 
when a~ting on a basis vector of an irreducible representa­
tion of the group which is of given weight with respect to the 
subgroup, lower (raise) the weight. Furthermore, they shall, 
when acting on a basis vector of highest weight of the sub­
group transform it into a basis vector of highest weight of a 
lowered (raised) irreducible representation of the subgroup. 

It is important to note that the raising and lowering 
operators for a subgroup are essentially only defined by their 
action on a state of highest weight for the subgroup. We see 
therefore that such operators are not unique. Hence the rais­
ing and lowering operators constructed previously for O(n) 
and U(n) are only one particular solution to the problem. 

Recently Bincer5 obtained raising and lowering opera­
tors for the orthogonal and unitary groups using methods 
based on the characteristic identities satisfied by the infini­
tesimal generators of the group.6 These operators of Bincer 
appear in a compact product form which is useful for manip­
ulations. In subsequent independent work of the author7 an 
alternative set of raising and lowering operators for O(n) and 
U(n) were constructed using techniques similar in content to 
Bincer's. Our operators, like those of Bincer, may also be 
written in a compact product form. 

Recent work of the authorS shows how these techniques 
may be extended to obtain the matrix elements of the group 
generators. Central in this approach is the concept of"simul­
taneous shift operator" which shifts the representation la-

")Present address: School of Physical Sciences, The Flinders University of 
South Australia, South Australia, 5042. 

bels ofU(n) and each of its canonical subgroups in a certain 
prescribed way. These operators may therefore be regarded 
as generalizations of the raising and lowering operators dis­
cussed in this paper. A general procedure for constructing 
raising and lowering operators for a general semi-simple Lie 
group is discussed in Ref. 7. 

It is the aim of the present paper to investigate the con­
nection between the various raising and lowering operators. 
We shall obtain the general form for a raising (resp. lower­
ing) operator for U(n). It shall be shown that the raising and 
lowering operators constructed in Refs. 1 and 5 are identical. 
By contrast the operators constructed in Ref. 7 are shown to 
be different. The behavior of these raising and lowering oper­
ators under Hermitian conjugation is also investigated. It 
shall be shown that the raising and lowering operators con­
structed in Ref. 7 are unique with respect to the property of 
being Hermitian conjugates of one another. 

The techniques employed in this paper are similar in 
content to Bincer's except for our use of the U(n) contragre­
dient identity. This enables raising operators for U(n) (which 
are absent in the work of Bincer) to be constructed in anal­
ogy with the lowering operators. 

Although we shall only discuss the unitary group it is 
clear that the arguments extend to O(n) with little modifica­
tion. Also it is of interest to extend these results to the non­
compact groups O(n,l) and U(n,I). Patera9 has shown that 
the Nagel-Moshinsky operators are also a suitable choice for 
U(n, 1) while Wong lO has shown that his operators for O(n) 
extend toO(n, 1). Wong and Yeh!! have also recentlyinvesti­
gated the extension ofBincer's operators to O(n, 1). One may 
follow through their derivation to conclude that the raising 
and lowering operators constructed in Ref. 7 also extend to 
O(n,l) and U(n,l) as does any general raising (resp. lower­
ing) operator for O(n) and U(n) (defined in the sense ofNa­
gel and Moshinsky). 

2. THE CHARACTERISTIC IDENTITIES 

The generators a~ of the Lie group U(n) may be assem­
bled into a square matrix a which, on an irreducible repre­
sentation of the group (finite or infinite dimensional) with 
highest weightA = (A!, ,.1,2' ... , An), satisfies the polynomial 
identity6 

II 

II (a - Ar - n + r) = O. 
r -= I 

This polynomial identity may be written in a representation 
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independent way as 

fI (a - a,) = 0 , (1) 
r= 1 

where the operators a, lie in an algebraic extension of the 
center of the enveloping algebra. 12 (Note that any symmetric 
combination of the a, necessarily lies in the center Z. In 
particular the coefficients ofthe identity (1) are central ele­
ments.) The eigenvalues of these operators on any represen­
tation admitting an infinitesimal character X;. (or equiv­
alently on any irreducible representation with highest 
weight A ) are given by 

X;. (aJ = A, + n - r. 

Associated with the matrix a is its "contragredient" 5 
with entries given by 

-i i aj = - a j • 

The matrix 5 satisfies the polynomial identity 

fI (5 - a,) = 0 , (2) 
,= I 

where the roots a, arere1ated to thea, by a, = n -1 - a,. 
By virtue of the identities (1) and (2) one may construct 

projection operators 

P[r] = II (~-a~), 
1#, a, - a l 

which enables arbitrary functions of the matrices a and 5 to 
be defined by setting 

P(a) = iP(a,)P[r) , 
r= ~ 

P(ii) = i P(aJP [r) . 
r= 1 

The projection operators P [r) and P [r] are well defined 
elements of an extension of the enveloping algebra although 
they need not be defined on representations where the eigen­
values of some a, andak (r#k ) coincide. This however can­
not occur on finite dimensional representations [nor on uni­
tary representations of the noncompact groups U(p,q)] and 
hence, for the applications we have in mind, the projectors 
P [r] and P [r] are always well defined. 

If t/J (resp. t/J t) is a vector (resp. contragredient vector) 
operator ofU(n) then we may resolve t/J and t/Jt into shift 
vectors6 

1/1 = i 1/I[r] , t/Jt = ± t/Jt[rJ , 
r= 1 r= 1 

which alter the U(n) representation labels according to 

a k t/J[r) = t/J[r ](ak + Ok,), 

akt/Jt[r] =t/Jt[r](ak -Ok,)' 

(Note that this shift property also extends to infinite dimen­
sional representations.) Such shift operators may be con­
structed by applying the projectors P [r) and P [r): 

t/J[r] = P [r]t/J = t/JP [r) , 

t/Jt[r) = P [r]t/Jt = t/Jtp [r) = (t/J{r])t . 
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It was shown in Ref. 7 (see also Ref. 13) that ifvo is an 
arbitrary maximal weight state ofU(n) with highest weight 
A = (AI, ,1,2' ... , An) then 

P [r) ~vo = 0 , for j> rand i arbitrary, 
(3) 

P [r]/vo = 0, for j<r and i arbitrary. 

As a consequence of (3) we see that on the maximal weight 
vector Vo the shift vectors t/J[rJ and t/J t[r] must satisfy 

t/J[r]ivo=O, for i<r, 
(4) 

t/Jt[rLvo = 0, for i> r. 
Using the definition of vector operator equation (4) then im­
plies that t/J[r)' Vo and t/Jt [r), Vo are maximal weight states of 
weightA +.d, and A - .d" respectively. 

3. GENERAL RAISING AND LOWERING OPERATORS 

It is our aim here to determine the general form for U (n ) 
raising and lowering operators and to compare the operators 
constructed in Refs. 1, 5, and 7. 

Throughout we shall let t/J denote the U(n) vector oper­
ator with components t/Ji = ain +1 (i = I, ... , n) whose con­
tragredient has components t/Jti = a" +1 i' The operators 
t/J[r]' and t/Jt[r), will shift highest weight vectors ofU(n) in a 
finite dimensional irreducible representation ofU(n +1). 
These are the U(n) raising and lowering operators construct­
ed in Ref. 7. For convenience we denote them by t/J'n and 
t/Jtr

" , respectively. Finally we denote a maximal weight state 
ofU(n) [i.e., a semi-maximal state ofU(n +1)] by the pat-

tern I~::: + '). Here A,." +1 and Ai."' as usual, refer to highest 
weights of finite dimensional irreducible representations of 
U(n +1) and U(n), respectively. 

SupposenowthatR'" andL'n are arbitrary raising and 
lowering operators ofU(n) effecting the shifts 

[
Ai." +1 )_(Ai'" +1 ) , 

Ai." Ai•n + 0ir 

IA"n +1 )--1 Ai,n ~ .), 
A,.n A"n 8/r 

respectively. According to Nagel and Moshinsky such oper­
ators are of the form 

R rn = h (arja'" +1 , (5) 

L'n =aH1jh(a)j" (6) 

for a suitable polynomial h (x). 
Resolving t/J\ = an +1 i into its distinct shift compo­

nents allows us to write Eq. (6) in the form 

" L rn = z: 1/It{l],h (a,). (7) 
1= 1 

Now acting on the state 1 ~;:: ") the operators t/J t [11., 
1< r, vanish by virtue of Eq. (4). Hence, acting on the state 

11:::"), Eq. (7) reduces to 

L '" IA"n +1 ) = Z:t/Jt[J th (al) 1~"HI ) . (8) 
A"n /"",r Itn 

However each operator t/Jt [I ], (for J> r) effects the shifts 
;li,,,-A i ,,, - Oil' Hence in order to obtain the required shifts 
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we must haveh (a /) = o for I> r. Henceh (x) must be divisi­
ble by the polynominal II/>,(x - a /). In the limiting case 
where h (x) = III>'(x - a/) we obtain the operators con­
structed by Bincer.5 We have shown then that a general Iow­
ering operator is of the form 

t/J'nf3 + Lt/Jt[l ],f31 , 
1<, 

where f3 and f31 are invariant multiplies of the identity [or 
equivalently ofthe form an +1 jh (a'j, where h (x) is divisible 
by III> ,(x - al )]. 

Note also that the Nagel-Moshinsky operatorsL'n are 
of the form an + 1 j h (a 'j, for a suitable polynomial h (x) 
which, according to the remarks above, is divisible by the 
polynomial III> ,(x - a /). However it is well known that the 
Nagel-Moshinsky operators L'n are homogeneous of de­
gree n - r + 1 in the group generators from which it follows 
that h (x) is of degree n - r which is precisely the degree of 
III>,(x - a /). Accordingly we must have 

h(x)=cII(x-aJ, 
1>, 

where c is a constant dependent on the roots a l • 

From Eq. (8) acting on the state 11;::: +1) the Nagel-Mo­
shinsky operators L'n reduce to 

By comparing the normalization of our lowering operators 
t/Jt'n with the normalization of the L 'n the constant c may be 
determined. By this means we obtain 

(
a -al -1 ) c=II' . 

1>, a, - a l 

Hence the Nagel-Moshinsky lowering operators may be 
written 

L'n = an +1 jg(a'j, , (9) 

whereg(x) is the polynomial 

g(x) = II(x _ a l) (a, - al -1 ). 
1>, a, - a l 

These are essentially the operators constructed by Bincer5 

(up to multiplication by an invariant multiple of the 
identity). 

Equation (9) is just one representation of the Nagel­
Moshinsky operators. Expanding the polynomial g(x) into 
powers of x we may write 

g(x) = nfrxn -,- kSk II (ar - al -1 ), 
k~O I>, a,-a l 

whereSk is a polynomial in thea,(l > r). By replacing thea, 
with Lie algebra elements Cr = a'r + n - r we obtain the 
Nagel-Moshinsky operators in their original form. 1 

Using Eq. (4) one may show, by the same techniques, 
that a general raising operator [see Eq. (5)] is of the form 

R'n = h (aYjdn +1 , 

where h (x) is divisible by the polynomial II/<,(x - a l ). In 
terms of the matrix a a general raising operator may more 
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usefully be written 

R 'n = tin +1 g(ii)/ ' 

whereg(x) is necessarily divisible by III<,(x- iii)' The 
limiting case whereg(x) = III<,(x - iii) gives the raising 
analogue of Bincer's lowering operators (although these op­
erators do not appear in the work of Bincer). The raising 
operators of Nagel and Moshinsky may be writen 

R'n = III<, (a, - a l - 1 )(0 -a!l'jai
n+ 1 

a, -al 

= ain + 1 II(a _ iid,' (iir _- iii ~ 1). (10) 
1<, a,-al 

4. HERMITICITY PROPERTIES 

It was shown by Nagel and Moshinsky that their raising 
and lowering operators are not Hermitian conjugates [as one 
may show by comparing Eqs. (9) and (10)]. It is natural then 
to determine under what conditions the Hermitian conju­
gate of a raising operator is a lowering operator (and vice 
versa). We answer this by showing that our raising and low­
ering operators are unique with respect to the property of 
being Hermitian conjugates. 

In the last section it was shown that a general lowering 
operator may be written in the form 

L'n = t/Jt'J3 + Lt/Jt[l ]'f31 , (11) 
I<r 

wheref3 andf31 are constants dependent on the roots a l • 

Similarly a general raising operator may be written in the 
form 

(12) 

Comparing Eqs. (11) and (12) we see that (L 'n)+ cannot pos­
sibly be a raising operator unless f31 = 0 for 1< r; i.e., unless 
L 'n is an invariant multiple of t/Jt'n' (An analogous state­
ment holds for R ' n .) Accordingly we see that the raising and 
lowering operators t/J'n and t/Jt'n (constructed in Ref. 7) are 
unique with respect to the property of being Hermitian 
conjugates. 
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An extremely simple closed expression is obtained for the coefficients which appear in the 
expansion of a function of a special type about a displaced center. A conjecture about the 
vanishing of a certain coefficient which appear in the expansion of a Slater-type orbital about a 
displaced center is also proved. 
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1. INTRODUCTION 

Sharma) has obtained a general and closed expression for the coefficients which appear in the expansion of functions of a 
special type about a displaced center. In our review of Sharma's work, 2 we pointed out that the four summations in his 
expression for the coefficients bv (sILM) could very easily be reduced to two. In the present paper, we show that we can 
eliminate three of his summations· to obtain a simple expression for these expansion coefficients. Also we utilize our expression 
to prove a conjecture about the vanishing of the expansion coefficients Fk 'k (NLIM) appearing in the expansion of a Slater type 
orbital whenever k ' > I + N. 

To facilitate comparison with Sharma's work, we have used the notations of his paper throughout. 

2. DISPLACED CENTER EXPANSION 

Let (r,8,q, ) and (R,e,<p) be the spherical polar coordinates of the same point P with respect to parallel set of coordinate 
axes atA and B respectively where B is at a distance a from A along the positive z axis. In this situation q, = <p, We try to express 
a function 

(1/R lfNL(R )y~(e,<p), 

which is centered at B as 

(1/R lfNL (R )y~(e,<p) = I (1/r)a,(NLM la,r)Y/(8,q,), (1) 
I 

i.e., as a linear combination off unctions centered atA. 
The problem is to find a simple closed expression for the coefficients adNLM la,r) which appear in the Eq. (1) above. 
Sharma) obtained the following closed expression for these coefficients3 : 

where 

b (sILM) = (- W ((2L + 1)(2/ + 1)(L + M)!(/- M)!)1I2 
v 2 (L - M )!(I + M)! 

x I (- lY'+q+p'+q'22(P+p'-L-'1(2L - 2p)!(2/- 2p')!/[p!(L -p)!q! 
pqp'q' 

XIs - p - q')!(L + M - s - p - q + q')!P'!(/- p')!q'!(v - q - p')!(/- M - v + q - p' - q')!J, 

We shall adopt the following convenient conventions throughout the paper: 
(i) The factorial notation is used even when the argument is'not necessarily a nonnegative integer. Quite generally 

x!=r(x+ 1). 

(2) 

(3) 

(ii) The ranges of the summations appearing in the various expressions are omitted since these are fixed by the nonnegati­
vity of the arguments of the factorials with integral arguments. 

We remark that in Eq. (3) above, the presence of(L - p)!((1 - p)!) does not contribute any extra restriction on the ranges of 
the summations since from L - M;"O,q:>O, s - p - q';..O, L + M - s - p - q + q';"O(1 + M;..O, q;..O, s _ q _ p' 
;"0,1- M - v + q - p' - q';"O), we conclude that L - p;"O(1 - p;"O). This remark is useful since, the duplication formula 

(2z)! = r(2z + 1) = (1/.J 7T )22zr(z + 1)r(z + 1) = (1/.J 7T )22z(Z - ~)!(z)!, (4) 

for the gamma functions, enables us to replace 22p - 2L (2L - 2p)!/(L - p)! and 22p' - 2' (21 ~ 2p')!!(1 - p')!, by (1/-y 7T) 

(L - P - ~)! and (1/-y 7TH/ - p' - !)!, respectively. This results in an expression for the coefficient b
v 

(sILM) wherein the finite 
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p,p' summations can be performed using4 

L ( - 1),s (a - D)! = (a - b )!(a - c)! 
,s D!(b - 8)I(e - D)l b !c!(a - b - e)l ' (5) 

to arrive at 

bv(sILM) = Qt ((2L + 1)(21 + l)(L + M)!(/- M)!)1I2 
2tr (L - M)!(I + M)! 

X L ( - l)H q' , (I ~! - s + q')!(/- i-v + q)!( - M - ! + s + q - q')!(M - 2 + v - q + q')! 
qq' ., q!q !(s - q )!(v - q)!(L - M - s - q + q')!(l - M - v + q - q')!( - M - ! + q)!(M _ ! + q')! 

Our aIm IS to replace the double summation in the above equation by a single summation. First we use5 

(6) 

-:-:-::--:--.....:.(M~-~2 -':.+_v_---!...q...:.+-'q~')'_! ___ = L ( - L - ~ + s + v)! 
(M - ! + q')!(L + M - s - q + q')!(v - q)! pp! (v - q - p)!( - L - ! + v + s - p)!(L + M - s - v + q' + pi! ' 

and 

___ -'-I _-_M_-_Z ..... 1 +..:..-.s..,.:+--,q!....--.!q-!..')! ___ = L ( - / - ~ + s + v) 
( - M - ~ + q)!(l - M - v + q - q')!(s - q')! u O"!(s - q' - O")!( - I - ~ + s + v - O")!(I - M - s - v + q + O")! 
and perform the q,q' summations utilizing. 

L ( - 1),s (a + D)! = ( _ l)b alia - el! (5') 
,s D!(b - D)!(e + D)! b !(b + e)!(a - b - c)! 

which is essentially the same as Eq. (5) and can be obtained from it by taking b - 8 as the new b. This results in 

b (sILM) = (- W+M ((2L + 1)(21 + ll(L + M)!(l- M)!)1/2 
u 2~ (L - M )!(I + M)! 

X (L - ~ - s)!(l - ~ - v)!( - L - ~ + s + v)!( - I - ~ + s + v)! 

X (M - ! + s - 0"):( - M - ! + v - pI! 
~ a!p!(s - O")!(v - p)!(L + M - v - a + p)!ll - M - s + 0" - p)!( - L - ! + s + v - pI! 

( - I - ~ + s + v - O")!, (7) 

on making use of 

(M - ! + s - v + p - a)!( - M - ! - s + v + (T - pI! = r (M + ! + s - v + p - a)!r ( - M + 1 - s + v + 0" + p) 

tr =tr(_I)M+s+v+(T+P. (8) 
sintr(M + ~ + s - v - 0" + p) 

On comparing Eqs. (6) and (7) we note that though Eq. (7) still contains two summations, the number offactorials within 
the new summations is two less. 

Next we replace6 

( - M - ! + v - pI! 
(L + M - v - a + p)!(l - M - s + 0" - p)!( - I - ! + v + s - a)! ' 

by 

1 L ( _ l)t (L - ! - 0" - t )! 
(L + l - s - v)! , t !(L + M - v - 0" + P - t )!(I - ! + s + v - a - t )1 

= 1 L ( _ I)L + M + a + , ( - M - ! + t )! 
(L + I - s - v)! , (L + M - a - t l!( - v + p + t )!( - L - I - M - ! + s + v + t )1 

in Eq. (7) and perform the two 0" andp summations utilizing Eq. (5) and7 

'" 1 (a + e)l 
t' 81(a - 8)!(b - 8)!(e - b + 8)! = alb !c!(a + e - b )! 

(9) 

to obtain 

bv(sILM) = _1_ ((2£ + 1)(2/ + I)(L + M)!(l- M)!)1I2 (M - 1)I(L - s - ~)!(l- v - 2)!( -I-! + s + v)! 
2~ (L - M)!(I + M)I s!v!(L + 1- s - v)1 

X I ( - 1)' ( - M - ! + t )!( - L - ~ + s + v + t )! 
, t !(L + M - t )!( - L - ! + t )!( - L - 1- M - ! + s + v + t )! 

(10) 

In the above equation, the coefficient bv (s/LM) has been expressed as a single summation though the expression lacks 
symmetry between L and I. But we can indeed restore it by making use of the type of arguments given above to obtain the final 
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expression 

bv(sILM) = (- W [(2L + 1)(2/ + l)(L + M)!(L - M)!(I + M)!(/- M)!] 1/2 
21T 
(L - ~ - s)!(1 - ! - v)! ~ ( - M - ! + s + v - t )! 

X k ' s!v!(L + 1- s - v)! t t !(L - M - t )!(I - M - t )!( - M - ! - t )!(2M + t )! 
which has the obvious symmetries 

bv(sILM) = bv(slL ( - M)) = bs(vLIM)( - l)L + I. 

(11) 

(12) 

The above two equations are the main results of the present paper. In a future publication, we hope to present interesting 
applications of our results. We conclude this paper by proving that the coefficient Fk 'k (NILM) in Sharma's paper indeed 
vanishes for k ' > N + I. This result was conjectured by Sharma by noting that it leads to physically correct large r behavior of 
the a's for Slater orbitals. 

3. Vanishing of Fk'k (NILM) for k' > I + N 

The coefficients Fk, k (NILM) are expressed in terms of 
the coefficients bv(sILM) byB 

bv(sILM)(N - L + 2s)! 
Fk 'k (NILM) = ~ , 

~ (k' - 2v)!(N - L - k - k' + 2s + 2v)! 

which takes the form [on using Eq. (11) and writing s = u - v] 

Fk'k(NILM) = i.!t [(2L + 1)(2/ + l)(L + M)!(L - M)!(/ + M)!(/- M)!] 1/2 
21T 
L (-M-!+u-t)! E

k
" 

tu t!(L -M - t)!(/-M - t)!( -M -! - t)!(2M + t)!(L + 1- u)!(N -L - k - k' + 2u)! 

where 

E _ (L - ! - u + v)!(1 - ! - v)!(N - L + 2u - 2v)! 
k' - ~ v!(u - v)!(k' - 2v)! . 

We show below that the quantity E k , vanishes whenever k' > 1+ N. This will establish that Fk'k(NILM) = 0 for 
k'>I+N. 

(13) 

(14) 

(15) 

Now fromN - L + 2u - 2v;;;.0,!(N - L ) + u - v;;;.O. Suppose initially that !(N - L - k') + u is an integer (necessarily 
nonnegative since from Eq. (14) N - L - k' + 2u;;;.k;;;.0). Then 

[!(N-L)+u-v]! _ (!(N-L))!H(N-L-k')+u)! - L - - (16) 
(u - v)![(k'/2) - v]! - pp' (!(N -L -p)!H(N -L - k') + u -p)!(!( -N +L + k') - v +p)! ' 

and 

(/-! - v)!H(N - L - 1) + u - v)! = L ( _ W (/- k '/2)!(!(N - L - k') + u)!(!(N - L - k' - 1) + I + u - v - u)! ,(17) 
(!(k' - 1) - v)! " u!(/- (k '/2) - u)!(!(N - L - k') + u - u!) 

which are valid since on the right, we have terminating series. In Eq. (17), we will have to replace (/- k '/2)!/(/ - k '/2 - u)! by 
( - 1)"( -I + (k '/2) - 1 + u)!/( -I + (k '/2) - I)! in case 1- (k '/2) is a negative integer. Note also that for a Slater-type 
orbital N - L;;;.O. 

Substituting from Eqs. (16) and (17) in the expression for Ek , in Eq. (15), we note that the v-summation can be performed 
which results in 

E
k

, = 2"'- L-k'+2u L [!(N - L )!(I- (k '/2)]![(!(N - L - k') + U]2 

"p p!u!(l- (k '/2) - u)!(!(N - L) - pI! 
X (L -! - u)!H(N + L - k') + 1- u)!(N - L + I-! - k' + u - u - pI! (18) 

(!(N - L - k ') + u - u)!(!(N - L - k ') + u - p)!(!( - N - L + k') + p)!(N + 1 - k' - u - pI! 

Now !(N + L - k') + 1 - u = (L - 1 - u) + (!(N - L - k ') + u - u);;;.O, since each of L + 1 - u, !(N - L - k') + u - u is 
nonnegative whereas for k' >N + I, N + 1- k' - u - p <0. ThusEk , = 0 for k' >N + I. 

However, if !(N - L - k ') + u is not an integer, !(N - L - k ' - 1) + u will be a (nonegative integer) and we can modify 
the above argument slightly to arrive at the same conclusion. 
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'R.R. Sharma, Phys. Rev. A 13,517 (1976). 
2Review No. 15183 by M.A. Rashid published in the Math. Rev. 53 (June 
1977). 

'This is obtained by combining Eqs. (16a) and (17) in Ref. 1. 
4See Eq. (A. 1.2) in A.R. Edmonds, Angular Momentum in Quantum Me­
chanics (Princeton U.P. Princeton, New Jersey, 1960). 
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'This is an application of Eq. (9) in reverse. 
"This is an application of Eq. (5) in reverse. 
7See Eq. (A.I.I) in A.R. Edmonds Angular Momentum in Quantum Me­
chanics (Princeton U.P., Princeton, New Jersey, 1960). 

"See Eq. (23c) in Ref. 1. 
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On some properties of solutions of Helmholtz equation a) 

A. G. Ramm 
University of Michigan, Department of Mathematics, Ann Arbor, Michigan 48109 

(Received 12 May 1980; accepted for publication 12 September 1980) 

We give a new method to prove results of the following type. Let: (V2 + k 2)U = 0 in 
DR = Ixlxl:>R J, k 2 > O. (1) If uEL 2(DR), then u=O in DR' (2) If Ixlmu(x)_O as Ixl-oo, 

xi + ... + x~ _, ';;;cx;; 2
P,p > 0, m = 1,2,3, ... , Ixl(au/alxl/ - iku) ---- 0 then u=O in DR' 

PACS numbers: 02.30.Jr 

1. INTRODUCTION 

Some of the above results were proved by a different 
method in Refs. 1 and 2, but the new method of the proof is of 
interest in our opinion. We start with the following theorem. 

Theorem 1: Let 

(V2+k2)U=O inDR' k2>O. (1) 

and 

(2) 

Then U==O in DR' 
Proof From (1) and (2) it follows that (see Appendix) 

VuEL2(DR) (3) 

and 

u(x) = r {g+ (x,t,k ) ~ _ u ag+ (x,t,k )} dt 
JSR aN aN 

r (au ag-) 
= JS

R 

g- aN - u aN dt, 

(4) 

where N is the unit normal to the sphere S R = I x: Ix I = R I 
directed outside of DR' 

± (x k) = exp( ± ik Ix - y \) 
g ,y, 4 I I ' 1TX-y 

Ix - yl = (r - 2rlylcosX,Y + lyI2)I/Z, r = Ix\. (5) 

Now the main idea can be explained. We analytically contin­
ue functions (4) on the complex plane z = r exp(i¢) (see also 
Refs. 3-5). From (4) it follows that (w =xlxl-1 ) 

exp(ikz) 
u(x) = u(r,lU) = U(Z,lU) = fl(Z,lU) 

z 

_ exp( - ikz)j ( ) 
- Z Z,lU , 

Z 

where/l(z,lU) andlz(z,lU) are analytic in z for Izi > Rand 
bounded near infinity. Thus 

J;(Z,lU) = IJ;s(lU)z - s, j = 1,2. 
s= 0 

(6) 

(7) 

But in this case (6) implies thatft = Iz=O. Indeed, if z = iy, 
y- + 00 then ([exp(ikz)]/z)iJ(Z,lU) in (6) goes to zero expon­
entially, while ([exp( - ikz)]/zlfz(Z,lU) goes to infinity expon­
entially unlesslz=O. Thus U(Z,lU)==O, u(r,lU)=O in DR' 

Let us show how the idea works in a different problem. 

a'Supported by AFOSR 800204. 

Ixl .", 

2. RATE OF DECREASE OF SOLUTIONS TO 
HELMHOLTZ EQUATION 

Theorem 2: Let (1) hold, u satisfies the radiation condi­

tion and 

Ixlmu(x)-O as X-oo, p,;;;clx31- P 

c = const> 0, O,;;;p, m = 1,2,3, ... , (8) 

where p = (xi + x~ )112, then u=o in DR' 
Proof Since u satisfies (1) and the radiation condition, 

we can use the first equality in (4) and the third equality in (6). 
Ifp = 0 the condition (8) says that u(x) decreases faster than 
any negative power of Ixl at infinity in the cylinder p,;;;c. 
From this and (6) it follows that/l=O for lU directed along 
the axis x 3 • By shifting the origin a little, we conclude that 
I, = 0 along any ray in the cylinder p';;;c. Thus u=O in this 
cylinder and by unique continuation theorem for solutions 
of homogeneous elliptic equations U-O in DR' If P > 0 our 
argument is a little more complicated. In this case let us write 
the equation p = clx3 1- P in the spherical coordinates: 
r P + 'cosPO·sinO = c. For large r the angle 0 is near 0, and 
o = 0 (r) is an analytic bounded function of cr - , - P for large 
r. Let us prove that u = 0 in the body r P + 'cosPOsinO';;;c. 
From this and the unique continuation theorem we con­
clude that u=o in DR' Let us take in (4) x = (r,Ob(r)), where 
Ob (r) is constructed as 0 (r) but instead of c we use 0 < b < c. 
For simplicity we shall write 0 (r) instead of Ob (r) in what 
follows. Then lU = lU(r) and lU(r) is an analytic and bounded 
function of the argument br - , -- P for large r. From this it 
follows that/, (r,lU(r)) will be analytic and bounded near infin­
ity on an appropriate Riemann surface (which by the way 
will be finite-sheeted for rational p. Since we can always find 
a rational number PI> P such that the body r' + PcosP 0 
sinO = b contains the body r' + P'cosP'OsinO = b, we can 
consider only finite-sheeted Riemannian surfaces). If/,(z) de­
creases faster than any negative power of z on such a surface, 
11=0. Thus u(x) = 0 on any curve r P + 'cosPOsinO = b,;;;c and 
we conclude that u=o in DR' 

3. GENERALIZATIONS 

(1) We can consider general elliptic equations with con­
stant coefficients in ]RN. 

(2) It is possible to consider the case when u(x) is a solu­
tion of (I) in a domain with infinite boundary. 
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1. APPENDIX 

Lemma 1: From (1) and (2) inclusion (3) follows. Let 

g(r)":}; dT. r is! )u (r, w) 12 dw, 

g (r) increases monotonically and g( 00 ) < 00, 

g'(r) = r Is, lu(r,mW dm,>O,g" = 2r L, lul 2 dm 

+ 2?- --' u(r,m) dm. l' au(r ) 

s ar 

Here we assume without any loss of generality that u is a real 
valued function [since the coefficients of Eq. (1) are real]. If 
g"(rn)~ as rn-oo, then 

r ~udS, -0 as 
)s," ar • (AI) 

But from (1) it follows that 

JR'Slxl~rn IVul
2 

dx=k2 fR~lxl~rnluI2 dx 

+ 1 u!!!!.... dS r + f s u!!!... dS R . 
sr., dr n R aN 

(A2) 
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From (AI), (A2), and (2) we get (3). Ifg"(r) does not go to zero 
whatever sequence r n - 00 we choose, then \g" \ '> E > 0 for 
ail r,> R I,>R. If g" ,>E, then g'(r)_ + 00. This is impossible 
because of (2/. If g" <: - E, then g'(rJ- - 00· Again this is 
impossible because of (2). This completes the proof. 

'0. Arena and W. Littman. "Farfield behavior of solution to P.D.E. ... Ann. 
Sc. Norm. Super. Pisa 2B, 807-27 (1972). 

2T. Kato, "Growth properties of solutions of the reduced wave equation 
with variable coefficient," Commmun. Pure Appl. Math. 12,402-25 
(1959). 

3 A. G. Ramm, "About the absence of the discrete positive spectrum of the 
Laplace operator of the Dirichlet problem in some domains with infinite 
boundaries," Vestn. Leningr. Univ. Mat. Mekh. Astren. 13, 153-6 (1964); 
1,176 (1966). 

4A. G. Ramm, "Nonselfadjoint operators in diffraction and scattering, 
"Math. Meth. Appl. Sci. 2. 327-46 (1980). 
5 A. G. Ramm, Theory and Applications o/Some New Classes 0/ Integral 
Equations (Springer, New York, 1980). 
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Gauge equivalence of exactly integrable field theoretic models 
J. Honerkamp 
Fakultai fur Physik der Universitiit Freiburg. D-7800 Freiburg. West Germany 

(Received 20 November 1979; accepted for publication 18 January 1980) 

Exactly integrable field theoretic models are constructed which are gauge equivalent to the n­
component or m·n component nonlinear Schrodinger equations and to the O(n) nonlinear u­
model. We obtain the Cpn-Heisenberg model or the Grassmann-Heisenberg model and the 
generalized sine-Gordon model respectively. Consequences for the conserved quantities are 
discussed. 

PACS numbers: 02.30.Jr, 03.65.Fd, 11.IO.Np, 11.IO.Lm 

1. INTRODUCTION 

n 

- i({Jj,t + ({Jj, xx + 2rpj I ({J kX k = 0 
and k= I 

ixj.t + Xj,xx + 2Xj i ({JkXk = O. 
k=1 

(2.1a) 

(2.1b) 

Recently Zakharov and Takhtadzhyan I and, indepen­
dently, D. Chudnovsky and G. Chudnovsky,2 pointed out, 
that the nonlinear SchrOdinger equation (NLSE) and the 
equation of a Heisenberg ferromagnet (HF) are gauge equiv­
alent. Gauge equivalence means that the two pairs of linear 
differential equations 

tPi,X = Ui(x,t;A )tPi' 

tPi" = V;(x,t;A )tPi 
{ ~ = 1, for NLSE 
1=2, for HF 

(1.1a) 

(Ub) 

These equations are the compatibility equations for the lin­
ear system 

where Ui , V. in these cases are polynomials in A of order one 
resp. two, can be obtained from each other by a gauge trans­
formation independent of A: 

tP I = gtP2; u-
I =gUzg- 1 +gxg- I

; VI =gVzg- 1 +g,g-I. (1.2) 

Because the consistency conditions of (1), 

Ui" - V;, x + [Uj> V;] = 0, (1.3) 

lead to the nonlinear differential equations defining the mod­
els, the gauge transformation constitutes a field coordinate 
transformation by which the nonlinear field equations and 
also the conserved quantities transform into each other. 

In this note we show in section 2 that a gauge equivalent 
model to the n-component nonlinear Schrodinger equation 
presented by Nogami and Warke3 and by D. Chudnovsky 
and G. Chudnovsky2 is a generalized Heisenberg model 
where instead of a set of spin components {Si J a matrix 

SEep" = U(n + l)/U(n) ® U(1) 

represents the field coordinates. 
A slight modification allows us to discuss a model 

which is gauge equivalent to a Heisenberg model for a matrix 
S on a Grassmannian manifold U(n + m)/V(n) ® U(m) or 
even for SEGL(n + m)/GL(n) ® GL(m). 

In Sec. 3 we discuss a model which is gauge equivalent 
to the nonlinear O(n) invariant u-model. 4 The gauge equiv­
alent models are, for n = 3, the sine-Gordon model and, for 
n > 3, their higher generalizations, which have also been ob­
tained by another method. 5 In Sec. 4 we discuss some conse­
quences for the conserved quantities of those models which 
are related by a coordinate transformation. As an example 
we do this in the 0(3) u-model (sine-Gordon model). 

2. THE HEISENBERG MODELS 

We start with the n-component nonlinear SchrOdinger 

(2.2) 

where U I , VI are (n + 1) ® (n + 1) matrices and polynomials 
in A.: 

with 

r= diag(1, -I, -1, ... , -1), (2.4) 

o ({J1({J2, ... ,({Jn 

-XI 
Ao = - X2 0 (2.5) 

-Xn 

Bo= -irAo.x +irA~. (2.6) 

We define g(x,t) as a solution of (2.2) for A = 0, Then 

and 

(2.7) 

(2.8) 

U2 =g-IU1g_g-1gx =g-liArg+g-jA~-g-lgx 

where 
=iAS, 

s=g-Irg. 

Furthermore 

V2 = g-I Vjg - g-lg, = Ug-IA~ + 2iA 2S. 

By use of r AoF = - Ao one can show that 

SSx = 2g- lgx = 2g-IA~ . 

Hence 

V2 = ASSx + 2iA 2S. 

The linear system now reads: 

tPz, x = iAStP2 , 

tP2" = (ASSx + 2iA 2S)tP2' 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13a) 

(2.13b) 
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Because of S = g- I rg, we have as condition on S 

S2 = 1, (2.14a) 

trS = - (n - 1), (2.14b) 

and the compatibility equation for (2.13) is 

is, =! [S,S"x]. (2.15) 

For ({J, = X,+ we have gESU(n + 1) and because of 
S = g- I rg with r by (2.4): 

SEcp n = U(n + 1)/U(n) ® U(I). 

Equations (2.1) read 
n 

iXj., + Xj.xx + 2Xj I \Xk \2 = 0. (2.16) 
k~1 

In the case where X" ({J, are independent complex coordi­
nates we have SEGL(n + I)lGL(n) ® U(l). This approach 
can be immediately generalized to the Heisenberg equations 
of motions (2.15), (2. 14a), and trS = - (n - m) for 
SEU(n + m)/U(n) ® U(m) or even for 
SEGL(n + m)/GL(n) ® GL(m) if we start with the linear 
system (2.2) and (2.3), where now, (say m < n) 

r = diag( tfh -= 1 - 1 .: t - 1 ), (2.17) 

° 
A o = 

- Xll'" - Xml 

- Xln'" - Xmn 

Bo = - ir Ao.x + iF A ~ . 

({Jll 

({Jml 

({J12 ({Jln 

({Jm2 ({Jmn 
, (2.18) 

o 

Note, that again rAJ = - Ao, hence with S = g-Irg, 
again 

2g-IA~ = SSx' (2.19) 

The field equations for the 2m·n complex fields are 

A o., + ir Ao. xx - 2iA 6 = 0. (2.20) 

We call these equations the Grassmann Schrodinger equa­
tions or the m·n-component Schrodinger equations. 

Examples: 
(i) m = 1, n = 1; (2.16) is the usual nonlinear Schro­

dinger equation SECP I = SU(2). Equations (2.14) and (2. IS) 
are the equations for the 0(3) invariant Heisenberg model. 

(ii) n = 2, m = 2; ({Ju = xi!. Now 

r~G 
0 0 

J) 1 0 

0 -1 

0 0 

(2.21) 

and 

AO~( ~ 
0 Xli 

X'!) 0 x2i X22 

-XII -X21 0 0 

- XI2 - Xn 0 ° Hence (2.20) reads (a = 1,,,.,m = 2; b = 1, ... ,n = 2) 
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2 

- ita,b,' + Xu,b,xx +2 I Xkb(Xk;XUj)' 
k,j~ I 

(2.22) 

Of course, from (2.22) one infers immediately the gener­
al structure of the mn-component Schrodinger equation in 
terms of the field components. These theories are especially 
interesting because a quantization procedure analogous to 
the usual nonlinear Schrodinger equation6 is certainly avail­
able. The consequences of the gauge equivalence for the 
quantized version of the models could especially be studied 
at first in the context of these nonrelativistic theories. 

3.THE a MODELS 

We start with the system oflinear differential equations 
for the O(n + 1) nonlinear a-model as given by Pohlmeyer4

: 

<Pi,!; = (1 - Oqaq;yab<pI=UI<P1 , (3.1a) 

<P1.'1 = (1 -; -l)qaq~yab<pl= V1<Pl . (3.1b) 

Here Sand 17 are the light cone variables: S = W + x); 
17 = W - x). The indices a, b run from 0, 1, .. "n and the yab 
are generators of the O(n + I). In terms of the basis elements 
of the Clifford algebra7 [en = [r l, ... ,rnl] we have 

yab = _ ! [ra,rb], 

yOa=!ra. 

The qU (a = 0, 1, ... ,n) are components of a (n + I)-dimen­
sional unit vector, qaqu = 1; we choose also q~q~ = 1 and 
q;q~, = 1. Hence also e.g. qaq; = 0, etc. The equations (3.1) 
are compatible if 

q~,t; + (q".qt;)qa = O. 

The gauge transformation 

U2 = g-l U1g - g-Igx , 

V2 = g-l Vig - g-Ig, , 

leads to the expressions 

C
I 

= g-Iqaq~yabg , 

C
2 
=g-Iqaq~yabg, 

with 

gEO(n + I). 

Proposition: One can find agEO(n + 1), so that 

C I = - (i!2JF I, 

Cz = - (i/2)e,r', 

(3.2) 

(3.3a) 

(3.3b) 

(3.4a) 

(3.4b) 

where e, Ii = 1, ... ,n) are the components of a n-dimensional 
unit vector: l:7 ~ I e,2 = 1. g is not yet completely specified by 
(3.4a) and (3.4b) because any transformation go generated by 
yil (i,j#O,I) leads to 

go- Ir Igo = r I, 

go- le,r igo = e,r" = e;r i. 
Proof: (a) We have 

C~ =g-lqaq~qCq~yabycdg= - 1, 

because of 
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Hence we may choose a g which transforms qaq~'yab to a 
diagonal matrix, which has to be a·constant matrix. Ifwe 
choose r 1 to be the diagonal matrix of en we have 

C I = - (i/2)r I. 
(b) In the same manner we show 

C/= -.1. 
Then Cz may be represented by 

Cz = - (i/2)(e; r 'i + ... + e~ r 'n), 

with 

Ir'i, r'i) + = 2{/i, i e;2 = 1. 
i= 1 

Because for q~-..q~, CZ-C1, the matrix r I is represen­
table by a linear combination of the I r' I , ... ,r m). By a fur­
ther transformation which leaves r I invariant, one may ar­
range Cz in its standard form 

C2 = - (i/2)eir i. 

Then we obtain 

U2 = (i/2)tr I + Ao , 

V2 = (i/2)(l/;)eiri + Bo , 

where 

(3.5a) 

(3.5b) 

Ao = - g-Igt; - (i/2)r I; Bo = - g-Ig." - (i/2)eiF'. 
(3.5c) 

Now, the compatibility equation for Uz, Vz, 

UZ"j - V2 ,t; + [U2, Vz] = 0, (3.6) 

leads to 

ei. t;r i = [AO,eir i], 
[r1,Bo] = 0, 

Ao . ." - Bo. t; + ei5T1i + [Ao,Bo] = 0. 

Equation (3.7) can be solved by the ansatz 
n 

Ao = I ae'yle + I cekyen. 
e ~ Z e.k,..1 

(3.7) 

(3.8) 

(3.9) 

Because g until now is only specified up to a transformation 
generated by the yek (e,k =1= 1,0) we may choose such a g so 
that Cek = 0. Then we obtain from (3.7) 

ek.t;r k = akei ['ylk,ri] 

i (akek)r l + i akrke1• 
k~2 k~Z 

Hence 

ek,t; = ake p k = 2, ... ,n. 

From (3.11) we infer 

ek •S ak = -, 
e l 

whereby (3.10) then reads 

el.se1 = - i ek.sek 
k~2 

which, of course, is true. 
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(3.10) 

(3.11) 

(3.12) 

From (3.8) we get 

(3.13) 

so that we obtain finally from (3.9) 

a 'ylk-C rl-c .. YiJ+ e 'ylk 
k • ." I.s I}.S k 

+ c1akr k + 2aeCkeYlk = 0. (3.14) 

Hence CI.~ = 0, cij.~ = 0, C1 = 0. Then cij = cue,,) and 

ak . ." +ek +2aeckJ,,) =0. (3.15) 

But the term cke,Yke in V2 can again be transformed away so 
that we end up with the linear system. 

(3.16) 

i . 
V2 = -eir', 2; (3.17) 

and the field equations are 

(eq/el)'j + ek = 0, k = 2, ... ,n. (3.18) 

Equation (3.18) was derived in Ref. 5 by another method, the 
associated linear problem indicated by the matrices in (3.16), 
and (3.17) has also been found by Eichenherr and 
Pohlmeyer. 8 

Note that by (3.5c) we have 

Hence 

g-I( 5,") = ¢JZ< ;,rJ;S = 1). 

Examples: (i) n = 2 [0(3) model]. We choose 

e l = cosa, e l •s = - as sina, 

e2 = sina, e2•s = as cosa, 

ez.s/e l = as; 

hence 

at." + sina = 0, 

with 

yl2 = J..( ° 
2 +1 

then 

-1 ). 

° ' 
i i 

U2 = T;d3 - Tast? 

= 2i ;(01 0) 1 ( ° 
-1 + T +as 

1 . 
V2 = - -.!..... [cosad3 + sinau l ] 

; 2 

i (cosa sina ) . 
= 2[ sina - cosa 
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(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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(ii) n = 3 [0(4) model]. We choose 

e, = cosa, e,.s = - as sina, 

e2 = sina COSlU, e2.s = as cosa COSlU - Ws sina sinw, 
(3.24) 

e3 = sina sinw, e3.s = as cosa sinw + Ws sina COSlU, 

and 

a2 = as COSlU - wI; tana sinw, 

a3 = as sinw + w, tana COSlU. 

The field equation can be written as 

a s'/ + tanaw,w7/ + sina = 0, 

I 
ws'/ + a 5w,/ + w5a,/ --2- = 0. 

cos a 

With 

(3.25a) 

(3.25b) 

(3.26a) 

(3.26b) 

r' = (+~ 0) 2 (0 1) 3 ( ° i) 
-1 ' r = 1 ° ' r = _ i ° ' 

y12= ~(O 
2 I 

-1) y13 = ~ ( ° -Oi), ° ' 2 - i 

we obtain (compare with Ref. 4) 

U _ 1 ( ° 
2 - 2 (as - iws tana)e ~ 'OJ 

.;(+1 0) 
+1 2 0 -1 ' 

V
2 

= _1_' (.+ cosa 
2; Slnae ~ "" 

sinwe
iw 

) • 

- cosa 

(3.27a) 

(3.27b) 

4. IMPLICATIONS FOR THE CONSERVED QUANTITIES 

In order to study the consequences of these equiva­
lences let us restrict ourselves to the nonlinear O(3)O'-model. 

In terms of the angle coordinate a the linear equations 
read [see (3.22) and (3.23)] 

i (cosa 
a'/¢2 = 2f sina 

Sina) 
¢2=V2¢2' 

-cosa 
(4.2) 

We now change from the light-cone variables to coordi­
nates x,t: 

s=!(t+x), 1J=!(t-x). 

If we require a(x,t)-o for Ixl-oo we obtain 

ax ¢2 = !(as - a,/)¢2 - (iI2)(O'3/2)(; - 1/; )¢2' (4.3) 
Ixl~~ 

We define two sets offundamental1ost solutions X 2± to ax ¢2 
= ~(U2 - V2)¢2 by the asymptotic conditions: 

(4.4) 
x __ ± 00 

The transition matrix between both fundamental sets of so­
lutions then is defined by9 

280 

B2(;) ) 

At(;) . 
(4.5) 
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Doing the same for O'-model coordinates we obtain 

ax ¢' = HF(; - l)(qx q5) - Y(1/; - 1)(qXq,/) ]'O'¢,. 
(4.6) 

Now by (3.3), (3.4) we have, in this case, 

(q X qs ).0' = gO'~-', 

(qxq,/),O' =g(cosau3 + sinaO")g-', 

and by (3.19), e.g., 

g-I(X) = X2+ (x;; = 1). 

(4.7) 

(4.8) 

Hence for x_ + 00 weobtaing- I_l; for x_ - 00 we obtain 
g-'-7i; = 1), and therefore 

(qXqs).O',(qXq,/),O' - 0'3' (4.9) 
X-+ + 00 

(qXqs).O',(qXq,/),O' - 1'2~'(1)0'31'il)=:t. (4.10) 
X-+ - 00 

Therefore 

ax¢' - F(; -V;)O'3¢" (4.11 ) 
x __ + 00 

Jx ¢' - F(; -V;)t¢,. (4.12) 
x __ - 00 

We may define again a set of fundamental solutions X ,± by 

X,+(x,;) _ ei(7,(,~I/,)xl\ (4.13) 
x-- + 00 

(4.14) 
x __ - 00 

and also a transition matrix by 

+_ ~ _( A,(S) B I(;») 
x, -1'!X" 1',- -Bt(;) At(;) . 

On the other hand we have, especially because of g¢2 = ¢I, 

X2+ = g-'xt, (4.15) 

because in the limit x- + 00 both sides agree. For x- - 00 

we obtain 

1'2(; )ei(7,/2)( ~~ 1I,lx = 1'2(; = 1)1'1(; )ei(7,( ~ ~ I/~IXI\ 

or 

1'1(;) = 1'2~1(1)1'Z< 0, 
which agrees with 

1'1(;= 1) = 1 

If we parametrize 

1'z(l) = (_af3+ ~+), aa+ + f3W = 1, 

then 
A,(S) = a'AiO +f3B 2+(S) 

BI(O = a+BiO -f3A /(t). 

(4.16) 

(4.17) 

(4.18) 

It is interesting to discuss the time behavior. We know that9 

Ai ;,t) = Ai ;,0), 
Bz< ;,t) = B

2
( ;,0)e(i/4)( ~ + I/~)', 

and therefore P(t) = (3 (0)eitI2
, a(t) = a(O). Then A I ( ;,t) 

and B I ( ;,t) are not time-independent in general, but the 
combination 
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(4.19) 

Ifwe expand the right-hand side in a Laurent series about 
b = 0 we obtain 

n = - 00 

and the I;:) are the local conserved quantities of the sine­
Gordon model. Doing the same expansion for the left-hand 
side is not of great help unless f3 = o. 

If f3 = Bz( b = 1) = 0 (i.e. the reflection coefficient for 
zero momentum is zero) we obtain also in the nonlinear (1'­

model conserved quantities as coefficients in Laurent expan­
sion of the Jost function A I( b) about b = 0, and these are 
related to the local conserved quantities of the sine-Gordon 
equation by a normalization factor a = Az(O) and by a co­
ordinate transformation. These conserved quantities of the 
(I'-model should be the local ones. The nonlocal charges 10 are 
obtained by expanding A I ( b) about w = 0, 
w = (1 - 0/(1 + b) and equation (4.19) would mean, for 
f3 = 0, that these are related in the same way to nonlocal 
charges of the sine-Gordon equation. 

But one should stress that our asymptotic conditions 
(4.9) and (4.10) are very different from the condition in Refs. 
4 or 10, and that all these conclusions are a consequence of 
f3 = O. This point deserves further study. 

Gauge transformations on the linear system provide a 
powerful tool for the construction of field-coordinate trans­
formations. They show that some models are classically 
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equivalent and differ only by the choice of coordinates. The 
quantized version of these models may become really differ­
ent because of different quantization rules. 

The theories which are gauge equivalent to the cpn(l'_ 
models are given elsewhere. II 
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A method for evaluating integrals over the Fermi distribution function using results from Mellin­
transform theory is presented. The connection of this approach with the operational result of 
Blankenbecler is explicated. The method is used to calculate the profile function for a Fermi 
distribution. 

PACS numbers: 02.30.Qy 

INTRODUCTION 

Some time ago, in a brief note with the same title, Blan­
kenbecler 1 presented a formal device for evaluating integrals 
over the Fermi distribution function. In several special cases, 
i.e., the scattering form factors for the Fermi distribution 
and the "modified Gaussian" distribution,2 the result was 
shown to be expressible in closed form. This concise method 
was later used by Kittel3 in a textbook calculation of the 
linear term in the heat capacity of a free electron gas. 

Here a powerful alternative approach to such integrals 
is presented in terms ofthe transform calculus. The connec­
tion of this more prosaic approach with Blankenbecler'sl 
operational result is explicated. The present technique is 
shown to be useful in dealing with the calculation in the 
impact-parameter representation of the profile function in 
the case of a Fermi distribution. 

Method: Following Blankenbecler,1 the required inte­
gral is of the form 

f'" h (x) [exp(x - y) + 1] -1 dx 

= i= h(x)exp(y-x)[exp(y-x) + 1]- l dx, (1) 

where, for the moment, x andy are teken to be the energy and 
the Fermi energy, respectively, in units ofkT; it is assumed 1 
that h may be integrated once to yield the function H (x). The 
point of departure for the present discussion is a result from 
the theory ofthe Mellin transfrom,4 

--.L - _1_ f rrrdz (2) 
1 + / - 2rri L sinrrz' 

where L is a path extending from ~ - i 00 to ~ + i 00, for 
o < ~ < 1. With the identification, 

/ = exp(y - x), (3) 

the integral (1) may be written as 

_1_. ( ~dz (= h (x)ezIY - xl dx. 
2m JL SlUrrz Jo 

After integration by parts, this becomes 

_1_. (rr~ZYdz [H(X)e-Zx1o+ r=H(x)ze-zXdx]. 
2m JL SlUrrz Jo 

(4) 

(5) 

The further assumption, consistent with the applications in 
Ref. 1, that H (0) = 0 is now made, although this is not at all 
essential to the present method. Thus the integral (5) may now 
be written as 

1 fiOO rrze
zy 

d i= H( ) -zxd - -- z xe x 
2rri - ioo sinrrz 0 ' 

(6) 

where the contour L has been shifted to the imaginary axis 
since z = 0 is no longer a singular point. Introducing a, the 
derivative with respect to y, expression (6) can be put into the 
form 

_1_. fiOO ~adz e'Y (00 H(x)e- ZX dx, 
2m - ioo slUrra Jo (7) 

and, after an additional transformation of variable, z = is, 
one finds 

-.-- dx H (x)- dx e'sIY - xl rra 100 

1 f= . 
slUrra 0 2rr - 00 

= --!!-- dx H (x)o(x - y) a 1= 
slUrra 0 

= [rracscrra ]H(y); (8) 

the last result is Blankenbecler's operational form. 
Variants of this approach based on other results from 

Mellin-transform theory are possible. Thus, the integration 
of expression (1) by parts yields 

f" h (x) [exp(x - y) + 1] -1 dx 

= -100 

h (x) dln[exp(y - x) + 1] 

= h (O)ln [exp(y) + 1] + l'" In [exp(y - x) + 1] dh (x); (9) 

this suggests using the result 

1 i;; + ioo rr/z 
In(l +/)=-. -.-dz, 

2rr! ;; - i 00 ZSlU1TZ 

in the evaluation 

1'" dx h '(x)ln [exp(y - x) + 1] 

1 il; + i", eYzd i oo 

=_ - ~ dxh'(x)e- xz. 
2rri I;-ioo zsinrrz 0 

(10) 

(11) 

Thus, for example, the recent discussion of the form 
factor for a Fermi distribution, 

F(z) = (4rr/q)poImI, 

where 

I . d (00 iqr dr 
= -l dq Jo e 1 + e(r-cllf3' 

(12) 

(13) 
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[P 0 is the normalization (F (0) = A ), c is the nuclear shape 
radius parameter, and {3 the diffuseness parameter] given by 
Amado, Dedonder, and Lenz5 is now simplified consider­
ably through the introduction ofthe Mellin transform (10). 
One has 

1= {3 :q [q 1"0 dr eiq'ln(e - (r- cliP + 1)] 
= {3 ~(~ f + i", ~Z1T (00 dreiqr - zjr - CliP) 

dq 2m !; - i 00 ZSlD1TZ Jo 
{32 d ( f+i'" ~ClfJ) 

=--q dz , 
2i dq !: - ioo zsin1TZ(z - iqf3) 

(O<t<I). (14) 

Closing the contour in the left half-plane, one obtains I as the 
sum of contributions from the poles at Z = iqf3 and Z = 0, 
- 1, .... Since F(q) receives no contribution from the pole at 

Z = 0, it is easy to see that F(q) can be represented by the 
contribution from the pole z = iq{3 alone, 

F(q) = (SrpJq)/3e -rr{Jq(1T{3sinqc - c cos qc), (15) 

as long as q is in the region 1/1Tf3<q<c11T{32. 

CALCULATION OF THE PROFILE FUNCTION FOR A 
FERMI DISTRIBUTION 

It was recently noted5 that a description of the nuclear 
shape in terms of the Fermi distribution function is a valu­
abletool in elucidating various characteristic features ofha­
dron-nucleus elastic scattering at high energy. The profile 
function t (b ) in the eikonal amplitude, 6 

f(q) = ik LOO Jo(qb )(1 - e - yt(bl)b db, 

given by 

t (b) = f: oc p((Z2 + b 2)1/2)dz, 

(16) 

(17) 

plays a central role in that discussion. As a final illustration 
of the approach to integrals over the Fermi distribution 
function detailed above a useful expression for t (b ) is present­
ed in this case. 
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(b) _ 2p ioo 
d r [+iOO ds e- srlP sclfl t - 0 r -1T e 

b (r_b 2 )112 tY-ioo 21Ti sin1Ts 

S
tY +;00 e'c1fJ (Sb) 

= -ipob dS-.--Kl - , 
tY - ioo SlD1TS (3 

(IS) 

since 

K () i oo 

- zt tdt 
1 z = e 2 1/2' 

1 (t - I) 
(19) 

Evaluating t (b) at the nuclear radius (b---+e +) for example, 
one finds5 the asymptotic expression in powers of the small 
parameter 7' = {3lc, 

. i tY
+;'" e

sc1fJ 
(1T{3)1/2 

t (c) = - IpoC ds -.-- --
a - ioo SlD1TS 2sc 

X [I + 3f3/(Ssc) - IS{32/(12Ss2c2
) + · .. ]e- sc1fJ 

=Po(21T{3C)I[ (1 - y'2)tm + ~(I - 1!y'2)t(~)7' 

-, 11£8(1 - 1/2y'2)t mr + "'j, (20) 

after closing the contour in the right half-plane. On the other 
hand, for small impact parameters at, say b = 0, one finds, 
using the result 

K 1(z)-1!z (z-o) (21) 

and closing the contour in the left half-plane, 

L
tY + ioo sclfJ 

t (0)= - ipJ) ds _e_. - =2po(c + f3e - Clfl ), 
tY - i 00 SSln1TS 

(22) 

where only the contributions from the poles at s = 0, - 1 
have been retained; in this region one finds that the profile 
function becomes proportional to the nuclear radius.5 

'R. Blankenbecler, Am. J. Phys. 25, 279 (1957). 
2E. Hahn, D. Ravenhall and R. Hofstadter, Phys. Rev. 101, 1136 (1956). 
'C. Kittel, Elementary Statistical Physics (Wiley, New York, 1958), Sec. 20. 
4H. Hochstadt, The Functions of Mathematical Physics (Wiley-Intersci­
ence, New York, 1971), pg. 80. 

'R. D. Amado, J. ·P. Dedonderand F. Lenz, Phys. Rev. C 21,647 (1980). 
"As in Ref. 5, r = (lTTo,l2/(1 - ir), where r = ratio of real to imaginary part 
of the forward amplitude; b is the impact parameter and q the momentum 
transfer. 
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The set of all projective limits of a projective system of state operators 
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Let {WK J be a projective system of state operators defined on the finite tensor products of some 
family { JY, J of Hilbert spaces. We prove that all projective limits of { W K J on the complete tensor 
product ® ,a JY, can be generated from every single projective limit by certain operations. In 
addition, we provide a necessary and sufficient condition for { WK J to have projective limits on 
incomplete tensor products of the JY, 'so 

PACS numbers: 02.30.Tb, 03.65.Ca, 02.50.Cw 

1. INTRODUCTION 

In a preceding paper, I we established necessary and suf­
ficient conditions for a projective system { WK :K E Y(T) J 
of state operators to have a projective limit on the complete 

tensor product ® 'ET JY,. In particular, we showed that, in 
contrast to projective systems of probability measures,2 a 
projective system of state operators may have none or many 
projective limits. Therefore, the purpose of the present paper 
is to clarify the structure of the set of all projective limits 
belonging to a given projective system of state operators. 

In Sec. 2, we recapitulate the basic notions of Ref. 1 and 
compile the required facts about infinite tensor products of 
Hilbert spaces. In Sec. 3 we investigate the structure of the 
set ~ of all projective limits of a projective system. In its first 
part, a Choquet-type theorem is established for ~ and it is 
proven that ~ is the norm closed convex hull of its strongly 
exposed points. In the second part of Sec. 3 it is shown that ~ 
can be obtained from any element W~ by the relation 

~=U-I(UW), 

where u belongs to a class of explicitly given mappings from 
the set of all state operators on ® 'ET JY, into itself. In Sec. 4 
we consider special projective limits which live on incom­
plete tensor products, and we give a necessary and sufficient 
condition for such projective limits to exist. It turns out that 
this kind of projective limit is unique if it exists. 

2. MATHEMATICAL PRELIMINARIES 

Throughout this paper, "Hilbert space" means "com­
plex Hilbert space of dimension;> 1." If % is a Hilbert space, 
q) (%) denotes the Banach space of all bounded linear oper­
ators on % equipped with the operator norm 11·11, and 
Y( %) denotes the Banach space of all trace class operators 
equipped with the trace norm 11·111' A state operator (STO) on 
% is an element of ...9'(%): = {XEY(K): X;>O, tr(X) = 1 J. 
"Projection" will always mean "orthogonal projection." For 
0# ipE%, P (ip ) denotes the projection onto span { ip J. The 
range of a mapping/is denoted by mg/? 

In the sequel we consider an arbitrary non empty collec­
tion {JY, :tET J of Hilbert spaces which we keep fixed for the 
rest of this paper. By Y(T) we denote the directed set of all 
finite nonempty subsets of T directed by inclusion. To every 
0#Mk Twe associate the complete te~sor product 
JY M: = ® 'EM JY, ;4 for JY T we write JY. The unit operator 
on JY M is denoted by 1M , An element a = ® 'ETa, in Jfo 

with Ila, II = 1 (VtET) is called aproduct unit vector (PUV). 
Two PUV's a,/3 are called equivalent (written a -/3), if 
~'ET 11 - (a,,/3,) 1< 00. The set of all (- i-equivalence 
classes a, b, .. · is denoted by r. The PUV's in aEF span a 
closed subspace Jfoa of Jfo which is called the incomplete 
tensor product (ICT) of the JY, 's with respect to a. If 
a = ® ,a, isaPUVina, then the set of all PUV's ®, /3, such 

A 

that a, = /3t for all but a finite number of tETis total in JY ; 
in this sense, Jfoa is generated by any PUV in a. Ifwe want ;0 
refer to a particular generating PUV in a, say a, we also write 
~a] for Jfoa . The complete tensor product is the direct 
sum of all ICT's, Jfo = Ell aErJfoa' Qa denotes the projection 
from Jfo onto Jfoa. If {c, :tED J, D ~ T, is a collection of unit 
vectors Ct E&"t, then we abbreviate ® tET Ct by c[D ]. 

Let!!' be the set of all families {Zt: tET J of conwlex 
numbers of modulus one. If a = ® tat is a PUV in JY and 
If = {Zt JE!!', then Ifa: = ®/ ED (z,a t ) is again a PUV in Jfo. 
Ifa is equivalent to a if and only if IItET Zt converges (i.e., 
~t largz t I converges). Two PUV's a,/3 are called weakly 
eqUivalent (written --;-), if there is a IfE!!' with a - 1f/3. The 
equivalence relation" --;-" is compatible with and weaker 
than the relation" - ." So it induces an equivalence relation 
inrby 

a--;-b:¢?(3 aEa, /3Eb) a-/3 

for which we use the same symbol. The closed subspace 
spanned by the set ofPUV's which are weakly equivalent to a 
PUV /3Eb is called the weak incomplete tensor product 
(WICT) of the JYt 's with respect to b and is denoted by JfoWb 

or Jfow [/3], 
A A 

£"wb = Ell £"a 
H--:-b 

(2.1) 

To every IfE!!' there is a unique unitary operator U (If) on Jfo 
such that U ( If) a = Ifa and 

U(If)(~a]) = ~lfa] 
for all PUV's a&. Hence every U (If) leaves all WICT's 
invariant. To every b --;- a there is a IfE!!' such that U (If) 
(Jfoa) = Jfob. For ip&, E [ip] denotes the projection onto 

sp~ { U (If )ip:lfE!!' J. A cylinder operator is an element in 
q)(dYj of the form Y® IT),..K with YEq)(JYK)andKEY(T). 

Lemma 2.15: (i) IftE&"b for some bEF, thenE [5] com­
mutes with all U(If) andQa,E [5] Qb = P(t), andE[5] Qc = 

for all cEF which are not weakly equivalent to b. 
(ii) Every cylinder operator commutes with all U (If) and 
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For0#A ~B~ T,e(A,B ) denotes thepartialtrace from 
Y(dY' B) to Y(dY' A); for e (A, T) we write eA' I A family { W K 
: KEY(T) I of STO's WKEY(dY'K) is called a projective sys­
tem,ijWK = e(K,H) WH forallK,HEY(T)withK~H.A 

STO VEY(~ is called a projective limit of the projective 
system {WK I, if WK = e K V for allKEY(T). The set of all 
projective limits ofthe projective system { WK: KEY(T) I is 
denoted by 2({ WK J). 

3. THE STRUCTURE OF i!«WK }) 

If T is finite, then our problem is trivial: Every projec­
tive system { WK :KEY(T) I ofSTO's with finite Thas exact­
ly one projective limit, namely WT • We therefore assume in 
the rest of this paper that T is infinite. Since the projective 
system { WK: KEY(T) I is kept fixed throughout the paper, 
we will write 2 for 2({ WK J) and Y for Y(T). '" 

Lemma 3.1: As a subset of the Banach space Y(JY), 2 is 
bounded, closed and convex. 

Proof Boundedness of 2 is obvious and convexity fol­
lows from the linearity of the trace and the partial trace. 
Let(X; );EN be a sequence in 2 and YEY(~ such that 
II X; - Y" 1-0. By Theorem A.3 of Ref. 1 we have 

IIWK -eK YII I = IIeK(X; - YlIk<IIX; - YII I , 

which implies that WK = eK YforallKEY. Hence YE2and 
i! is closed. • 

The following propositions show that 2 is generated by 
its extremal points. 

Definition: Let X be a (real or complex) Banach space 
and B a bounded subset of X. xEB is called a strongly exposed 
point of B if there exists a functionalfEX * with II f II = 1 such 
thatf(x) > fly) forallyEB,y#x and such that II Yn - xll-o 
for every sequence (Yn) in B withf(Yn l-f(x). 

Proposition 3.2: 2 is the 11·11 I-closed convex hull of its 
strongly exposed points. 

Proof We show in the Appendix that Y(~ has the 
"Radon-Nikodym property." So the proposition follows 
from Lemma 3.1 and from a theorem of Phelps. 6,7 • 

Since every strongly exposed point is extremal; Proposi­
tion 3.2 implies the Krein-Milman type assertion that 2 is 
the closed convex hull of its extremal points. With regard to 
the extremal points of 2, there even holds a Choquet type 
theorem. For C a convex set, exC denotes the set of all extre­
mal points of C. 

Proposition 3.3: For every WE2 there is a complete 
Borel probability measure f-l on 2 such that 

W = Bochner - 1 xdf-l(x) 

and f-l(ex2) = I. 
Proof Let C (r ) denote the set of all countable subsets of 

r. For AEC (r) we define 

'" '" dY'A : = Gl dY'a , 
aeA 

'" '" Y A : = {WEY(JY): mgW~dY'A J, 
and 
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~A is a separable closed subspace cj ~ and 2A is a separa­
ble subset of the Banach space Y(JY). Since 2 and Y A are 
both bounded, closed and convex, 2A is also bounded, closed 
and convex. And since Y(~ has the "Radon-Nikodym 
property," it follows from a theorem of Edgar that, to every 
VE2A, there is a probability measuref-l on the universally 
measurable subsets of 2 A such that V = f xdf-l(x) as a 
Bochner integral andf-l(ex2A) = 1.7

,8 Now ex2A 
= 2A n ex2 since 2A is aface of 2 (i.e., from 
W = pVI + (1 - P)V2' 0 <p < 1 and WE2A• V;E2 it follows 
that V;E2A for i = 1,2). Hence the trivial continuation of f-l 
from i! A to 2 yields the assertion for every WE2 A • Thus the 
theorem is proven since 2 = u {2A : AEC (r) J. • 

Unfortunately, these propositions give little informa­
tion about the concrete structure of2 since we failed to speci­
fy all extremal or strongly exposed points of2. Therefore, we 
will try a new approach to gain insight into the structure ofi!. 
To this end we consider operations which generate new ele­
ments of 2 from given ones. 

Lemma 3.4: Let {R;: iE! J be a family of mutually or­
thogonal projections on ~ such that l:;EI R; = 1 T and that 
every Q. is smaller than or equal to some R;. Then, for every 

'" VEY(JY),9-

VE2¢:=:::}(L R; VR;) E2 . 
lEI A. 

Proof Let VEY(JY). By Lemma 2.1(ii), every R; com-
mutes with all cylinder operators, and so we get 

tr[V(Y® IT,K)] 

=tr[(~R;) V(Y®lT,K)] 

= I tr[R; V(Y ® IT,K) R;] 
;El 

= Itr[R; VR;(Y® IT,K)] 
;EI 

= tr[ (~R;VR;}Y® InK)] 

for all KEY and YE£@(dY'K). Hence 

eKv= e K (~R;VR;) 
for all KEY which yields the assertion. • The prescription 

(3.1) 
aET 

uniquely defines a mapping II from Y(~ into itself, and 
Lemma 3.4 implies that 

WE2¢:=:::}1I WE2 (3.2) 

for all WEY(~. 
Lemma 3.5: Let W = l:;EI C; V; be an arbitrary count­

able convex decomposition of a STO WEY(~ in 
V;EY(~ and let { U;: iE! I be a family of unitary operators 
on ~ of type U (1)' Then 

WE2¢:=:::}(~C; U; V; U~) E2. 

Proof As a convex sum ofSTO's, Wo: = l:;c; U; v;Uris 

Wilhelm Ochs 285 



                                                                                                                                    

also a STO. From Lemma 2.1(ii) we conclude that 

tr[Wo(Y® IT,K)] 

= Lcitr[Ui ViU~(Y® IT,K)] 
iEi 

= LCi tr[VAY® lr,KlJ = tr[W(Y® IT,K)] 
ieJ 

for all KEY, Ye&9(£"K) which proves the assertion. • 
Let a be a mapping from r into itself such that a(a) +- a 

anda+-b=>a(a) = a(b), and let I U.: aEF 1 beaf~ilyofuni­
tary operators of type U (1) such that Ua (£".) = £" uj.) for all 
aEF. Then 

u" W: = L U.Qa WQ. U: (3.3) 
.er 

uniquely detennines a mapping from Y"(£) into itself, and 
we conclude from Lemmas 3.4 and 3.5 that 

W32{::=:}u" WE2 (3.4) 

for all WeY"(£) and all mappings u" of type (3.3). 
Lemmas 3.4 and 3.5 show how to construct new ele­

ments of 2 from known ones. The following theorem even 
shows that all of 2 can be obtained in this way from every 
single element. 

Theorem 3.6: For all mappings u" of type (3.3) and all 
WE2, 

(3.5) 

The proof of this theorem is based on 
Lemma 3.7: LetM., M2 be two STO's in 2, each with a 

countable convex decomposition 

(3.6) 
.eA, 

A A 

in STO's Xi. eY"(JY) such that Ai r;;,r and mgXi. r;;,£"a for 
all aEA i and i = 1,2. If a+-b implies that a = b for all 
a,bEA luA 2, then Ml = M 2 • 

Proof Assume that a+-b:::>a = b for all a,bEA)uA 2 and 
c.Qnsider an arbitrary element bEA luA 2• Letpbe any PUV in 
£"b and <PK any unit vector in £"K, KeY. Then we infer 
from M 1,M2E2 that 

tr[M.P(<pK ®P [H "K]) ® IT,H] 
= tr[M2P(<pK ®{3 [H "K]) ® IT"H] (3.7) 

for all HeY with KCH. The net 

IP(<PK ®{3 [H "K]) ® IT,H : HEY} 

of projections converges strongly to E [tP] with 
tP: = <P K ® P [T "K ] . 10 Hence, since the trace is nonnal, 
(3.7) yields 

tr(MIE [tP ]) = tr(M2E [tP ]) . (3.8) 

IfbEA k, kelO,1 j, it follows from tP&b' from Lemma2.I(i) 
and from our assumptions that 

tr(Mk E [tP]) 

= L Cke tr(Xka E [tP]) 
.eAk 

= Ckb tr(Xkb E [tP ]) = Ckb tr(QbXkb E [tP ]) 
= Ckb tr(Xkb P(tP)) = Ckb (tP,xkb tP) . (3.9) 

IfbiAk, it follows from the same reasons that 
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tr(Mk E [tP ]) = 0 . (3.10) 

Hence we conclude from (3.8) to (3.10) that C1b (tP,xlb tP ) 
= C2b (tP,x2b tP ) for all bEA In A2 and that Ckb (tP,xkb tP ) 
= 0 for bEAk ,,(A .n,42)' Since the set of all vectors of the 

fonn <PK ®P[T"K] is dense inKb' it follows that C.bX.b 
= C2b XZb for all bEA l n,42 and CkbXkb = 0 for all 

bEAk ,,(A ln,42) and k = 1,2. HenceMI = M 2. • 

Pro%/Theorem 3.6: LetX,Ybe arbitrary elementsof2 
and let u" be an arbitrary mapping of type (3.3), with the 
associated family I U. :aEF 1 of unitary operators. Choose 
any diagonal representation 

(3.11) 

of X, Y[that means: (<py) and (tPp.) are orthononnal sequences 
andxy,yp. > o for all v"u]. Then the STO's u" X, u" Y can be 
written in the fonn 

u" X = L L Xy c~ P(Ue<pve) = L g. X. , 
YeA eeE, aeS 

u" Y = L I yy d!e P (Ue tP p.e) = I hb Yb , 

and 

l'-eB eeF" beR 

Cve: = II Qe<Py II, dp.e: = IIQetPl'-lI, 

<Pve: = (cvel- I Qe<Py for eeEv ' 

tPl'-e: = (dl'-e)-I QetPl'- for eeFl'- ' 

g.: = tr(I L Xy c~ P(Ue<Pve)) , 
YeA uje) = a 

hb: = tr ( L L y I'- d!e P (Ue tP p.e)) , 
l'-eD uje) = b 

S:= laEF:g.#Ol, R:= IbEF:hb#OJ, 

X.: = g.-I L L Xy c~ P(Ue<pvel, 
YeA uje) =. 

Yb : = h b-· L L Yp. d!. P(UetPl'-e)' 
l'-eB uje) =b 

(3.12) 

Trivially,}aeS g. = 1, ~AeR hb = I andX. ,YbeY"(£) with 
mgXb r;;,£". ,mgYb r;;,£"b ,for all aeS, hER. Moreover, 
(SuR) C mga so that a,bE(S\.JR) and a+-b imply that a = b. 
Hence we conclude from Lemma 3.7 that u" X = u" Y. • 

Corollary 3.8: For every aEF, 2 contains at most one 
A 

STOXwith mgXr;;,£"a . 
Pro9f If2 contains elements X,Ywith rngXr;;,~a , 

mgYr;;,£". ,for some aEF, then we infer from Lemma 3.7 
thatX= Y. • 

Corollary 3.9: Suppose that 2 contains a STO W with 
rngWr;;,~ W8 , ~r some aEF. Then 

(i)mgXr;;,£"wa forallXE2; 
(ii) To every bEFwith b+-a, 2 contains exactly one STO 

Wb with rngWb r;;,~b , and all these STO's are unitarily 
equivalent by some unitary operator of type U (1)' 

Proof Assertion (i) follows immediately from (3.5) and 
the construction of the mappings u". To prove (ii) we assume 
elements b,CEFwhich are weakly equivalent to a. Then there 
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exist mappings UeT , Ull of type (3.3) such that oix) = b, 
.u(x) = c for all x...;- a. Hence Wb: ~ UeT Wand We";" = uJt W 
are contained in 2 with rngWb ~JYb , rngWe ~JYe . By 
Corollary 3.8, Wb and We are the only elements in 2 with 
ranges in ~b and ~e' respectively. According to (2.1) in­
fra, there is a unitary operator U I of type U (I) with 

A A A 

U\(JYb ) = JYe. Hence rng(UIWbUr)~JYe' By Lemma 
3.5, U\ Wb UrE2 and so we see from the above uniqueness 
argument that U\ Wb Ur = We . • 

Up to now, no statement concerning the cardinality of2 
has been made. In view of the following proposition, we re­
call the general assumption of this section, viz. that Tis 
infinite. 

Proposition 3.10: If2#0, then 2 contains uncountably 
many mutually orthogonal STO's of the form P(",) (called 
pure states). 

Proof By assumption, 2 contains an element X. As a 
STO, X has a diagonal representation of the form (3.11). 
Hence qX [cf. (3.1)] can be written as 

(13.13) 
VEA eEE,. 

with the symbols introduced in (3.12) infra. Going over to a 
single index in (3.13) we get a countable convex decomposi­
tion of qX into pure states, 

(3.13a) 
iEI 

where every unit vector Xi i~ contained in some ICT. Since T 
is infinite, every WICT in JY contains uncountably many 
ICT's. 'I SO we can choose, to every iE!, uncountably many 
unitary operators Uil of type U (~) such that the Uil 's all lie in 
different ICT's. Hence the unit vectors 

tP/: = L..jYi Uil Xi 
iEl 

are mutually orthogonal and 

qP(tP/) = LYi Uil P(xJ U~. 
iel 

From (3.13a) and Lemma 3.5 we conclUde that P (tP/) E2 for 
illt • 

We close this section by exhibiting two classes of 
strongly exposed points of 2. 

Proposition 3.11: (i) Let % be a Hilbert space and 
0# (jJE%. The pure state P (tp ) is a strongly exposed point [in 
the Banach space Y(%)] of any subset of Y(%) which 
contains P (tp). 

A 

(ii) If2 contains an element Ywith rngY~JYb for some 
hEr, then Y is a strongly exposed point of 2. 

Proof (i) It is obviously sufficient to prove that P (tp ) is a 
strongly exposed point of Y(%). The functionalfEY(%)* , 
defined by f(X): = (tp,xtp ), exposes P(rp) in Y(%) since 
II fll = 1 and (tp,P (rp ) rp ) = 1> (rp,xtp ) for all XEY(%), 
X ¥=P (rp ). Let Wbe a STO in Y(%) and 

W= IwiP(ai ) 
iEl 

a diagonal representation of W. Then 
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II W - P(tp )lIi 
= /lIwi(P(ai)-P(rp))1I 

2 

,IWi IIP(a i ) - P(rp )lIi 
i 

= 4{~Wi(I-I(ai ,rp WI} = 4(1 - (rp,Wrp») 

= 4[f(P(rp)) - f(W)], 

where we used the equation /lP(a) - P(P)lIi 
= 4( 1 - I (a, P ) 12) from the proof of Corollary A.4(f) in Ref. 
1. So P(rp) is a strongly exposed point of Y(%). 

(ii) If a is a unit vector in % and R any projection in 
&1(%), then one easily checks that 

IIRP(a)R 1 + R lP(a) R 1I1,2/1R lall = 2(a,R la)I/2. 
(3.14) 

Now, let YE2 and rngY~~b' Then we choose an injective 
mapping y: r ~rsuch that r(x) = r( y)<==>x...;-y, r(x)...;-x, 
and r(a) = b for all a...;- b. Since Qx YQx = 0 for all x # b, we 
find uy Y = Yand, by Theorem 3.4, 

2= {WEY(~:Uy W= YJ. 

Hence to every WE2 belongs a subset {8i if: iEN J of r such 
that 8, = b and 

Y = f Ua, Q., WQ.,u:. ' (3.15) 
i= 1 

where we can assume that Ua , = IT' Let WE2 and let 

W = I Wj P(rpj) 
jEJ 

be a diagonal representation of W. Then 

IIW - Qb WQblll,IIQ~ WQ~III + /lQbWQ~ + Q~ WQbll" 
(3.16) 

IIQ~ WQ~/il = tr(Q~ W) = 1 - tr(Qb W), 

IIQb WQ~ + Q~ WQbll1 

,IwjllQb P(tpj) Q~ + Q~ P(rpj) Qb II, . 
jEJ 

Equations (3.14) and (3.18) yield 

IIQb WQ~ + Q~ WQblll' 2 LWj (rpj ,Q~ rpj)I/2 
jEJ 

'2( ~ Wj (rpj ,Q ~rpj) y12 = 2 (1 - tr(Qb W)] 112 • 

Combining (3.16), (3.17), and (3.19) we get 

IIW - Qb WQblll,3(1- tr(Qb W)]1/2. 

From (3.15), (3.20) and from 

II i~2 Ua,Qa, WQ·,u:.11 I 

,f, IIQ.iWQ.,1I1 
i=2 

= f tr(Q.i W) = 1 - tr(Qb W) 
;=2 

'we finally arrive at 

IIY - Wlli ,16[1 - tr(Qb W)] 
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for all WE 2. So, if( Vn )nEN is any sequence in 2 with tr(Qb Vn) 
~tr(Qb Y) = 1, then we see from (3.21) that Ilfn - YIII-<J. 
Moreover, the functional X f---+tr(QbX) in S-(cW)* exposes Y 
in 2 because Corollary 3.8 and Y<Qb imply that tr(Qb W) 
<tr(Qb Y) = 1 for all WE 2, W #- Y. So Yisstronglyexposed 
in2. • 

4. PROJECTIVE LIMITS ON INCOMPLETE TENSOR 
PRODUCTS 

The ambiguity of the projective limit of a projective 
system! WK:KEY(T)] ofSTO's is due to the special con­
s~uction of the (so called) complete tensor product 
JZP = ® 'E TJZP, which, in some respect, is "too big." To 
avoid this ambiguity, one can think of allowing only those 
projective limits whose ranges are contained in ICT's which 
are the smallest subspaces of £c' that can reasonably be re­
garded as tensor products on their own. As guaranteed by 
Corollary 3.8, these particular projective limits are unique if 
they exist at all. 

Theorem 4.1: The projective system ! WK:K~Y(T)j 
has a projective limit with its range contained in Jr1a] if and 
only if the operator net 

(WK ® P(a[T\K ]))K 

converges weakly to a STO, say V, on £c'. In this case, 
rngV(;~a] and Vis the unique projective limit with this 
property. 

Proof (I) Assume that (WK ® P(a[T\K ]))K con­
verges weakly to VE Y(£). Then l2 

limllWK ®P(a[T\K])-VIII=O. 
K 

SinceQb(WK ® P(a[T\K])) = o for all b#-[a], 

rngV(;~a]. 

(4.1) 

(4.2) 

If V = !oiElV;P(t{li) is a diagonal representation of V, then to 
every iE I there is a net ('P;K)K of unit vectors 'P;KE JZPK such 
that 

limllt{l; -'P;K ® a[T\K]1I =0. 
K 

Hence 

Ii;? [ !~~_ II'P;K - 'PiE ® a [K \H ] II] = 0 (4.3) 

K::J1f 

and 

lim II V - ~ ViP ('PiK ® a[T\K ])11 = O. (4.4) 
K ~I ] 

From (4.1), (4.4), and from 

II WK - if V;P('P;K) I II 
= II {WK - i~V;P('PiK)} ® P(a[T\K ])111 
<IIWK ® P(a[T\K]) - VIII 

+ II v- ~ViP('PiK ® a[T\K])III' 

we get 
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(4.5) 

Finally, we conclude from (4.3), (4.5) and Theorem 2.1 of 
Ref. 1 that VE 2, and we conclude from (4.2) and Corollary 
3.6 that Vis the only element in 2 wjth rngV(;~a]. 

(II) Assume that VE2, rngV(;Jr1a] and let 
V = !oiE IViP(t{li) be some diagonal representation of V. By 
specializing part (II) of the proof of Theorem 2.1 in Ref. 1 to 
this case, we see that, to every iE I, there is a family 
I 'PiK:KE YJ of unit vectors 'PiKEJZPK such that 

limll'PiK®a[T\K]-t{li!l=O (ViE!) (4.6) 
K 

and 

(4.7) 

With (/J;K: = 'PiK ® a [T \K ] we infer from (4.6), (4.7), and 
from a dominated convergence argument that 

lim II WK ® P(a[T\K]) - f ViP ((/JiK) I I = 0 
K EI I 

and 

lim II V-I ViP ((/JiK) I I = O. 
K ,EI I 

From (4.8), (4.9), and from 

IIWK ® P(a[T\K]) - VIII 

<IIWK ®P(a[T\K])- ,t ViP ((/JiK) I II 

+ II 'fV;P((/JiK)- viii' 

(4.8) 

(4.9) 

it follows that (W K ® P (a [ T \K ]))K converges weakly to 
V • 

Suppose now that only those projective limits are to be 
considered whose ranges are contained in ICT's. In this case, 
it seems to be more appropriate to deal from the outset with 
incomplete tensor products only, defined independently and 
not as subspaces of £c', 13 and to adapt the notion of the pro­
jective limit to the ICT as the proper tensor product of Hil­
bert spaces. If we want to refer to the ICT associated with the 
family (a, k T of unit vectors a,E JZP, and defined indepen­
dently of JZP, then we use the notation ® 'E T(JZP, ,a,) instead 
of ~a]. By tria I and trK we denote the trace functionals on 
S-( ® 'E T(JZP, ,a,)) and S-(JZPK), respectively, and Yla I de­
notes the cylinder operator on ® 'E T(JZP, ,a,) associated with 
YE aJ(JZPK). 

Definition: Let! WK:KEY(T)J be a projective system 
ofSTO's WK on JZPK. A STO Von ® 'E T(JZP, ,a,) is called an 
[a ]-projective limit of I W K J, if 

trK( WK Y) = tria I( VYla I) 

for all YEaJ(JZP K) and KE Y(T). A 

By identifying the product vectors in JZP and 
® 'E T(JZP"a,) which are associated with the same family 

V3, )'E T of unit vectors, we ~et a canonical isomorphism be­
tween ® 'E T(JZP"a,) and JZP[ ® ,a,]. This isomorphism im-
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plies that the projective system! WK:KE Y(T)} has an [a]­
projective limit V if and only if it has a projective limit X on 
~with mgX~~a] and that, in this case, Vcan beidenti­
fied with X t Jf1a]. We therefore obtain the following nec­
essary and sufficient condition for the existence of [a ]-pro­
jective limits, a result which has been independently 
established by Bartoszewicz without resort to Theorem 2.1 
of Ref. 1. 14 

Corollary 4.2: A projective system {WK:KE Y(T)} has 
an raJ-projective limit if and only if the net (WK 
®P(a[T'\K ]))K in Y( ® tE T(JIi"'"a t )) converges weakly to 
a STO, say V, on ® tE T(JIi"'"a t ). In this case, Vis the unique 
raJ-projective limit of! WK ). 
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APPENDIX 
A 

In this appendix we show that .7(JY) has the Radon-
Nikodym property. For the standard notions of vector mea­
sure theory used below, the reader is referred to Ref. 7. 

Definition: A (real or complex) Banach space X has the 
Radon-Nikodym property (RNP) if, for every finite measure 
space (n,d,Jl) and every Jl-continuous vector measure 
G: d _X of bounded variation, 

G (E) = Bochner - L g dJl 

for somegEL1{Jl,x) and all EEd. 
Theorem A.17: The following statements about a (real or 

complex) Banach space X are equivalent: 
(i) X has the RNP; 
(ii) every closed subspa,ce of X has the RNP; 
(iii) every separable closed subspace of X is isomorphic 

to a subspace of a separable dual space. 
Corollary A.2: For every Hilbert space JY, the Banach 

space .7(%) has the RNP. 
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Proof Let c:y be any separable closed subspace of 
.7(%). Hence there is a sequence (A;);E N in c:y such that 

(VCE C:Y)(V€ > O)(3jE N) IIC -A j III<€' (AI) 

To every compact operator Don %, we define the closed 
subspace 

L (D ): = ( mg D) V ((kerD )1) 

of % which is separable. Hence the closed subspace 

00 

JIi"': = V L (A;) 
i= 1 

of % is also separable. If Q denotes the projection onto JIi"', 
then A; = QA;Q for all iEN. Hence 

IIC-A;III>IIQ(C-A;)QIII = IIQCQ-A;III (A2) 

forallCE c:y andiEN. Eqs (AI) and (A2) imply that C = QCQ 
or, equivalently,L (C)kJli"'forall CE C:Y. Hence c:y isisomor­
phic to a subsapce of .7(JY). Now, .7(JY) is separable since 
JIi'" is separable, and it is well known that .7(JY) is a dual 
space.3 So we infer from Theorem A.l that .7(%) has the 
RNP. • 

'w. Dchs, J. Math. Phys. 20,1842 (1979). 
2H. Bauer, Wahrscheinlichkeitstheorie und Grundziige der Masstheorie (de 
Gruyter, Berlin, 1968). 

3For details of these notions we refer to M. Reed and B. Simon, Methods of 
Modern Mathematical Physics. Vol. I: Functional Analysis (Academic, 
New York, 1972) and to R. Schatten, Norm Ideals of Completely Continu­
ous Operators (Springer, Berlin, 1960). 

4J. von Neumann, Composito Math. 6, 1(1938). 
'This follows from Lemmas 6.3.1, 6.3.2, and 6.3.5 of Ref. 4. 
°R.P. Phelps, J. Funct. Anal. 16,78 (1974). 
7J. Diestel and J.J. Uhl, Jr., Vector Measures (Amer. Math. Soc., Provi­
dence, 1977). 

8G.A. Edgar, Proe. Amer. Math. Soc. 49, 354 (1975). 
9From now on we will frequently use infinite sums of positive operators 
without further explanation. These operator sums are to be understood as 
the limits of the nets of their finite partial sums in the strong operator 
topology. In all cases occurring, these limits exist because all partial sums 
are uniformly bounded by the unit operator. 

IOThis follows from the proof of Lemma 6.3.3 in Ref. 4. 
"See Lemma 6.4.1 of Ref. 4. 
I2A. Wehrl, Reports Math. Phys. 10, 159 (1976). 
I3See Appendix a in A. Guichardet, Symmetric Hilbert Spaces and Related 

Topics, Lecture Notes in Math. 261 (Springer, Berlin, 1972). 
I4A. Bartoszewicz, Colloq. Math. 39, 141 (1978). 

WilhelmOchs 289 



                                                                                                                                    

The domain of definition of bundle representations 
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It is proved that the equivalence class of bundle representations of a group G on the product 
bundle q; 0 with total space Bo = X X Yincludes all representations of G on bundles q; which are 
homeomorphic (but not necessarily naturally homeomorphic) to the product X X Y, provided 
that G has the same action on the fibres of q; 0 and q; . The group A of the bundle q; is immaterial. 

P ACS numbers: 02.40. + m 

1. INTRODUCTION 

In the definition of bundle representations, I ,2 the un­
derlying total space Bo was taken as a natural product, 
Bo = X X cW". Since there exist bundles which are hom eo­
morphic,3 but not naturally homeomorphic, to the product, 
it is reasonable to ask how one can represent groups on such 
bundles. The answer is the following: The equivalence class 
of bundle representations contains all representations on 
bundles which are homeomorphic to the product, irrespec­
tive of whether this homeomorphism is natural or otherwise. 
In this paper we shall prove this assertion. 

We shall start with a remark on terminology. Steenrod4 

defines a product bundle as one with a distinguished fibre­
preserving homeomorphism to the product, and with the 
identity as the group of the bundle. Dieudonne5 calls such 
bundles trivial. To differentiate between these, and bundles 
which are homeomorphic but not naturally homeomorphic 
to the product, Steenrod introduces the notion of G-equiv­
alence to the product.6 Dieudonne calls such bundles trivia li­
zable,7 and simultaneously emphasizes the distinction be­
tween trivial and trivializable bundles. 

If one is interested only in topological invariants, which 
is generally the case in the mathematical literature, there is 
no point in distinguishing between trivial and trivializable 
bundles. Consequently, in much of the mathematical litera­
ture one encounters the term "trivial bundles" without fur­
ther specification. A topologically trivial bundle may be ei­
ther trivial or trivializable in the sense of Dieudonne. In 
Steenrod's book the statement that a bundle is "equivalent to 
the product" is stipulated to include the case that it is G­
equivalent to the product. R 

However, in some physical applications of fibre bundle 
theory which are currently under investigation, the nonto­
pological distinction between trivial and trivializable bun­
dles appears to be physically significant. In the geometrical 
formulations of some gauge theories, a gauge transformation 
corresponds to the passage from the one global trivialization 
to another; the principal bundles involved are homeomor­
phic9 to the product, but there exists no distinguished 
homeomorphism. 10, II 

In Sec. 2 we shall define group representations on gen­
eral fibre bundles (not necessarily vector bundles), and in 
Sec. 3 we shall establish the main result via two elementary 
propositions, one of which is proved in detail. Finally we 
shall sketch, in the Appendix, the construction of trivial and 

trivializable bundles according to the Whitney-Steenrod 
theorem, in order to provide a complete clarification of the 
difference between the two. 

2. GENERAL DEFINITION OF GROUP 
REPRESENTATIONS BY BUNDLE MAPS 

Let q; = [B, X, 1T, A, Y] be a fibre bundle l2 with total 
space B, bases space X, projection 1T, group A, and fibre Y. 
Let G be a topological group. We define a bundle representa­
tion of G on q; to be a family {A ( g) J of invertible bundle 
maps 13 A ( g): B~B, indexed by geG, which satisfy the follow­
ing conditions2: 

(i) A (e) = the identity map, e is the identity of G: 

(ii) A (gtl°A (g2) = A (glg2) 'fIgI , g2eG; 

(iii) the map XG XB~B defined by i (g, b) = A (g)b is 
continuous (here beE ). 

Clearly the family of bundle maps {A (g) J induces a continu­
ous action {i (g) J of G on X. 

3. THE MAIN RESULT 

We now assume that (a) q; is homeomorphic to 
q; 0 = X X Y{ the bundle q; ois the collection [Bo, X, 1To, Y] J, 
but (b) there exists no natural or distinguished homeomor­
phism between Band Bo. We denote tP i a global trivialization 
of B i.e., 

tPi:XXY~B 

is a homeomorphism such that 

1T°tPi(X,y) =X 'fIxeX, yeY. 

Here i belong to an indexing set J. 

(I) 

(2) 

Proposition 1: A global trivialization tPi of B induces, 
from the representation {A (g) J ofGon q;, abundlerepresen­
tation (in the ordinary sense) {hi(g) J of G on q; 0' where 

hi(g) = tP i~ lOA (g)0tPi' (3) 

If { hi (g) J and {hj (g) J are the bundle representations of G on 
q; 0 induced by the trivializations tPi and tPj' respectively, 
then 

(4) 

where [Jji is a coordinate transformation on the fibres 14 of 
q; 0' given by 

(5) 
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which acts on each fibre as an element of the group A of the 
bundle f!ll. 

Proof (a) h;(g) is defined by the commutative diagram 
of Fig. 1: 

rIG. I. 

Since A (g) and ¢J; are fibre-preserving homeomorphisms, so 
is h; (g). The algebraic representation properties [i.e., (i), (ii) 
of Sec. 2] of [h;(g)} follow by inspection. The continuity 
property of h; [defined by analogy with i, (iii) of Sec. 2; cf. 
also (iii), Eq. (6), Ref. 2] are set in evidence by the diagram in 
Fig. 2: 

G XB __ ...... X=--__ .~ B 

idX¢J;-1 ! ! ¢J;-l 

GXB -------j.~ Bo 
h; 

FIG. 2. 

InFig.2(id X¢J ;-l)(g,b) = (g,¢J i-lIb )),bEB,andoneverifies 
immediately that the diagram commutes. 

(b) For every pair ¢J;. ¢Jj of global trivializations, we de­
fine a continuous maplS 

a/X-A, 
by 

aj;(x) = ¢J j-;l 0 ¢J;.x, 

where the map ¢J;.x :Y_1T- l(X) is defined by 

¢J;.X<y) = ¢J;(x,y). 

The aji(x) satisfy 

aji(x)a;k (x) = ajk (x), 

and 

Now consider the map 
flji = ¢J j-I 0 ¢J;: Bo-Bo 

(6) 

(7) 

andevaluate¢J j-I 0 ¢J;(x,y). Let¢J;(x,y) = b, then1T(b) =x, 
and ¢J j-I 0 ¢J;(x,y) = ¢J j-'(b) = (x',y')(say). Then 
b = ¢Jj (x', y') and 1T(b) = x', whence x' = x. Thus we have 
proved that flji acts as the identity on the base space, and is 
therefore a coordinate transformation on the fibres. We 
have, furthermore 

aji(x) = flji(x), 

and, as is evident upon inspection, the flj; satisfy the same 
relations (6) and (7) as the aj ; (x). 

Proposition 2: Let [h (g)} be a bundle representation of G 
on f!ll 0 and let ¢J; be a trivialization of B. Then {A; (g)}. de­
fined by 

A;(g) = ¢J; 0 h (g) 0 ¢J ;- I 

is a representation (in the sense of Sec. 2) of G on f!ll. If ¢J;, ¢Jj 
are two trivializations of Band [A;(g)}. {Aj(g)} the corre­
sponding representations of G on f!ll, then 

Aj(g) = Tj; 0 A;(g) 0 Tji I, 
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where 1);: B-B, defined by 

1); = ¢Jj 0 ¢J ;- I, 

is a coordinate transformation on the fibres of f!ll; that is, the 
representations [Aj (g)} and [A; (g)} are equivalent. More­
over, the 1); satisfy the relations 

1); T,k = 1)k' 

Tji ' = Tij' 
Proof Similar to the proof of Proposition 1. The results 

we have obtained above can be summarized in the following 
theorem. 

Theorem: The equivalence class of bundle representa­
tions of the group G on f!ll 0 = [Bo, X, 1To' Y] contains all 
representations of G on all bundles f!ll = [B, X, 1T, A, Y] 
which are homeomorphic to f!ll 0 by fibre-preserving homeo­
morphisms, irrespective of the group A (provided that the 
group G has the same action on the fibres of f!ll 0 and f!ll). 

4. CONCLUDING REMARKS 

The result proved above may appear surprising at first 
glance, but ceases to remain so after a moment's reflection. 
The notion of a bundle representation, if properly formulat­
ed, ought to be invariant under fibre-preserving topological 
equivalences. Such a definition is easy to give but harder to 
use for constructive or computational purposes. The situa­
tion is exactly the same as in the theory oflinear representa­
tions of groups. There a linear representation is defined in a 
coordinate-free manner as a homomorphism of the group 
into the group of linear transformations of a vector space. 
However, to compute one often has to fall back upon matrix 
representations, which require a choice of basis. One then 
eliminates the basis dependence by passage to equivalence 
classes. An "abstract" linear representation may be consid­
ered as an (appropriately defined) equivalence class of "con­
crete" matrix representations. So it is with bundle represen­
tations. An "abstract" bundle representation is the 
equivalence class, under coordinate transformations, of a 
"concrete" bundle representation which is defined, explicit­
ly and constructively, in terms of a specific global trivializa­
tion. Since we admit all fibre-preserving homeomorphims as 
coordinate transformations, the non topological distinction 
between trivial and trivializable bundles disappears in the 
passage from the concrete to the abstract. 

As a byproduct of these considerations we arrive at the 
following conclusion. Suppose that a bundle with group Gis 
G-equivalent to the product. Ifwe want to construct a phys­
ical theory (using this bundle) in which G has a physical 
meaning, then the mathematical structure which is signifi­
cant is a G-structure l6 on the base space X, and not the topo­
logical structure of the bundle. In such contexts principal 
bundles are only a convenient means for studying the geome­
try of G-structures. 

Many applications of fibre bundle theory which are be­
ing considered appear to be of this kind. These include, apart 
from the usual gauge theories based on Minkowski space, 
the works of A. Bohm 17 and W. Drechsler. 18 Moreover, 
Minkowski space itself appears to admit a (3,2) de Sitter 
group structure, first noticed by Dirac. 19 van Dam and Bie-
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denharn20 have made the remarkable suggestion that this 
structure be used to bypass O'Raifeartaigh's theorem.21 In 
view of these works, it might be useful, for achieving greater 
clarity, to shift the emphaSiis in such contexts from fibre bun­
dles to G-structures. The latter should be viewed as the pri­
mary objects with physical meaning, and principal bundles 
as auxiliary mathematical constructs for studying them. 

APPENDIX: TRIVIAL AND TRIVIALIZABLE BUNDLES 

In all cases, a fibre bundle is an object which is assem­
bled, painstakingly, from its ingredients by the Whitney­
Steenrod construction, given in Sec. 3 of Ref. 4. We follow 
the notations and terminology of this reference. 

Recall that a coordinate bundle is called a product bun­
dle if there is just one coordinate neighborhood V = X, and 
the group G of the bundle consists of the identity alone. Ap­
plying the Whitney-Steenrod construction to this case, we 
obtain the total space Bo = X X Y, the natural projection 
p: Bo-X, and the identity map as the coordinate function. A 
fibre bundle is a strict equivalence class of coordinate bun­
dles. To determine this class, we take any open cover! Vi ) of 
X consisting of more than one chart, and G = {e). Working 
out the Whitney-Steenrod construction for this case, we find 
again that the total space is X X Y, ¢j is the restriction of the 
identity map to Jj X Yfor eachjE J, and the projection is the 
natural one. The bundle is trivial. 

Now suppose that we are given the following: there is 
only one coordinate neighborhood V = X; there exists an 
effective topological tranformation group G of Y, an index­
ing set J, and a family of continuous nontrivial maps 
gji: X_G for each pair i,j of indices in J. The conditions of 
the Whitney-Steenrod construction are met. The construc­
tion gives us a bundle with total space B, and for eachjE J a 
coordinate function 

¢j:XXY-B, 

such that 

¢ D 1 0 ¢i.x = gji(X) 'VxEX. 

The space B is homeomorphic, in a fibre-preserving manner, 
to Bo = X X Y, but there exists no natural or distinguished 
homeomorphism. The bundle obtained is trivializable but 
not trivial. The passage from one global trivialization to an­
other is accomplished with the help of the group G of the 
bundle. 
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'Bundle representations were first defined in R.N. Sen, Nonrelativistic 
Zero-Mass Systems, Lecture Notes, Gattingen (1974); H.J. Borchers and 
R.N. Sen, Commun. Math. Phys. 42, 101 (1975). The definition was 
strengthened, as regards continuity, in Ref. 2. 

2R.N. Sen, Physica (Utrecht) A 94,39 (1978). We shall be working with 
this latter definition. 

'We shall work exclusively with bundle homeomorphisms which are fibre 
presserving. In Bo = X XW, X is the base space and ,W- the fibre. 

'N. Steenrod, The Topology of Fibre Bundles (Princeton U.P., Princeton, 
New Jersey, 1951, with an appendix added November 1956), see p. 16. 

5J. Dieudonne, Treatise on Analysis (Academic, New York, 1972), Vol. III, 
see p. 78. 

"See Ref. 4, p. 17. 
'See Ref. 5, pp. 78 and 79. 
"See Ref. 4, Secs. 4.3 and 4.4. 
9In the geometrical formulations of gauge theories one works with differen­
tiable rather than topological structures; however, this extra structure is 
not relevant in the present context. 

lOSee, for example, W. Drechsler and M.E. Mayer, Fibre Bundle Techniques 
in Gauge Theories, Vol. 67 of Lecture Notes in Physics (Springer-Verlag, 
Berlin, 1977), and various articles in the following reference. 

II Differential Geometrical Methods in Mathematical Physics, edited by K. 
B1euler et al., Vols. 570 (1977) and 676 (1978) of Lecture Notes in Math­
ematics (Springer-Verlag, Berlin). 

121n order to avoid any misunderstanding, we state explicitly that we use the 
term "fibre bundle" in the sense of Steenrod, Ref. 4. For various defini­
tions of fibre bundles and fibre spaces, see, for example, W.S. Massey, 
"Some problems in algebraic topology and the theory of fibre bundles," 
Ann. Math. 62, 327 (1955). D. Husemoller, Fibre Bundles, 2nd ed. 
(Springer-Verlag, GTM 20, 1975) calls a "bundle" what is called an espace 
decoupe by R. Godement, Th€orie des faisceaux (Hermann, Paris, 
1958) and space over X by A. Dold, "Partitions of unity in the theory of 
fibrations," Ann. Math. 78, 223 (1963). 

"We call a bundle map invertible only ifits inverse is also a bundle map. 
14Coordinate transformations are discussed in detail in Ref. 2. 
"See Ref. 4, Sec. 2.3. 
l"The concept of a G-structure is due to S.S. Chern. See his article "The 

geometry ofG-structures." Bull. Am. Math. Soc. 72,167 (1966). See also 
S. Sternberg, Lectures on Differential Geometry (Prentice-Hall, Engle­
wood Cliffs, New Jersey, 1964), Chap. VII. 

I' A. Bahm, "Relativistic rotators-a quantum mechanical de Sitter bun­
dle," in: Proceedings of the International Symposium on Mathematical 
Physics, 1976, Mexico City (University of Mexico, Mexico City, 1977). 

\8See the contributions by W. Drechsler in Ref. 10 and in Group Theoretical 
Methods in Physics, Vol. 94 of Lecture Notes in Physics, edited by W. 
Beiglback, A. Bahm, and E. Takasugi (Springer-Verlag, Berlin, 1979). 

19p.A.M. Dirac, J. Math. Phys. 4, 901 (1963). 
20See the contribution by H. van Dam and L.C. Biedenharn, in Ref. 18. 
21 L. O'Raifeartaigh, Phys. Rev. B 139, 1052 (1965). 
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Minkowski space-time is developed in terms of a set of undefined primitive elements called 
events, certain subsets of events called paths which correspond to the worldlines of free particles, 
and a temporal order relation on each path. Nine axioms describe the existence and uniqueness of 
paths, temporal order, connectedness, causality, collinearity, continuity, isotropy, and 
dimension. 

PACS numbers: 02.40. + m, 03.30. + P 

INTRODUCTION 

Minkowski space-time will be described in terms of a 
set of undefined primitive elements called "events," certain 
subsets of events called "paths" which correspond to the 
worldlines of free particles, and a temporal order relation 
defined on the set of events of each path. The postulated 
relations of temporal order may be thought of as applying to 
freely moving observers who are capable only of distinguish­
ing between events in their own local histories. The axioms 
permit the extension of these local temporal orderings de­
fined on each path to a global temporal ordering defined on 
the set of all events. 

In the present axiomatic system, all the axioms describe 
properties of paths. The existence of "light signals" is de­
duced rather than postulated axiomatically as in the preced­
ing axiomatic systems of Walker, 1,2 Szekeres,3 and Schutz.4 

In all these axiomatic systems, the concept of a "coordi­
nate frame" is developed from primitive notions which cor­
respond to the temporal order properties and kinematic be­
havior of free particles and light signals. Other axiomatic 
systems, in which the existence of coordinate frames is as­
sumed, have been briefly reviewed by Schutz.4 

The form of the axiomatic system resembles both that 
of Hilbert5 for Euclidean geometry and the previous system 
of Schutz4 for Minkowski space-time. The axioms of the 
present system may be compared with those of Hilbert,5 and 
it will be seen that all but one of the axioms have analogs 
within Hilbert's five axiom groups: the exception is the Axi­
om of Causality (Axiom V, 1.41) which expresses the essen­
tial character of a causal space-time and is therefore not 
required for a geometry. Whereas Hilbert's axiom system 
contained an entire group of axioms stating the properties of 
an undefined congruence relation, the present axiomatic sys­
te~ contains one symmetry axiom (the Axiom ofIsotropy, 
AXIOm VIII, 1.71) and does not require the introduction of a 
congruence axiom at all. Instead, it transpires that all the 
properties of a congruence relation can be deduced as theo­
rems within the present axiomatic system. 

Some comparisons can now be made with the previous 
axiomatic system ofSchutz,4 which was subtitled Kinematic 

"~I Permanent address. 
h)Visiting Scientist, January-August 1978. 

Axioms for Minkowski Space-Time and will subsequently be 
referred to by the letters KA. The previous rather strong 
Axiom of Compactness of Bounded sub-SPRA Y (KA Axi­
om XI, 2.13) is now replaced by the considerably weaker 
Axiom of Continuity (Axiom VII, 1.63) which is analogous 
to the geometric axiom of the same name.5 This axiom ap­
plies to the set of events of a path rather than to a set of 
simultaneously coincident paths, so the axiom is not only 
weaker but might even be regarded as being more intuitively 
acceptable. 

The present Axiom ofIsotropy (Axiom VII, 1.71) is also 
weaker than its predecessor (KA Axiom VII, 2.9), the signifi­
cant difference being that the present axiom does not assume 
that signals are mapped onto signals. This symmetry axiom 
may be interpreted intuitively as meaning that all "direc­
tions" are equivalent. Thus, it is this axiom which expresses 
an idea similar to the "Principle of Relativity" of Einstein, 6 

who postulated that there should be no "preferred coordi­
nate frames." The axiom does not assume the existence of 
coordinate frames, which will be developed from the axioms, 
nor does it assume that isotropy mappings are automor­
phisms. What is assumed, for a given isotropy mapping, is 
that the events on one path (an "observer's path") are invar­
iant, that paths are mapped onto paths, and that the map­
ping is bijective on one subset of simultaneously coincident 
paths. 

Two axioms are essentially different from those of the 
preceding axiomatic system (KA). The Axiom of Unique­
ness of Paths (Axiom II, 1.12) is analogous to Hilbert's Axi­
om of Connection (Hilbert,5 Axiom I, 2) and was previously 
deduced as a theorem (KA, Theorem 6,2.9), while the Axi­
om ofCollinearity (Axiom VI, 1.51) is analogous to Hilbert's 
Axiom of Order (Hilbert,5 Axiom II, 4) and is introduced to 
replace the previous Axiom of Uniqueness of Extension of 
Optical Lines (KA, Axiom V, 2.7) and the Axiom of the 
Intermediate Path (KA, Axiom VI, 2.8). 

Many properties which were taken as axiomatic in the 
previous system are now deduced as theorems. Thus the 
property stated in the Signal Axiom (KA Axiom I, 2.2) is 
now deduced as Theorem 1.72, the Triangle Inequality (KA 
Axiom IV, 2.4) as Theorem 1.66, the Uniqueness of Exten­
sion of Optical Lines (KA Axiom V, 2.7) as described in Sec. 
2.0, the Existence of an Intermediate Path (KA Axiom VI, 
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2.8) as Theorem 1.56, while the roles of the Axioms oflnci­
dence (KA Axiom XI, 2.11) and Connectedness (KA Axi­
om X, 2.12) are now subsumed in the axiom of Connected­
ness (Axiom IV, 1.31). 

Within the present axiomatic system it is possible to 
prove several propositions which are assumed by many other 
writers. Thus, we do not assume the concept of a coordinate 
frame, we do not assume that the set of events of each path 
can be ordered by the real numbers, we do not assume that 
light signals exist, nor do we assume that paths and light 
signals have constant speed. These propositions all turn out 
to be provable within the system. 

Three properties of Minkowski space-time are of cen­
tral importance to the subsequent development. One-dimen­
sional kinematics is in many ways analogous to plane abso­
lute geometry, for it transpires that the concept of 
parallelism can be applied to paths and, furthermore, the 
corresponding question of uniqueness of parallelism is close­
ly related to uniform motion along paths. Both Robb7 and 
Szekeres3 observed that uniform motion implies uniqueness 
of parallelism but, in the present axiomatic system as well as 
in KA, the uniqueness of parallelism is proved and then it is 
shown that this implies uniform motion along paths, so that 
Newton's first law of motion need not be assumed. The sec­
ond important property is that, in contrast to the Euclidean 
velocity space of Newtonian kinematics, the velocity space 
associated with Minkowski space-time is hyperbolic, a 
property which is established by making use of a recent char­
acterization of the elementary spaces by Tits.8

-
1O The third 

important property is that space-time coordinates are relat­
ed to homogeneous coordinates in a three-dimensional hy­
perbolic space. Consequently, there is an isomorphism be­
tween homogeneous Lorentz transformations and 
transformations of homogeneous coordinates in hyperbolic 
space. 

In this paper many details of the proofs have been omit­
ted in order to keep the paper to a reasonable length. Full 

11 h· h· details of the proofs are given in a research report w IC IS 

available on request from the Max-Planck-Institut flir 
Astrophysik. 

1. AXIOMS AND PRIMITIVE NOTIONS 

Minkowski space-time will be described in terms of a 
set of undefined primitive elements called events, certain 
subsets of events called paths, and a temporal order relation 
< defined on the set of events of each path. 

The set of all paths will be denoted by g; and the set of 
all events will be denoted by If. Individual paths will be 
denoted by the symbols Q, R, S, .... Events belonging to a 
path, say Q, will be denoted by the path symbol together 
with a subscript, for example,QI' Qa' Qx; or by means of 
lower case letters such as a, b, c,···. If a E Q, we say that the 
event a lies on the path Q or more simply that a lies on Q or Q 
passes through a. An event may belong to two or more paths: 
if Q n R = a, we say that Q and R coincide at a or that Q 
meets Rata. 

The temporal order relation applies only to pairs of 
events on the same path: The statement "QI < Q2" is to be 
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read as "QI is before Q2" or "Q2 is after QI". 
Minkowski space-time will be defined to be the ordered 

triple.ff = (If, g;, <). 

A. The axioms of existence and uniqueness for paths 

It is first necessary to ensure that If and g; are non­
empty and that there are at least two distinct paths (where 
the word "distinct" is used in the set-theoretic sense). 

Axiom I, 1.11 (existence): There are at least two distinct 
paths. 

Axiom II, 1.12 (uniqueness): There is at most one path 
passing through any two given distinct events. 

Within Hilbert's5 axiom system for geometry, these axi­
oms have their analogues in the Axioms of Connection (12 
and 13). 

The Axiom of Uniqueness is the first of three axioms 
which express different aspects of the "law of inertia" or 
"Newton's first law." The Axiom of Uniqueness expresses 
the idea that paths correspond to the possible trajectories of 
"free particles." Other aspects of the law of inertia are de­
scribed by the Axiom of Collinearity (Axiom VI, 1.51) and 
the Axiom oflsotropy (Axiom VIII, 1.69). 

B. The axiom of temporal order 

This axiom ensures that there are no closed time-like 
world lines and is analogous to the axioms of order of geome­
try (see, for example, Hilbert's5 Axioms of Order II 1-3). 

Axiom III, 1.21 (temporal order): The events of each 
path are irreflexively and linearly ordered by a temporal or­
der relation <. 

The axiom also ensures that, in the present axiomatic 
system, we do not need to assume that the events on a path 
are order isomorphic with the real numbers, nor do we as­
sume that a path may be prolonged (cf. Hilbert5

, Axiom II 
2.): This proposition is proved as a theorem (Theorem 1.43). 

Although the temporal order relation < is clearly anti­
symmetric, there is no "anisotropy of time" within the axi­
omatic system since we can consistently interchange the 
symbols < and >, the words "before" and "after", and the 
words "past" and "future" (see Sec. I.C following). The 
choice of one direction rather than the other as a "forward 
direction of time" is simply a matter of convention within 
this axiomatic system. 

c. The axiom of connectedness 

This axiom also has an analog in the foundations of 
geometry [see, for example, Hilbert5 Axiom (s) oflncidence 
I 1]. Before stating the axiom we make the following defini­
tions: Given a path R and an event dR, we define 

(i) thefuture of e in R: 

R(e, +) = Ig:g>e,gERj; 

(ii) the past of e in R: 

R(e, -) = Id:d <e, dERj; 

(iii) the unreachable set of e in R: 

R(e,c,6) = Iff~e,fERj. 

The future of e in R is the set of events in R which are 
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connected with e by paths directed from e to R, while simi­
larly the past of e in R is the set of events in R which are 
connected with e by paths directed from R to e. Note that the 
unreachable set is the set of events in R which can not be 
connected with e by any path. 

Axiom IV, 1.31 (connectedness): Given a path R and an 
eventetR, the subsets R(e, - ), R(e,~), R(e, + ) each contain 
more that one event. 

This axiom expresses the notion of the "boundedness of 
relative velocities" although it should be noted that the con­
cept of velocity has not yet been developed. While this axiom 
has some resemblance to Hilbert's5 first Axiom of Connect­
edness (Axiom 11), it also expresses an essential difference 
between a geometry and a space-time. The other essential 
difference is contained in the Axiom of Causality (Axiom V, 
1.41). Note that, in Galilean space-time, the set R(e, ~ ) con­
tains exactly one event: Apart from this exception, all the 
other axioms are satisfied by Galilean space-time but addi­
tional axioms would be required for categoricity. 

D. The axiom of causality 
This axiom expresses the second essential difference be­

tween a causal space-time and a geometry. In effect it states 
that there is a temporal order relation on space-time permit­
ting the usual interpretation of causality, namely that "a 
cause always precedes an effect in time." Another interpre­
tation ofthe axiom is that there are no combinations of "for­
ward-directed path segments" which permit "travel into the 
past." For a further discussion of causal space-times, see 
Kronheimer and Penrose12 and Woodhouse. 13 Since the 
classical geometries have no causal properties, it is not sur­
prising that the axiom of causality has no analog within Hil­
bert's axiom system for geometry. In the statement of the 
axiom, the temporal order relation < has the following 
meaning for sets of events A, B: 

[A < B ]<===?laEA, bEB::::::}a < b ]. 

Axiom V, 1.41 (causality): Given a path R and an event 
etR, then 

R(e, - ) <R(e, ~ ) <R(e, +). 

This axiom has, as a consequence, the following very 
useful lemma which is logically equivalent to the Axiom of 
Causality and which could have been used as an axiom in an 
alternative axiomatic system. The choice of one proposition, 
rather than the other, for an axiom is a matter of taste only 
and is arbitrary to that extent. 

Lemma 1.42 (direct path): Given two paths Q, R with 
events a, beQ and b, ceR, respectively, such that 

a <b and b<c, 

then (i) there is a path S which passes through the events a 
and c, and (ii) a < c. 

Remarks: (i) This lemma also applies with time-re­
versed orderings. (ii) The lemma extends the transitivity of 
the temporal order relations from events on the same path to 
the set of all events If. Thus, the "local" temporal orderings 
on paths can now be extended to a "global" temporal order­
ing on the set of all events If. Given any three events a, b, c 
with a < band b < c it follows that a < c and we are therefore 
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justified in using the more compact expression a < b < c with 
the obvious meaning. 

Proof We are given that bERea, + ), that ceR, and that 
c> b, so by the Axiom of Causality (Axiom V) it follows that 
ceR (a, + ); thus, a < c and there is a path S containing a and 
c. 

It will nOw be shown that each path has no "first event" 
and no "last event." 

Lemma 1.43 (prolongation): Given a path Q with events 
b, c such that b < c, then there are events a, deQ such that 

Proof By the Axiom of Existence (Axiom I, 1.11) there 
is a path R distinct from Q, so by the Axioms of Uniqueness 
(Axiom II, 1.12) and Connectedness (Axiom IV, 1.31) there 
is a path S (which may be R) distinct from Q such that S 
meetsQ atb. 

Again by two applications of the Axiom of Connected­
ness, threre is an event eeS such that e > c and an event deQ 
such that d> e, so by the Axiom of Causality (Axiom IV, 
1.41 I, d > c. The existence of an event a < b may be proved in 
a similar manner. 

E. The nxlom of colllnearily 

Thlls axiom makes it possible to discuss "rectilinear mo­
tion" in terms of "collinear sets of events" so, in effect, the 
axiom a:sserts that "motion continues in a straight line" to 
paraphrase Newton's law of inertia. Whereas local versions 
of Axioms I, II, III, IV, V, and VII hold even in general 
relativistic space-times, there is no local analog of Axiom VI 
which applies, except in certain special cases. The nonvali­
dity of the corresponding statement expresses the presence 
ofprojec:tive curvature. I am indebted to Professor J. Ehlers 
for pointing this out. 

Thf: axiom of coIlinearity is a kinematic analog of the 
geometnlc axiom of planarity given by Veblen 14 and, as with 
Veblen's axiom, it also makes a statement about interme­
diacy which has the consequence that each path is dense in 
itself (Lemma 1.52). Together with the Axiom of Isotropy 
(Axiom VIII, 1.69), this axiom of collinearity enables us to 
prove the important and subtle Signal Theorem (1.610) 
which asserts that "light signals exist and have the expected 
limiting properties of sequences of paths." 

To obtain an appreciation of the kinematic ideas ex­
pressed by the axiom, the reader is urged to draw a diagram 
correspoillding to the statement of the axiom, by sketching 
each path segment and then attaching a consistent temporal 
ordering scheme to the diagram. If a template is made by 
cutting a narrow slit in a sheet of paper, the "motions" of the 
paths may be observed by moving the template gradually 
across the diagram. 

Before stating the axiom we make the following defini­
tions: If a, b, c are three distinct events on one path such that 
either a < b < c or c < b < a, we say that b is between a and c 
and we denote this by writing [abc]. If a, b, c are three dis­
tinct events, not all on the same path, such that each pair of 
events lies on some path, we say that abc is a kinematic 
triangle. 
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Axiom VI, 1.51 (collinearity): If abc is a kinematic tri­
angle and d, e are events with [bed] and [cea] and if there is a 
path de, then the path de meets the path ab at an event/such 
that [ajb]. 

In Hilbert's5 system of axioms for geometry, the analo­
gous axiom is Axiom II 4. The ensuing discussion of collin­
ear sets of events has much in common with the description 
of planes given by Veblen 14 although in the present case, the 
development of the kinematic theory is more complicated 
due to the existence of pairs of events which can not be con­
nected by paths. Remember that a path corresponds to the 
"world line of a free particle." 

Lemma 1.52 (each path is dense in itself): Given any 
path Q with distinct events a, bEQ there is an event/EQ such 
that [ajb). 

Proof Full details of all proofs are included in Ref. 11. 
Theorem 1.53: In the notation of the Axiom of 

Collinearity 

[def) , 

i.e., if abc is a kinematic triangle and [bed] and [eea] such 
that dSe, then on the path de there is an event/for which 
[def) (see Fig. 1). 

Lemma 1.54 
If abc is a kinematic triangle and [ajb] and [bed) with 15 

dSa and dSJ. then on the path dfthere is an event e for which 
[eea ). 

Theorem 1.55 (ordered coincidence): Let Q, R be dis­
tinct paths which meet at x. Let a, eEQ and let b, dER. (i) If 
x < a < b < d < e, then the paths ab and de meet at an event c 
such that [abc) and [cde). Oi) If b < a <x <d < e, then the 
paths ab and de meet at an event e such that [bae] and [ede]. 

Given three distinct paths Q, R, S which meet at an 
event x, we say that the event bER after x is between the paths 
Q and S if: 

(i) for each event eES with e > b, the path cb meets Q at 
some event a, and 

(i') for each event eEQ with e > b, the path eb meets S at 
some event d. 

b 

d 

FIG. 1. An eventJfor which [deJl. 
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Note that (i') is similar to (i) but with the roles ofQ and S 
reversed, so the definition is symmetric with respect to Q and 
S. An analogous definition applies for events before x, with 
reversed temporal orderings. 

To extend the definition of "betweenness" to paths, we 
impose the further conditions (ii) and (ii') below. We say that 
the path R is between the paths Q and S and denote this by 
writing (Q, R, S) if 

(i) all events on R are between Q and S, 
(ii) for any path T which meets Q and S at events after x, 

the path T meets R at some event, and 
(ii') for any path T which meets Q and S at events before 

x, the path T meets R at some event. 

Theorem 1.56 (intermediate path): Let Q and S be two 
distinct paths which meet at some event x, and let T be a path 
which meets Q and S at events a and e, respectively, after x. 
For each event bET such that [abc), (i) there is a path R which 
passes through x and b, and, furthermore, (ii) (Q, R, S). 

Corollary 1.57 (coincidence): Let Q, R, S be distinct 
paths which meet at x such that (Q, R, S). Let T meet Q at a 
and R at b. If a> b, then T meets S at an event e such that 
x<e<b<a. 

In the subsequent development we will frequently be 
discussing the properties of sets of paths which meet at a 
given event. As in KA we will call anyone of these sets a 
SPRA Y of paths, or more simply a SPRA Y, where the upper 
case letters indicate that we are referring to a set of paths 
rather than a set of events. We define l6 

SPR[Qcl: = IR:QcER, RE9j. 

The corresponding set of events is called a spray, where the 
lower case letters indicate a set of events. We define 

spr[Qc]: = !Rx:RxER,RESPR[Qc Jj. 

IfQ, S are distinct paths which meet at an event x, we 
define the collinear sub-spray 

CSP(Q, S): = IR:(R, Q, S), (Q, R, S) or (Q, S, R); 
RESPR[x]j. 

Given four paths Q, S, U, V which meet at an event x, 
we write (Q,S, U, V)if(Q,S, U), (Q,S, V), (Q, U, V),and 
(S, U, V). The notation (.,.,.,) may be extended in the obvi­
ous way to any set of paths provided that each ordered triple 
satisfies the definition of betweenness. 

Theorem 1.58: Let Q, S be distinct paths which meet at 
x. Then CSP(Q, S) is a simply ordered set. 

Lemma 1.59 (generation): Let Q, R be distinct paths 
which meet at x and let T be a path which meets Q and R at 
events other than x. Then the sub-SPRAY of paths which 
join x to events of T is a subset of CSP (Q, R). 

Remark: It may appear that the set of paths generated 
by x and T is identical with CSP (Q, R). It will tum out, as a 
consequence of the Uniqueness of Parallelism (KA, Theo­
rem 46, 7.5) that this is not the case, for there is one path in 
CSP(Q, R) through x "parallel to" T and this path is clearly 
not generated by x and T. 

Corresponding to CSP (Q, R) we denote the set of 
events belonging to the paths of CSP (Q, R) by 

csp(Q, R): = \e:eES, SECSP (Q, R) \. 
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and we denote the set of events after the event of coincidence 
by 

csp+(Q, R): = fe:e> QnR, eEcsp(Q, R) J. 
Lemma 1.510 (containment): Let Q, R, S be distinct 

paths which meet at distinct events b, c, d where b = SnQ, 
c = QnR, d = RnS such that b < c < d. Then 

csp+(R, S) ~csp+(Q, R) ~csp+(S, R). 

We define a collinear set of events in a manner which is 
analogous to the definition of a plane set of points in absolute 
geometry. Let R, S be any two distinct paths which meet at 
some event. Then the set of events collinear with Rand S is 

co1[R, S]: = f Wx : W. EW where W meets Rand S at 

two distinct events J . 

The next theorem states that collinear sets of events have 
properties which are analogous to the properties of coplanar 
sets of points in absolute geometry. Anticipating the result of 
part (i) of the theorem, we will define a collinear set of paths 

COL [R, S]: = f U:U meets col [R, S] in two distinct events}. 

Theorem 1.511 (collinear sets): (i) Containment: any 
path which coincides with two distinct events of a collinear 
set is contained in the collinear set. (ii) Uniqueness: a path 
and an event not on the path specify a unique collinear set. 

Given two distinct paths Q, S which meet at an event x, 
the set of paths CSP (Q, S) is 1inearly ordered and, accord­
ingly, we could assign a sense of direction!7 to them. The 
Intermediate Path Theorem (1.56) and its Corollary (1.57) 
show that, for any path TECOL [Q, S] - CSP(Q, S), the 
restriction 

T+ = I Ty:Ty >x, TyETJ, 

has the property that, for each Ty ET +, there is some path 
RECSP(Q, S) such that TyER, and the events ofT+ before 
Ty are on one side ofR while the events of T + after Ty are on 
the other side ofR: In this sense, T+ crosses R in csp + (Q, S). 

Corollary 1.512 (crossing): A collinear set ~ can be giv­
en a sense of direction (left to right) which has the following 
properties: (i) Each path S in ~ separates the events of ~ - S 
into two disjoint sets-a left side ofS and a right side ofS; (ii) 
A path T which contains one event Tu from the left side ofS 
and one event Tw from the right side ofS meets S at an event 
v between Tu and Tw; thus, T crosses S at the event v; (iii) The 
sense of direction is consistent in the sense that: 

(a) if(all events of) a path W is on the right side ofa path 
S, then the right side of W is contained in the right side of S 
(and the left side ofS is contained in the left side ofW), 

( /3) if a path T is on the right side of a path S after 
(before) an event v, then the right side ofT after (before) v is 
contained in the right side of S after (before) V; (iv) If two 
paths meet, then they cross each other. 

F. Signal functions and the axiom of continuity 

The Axiom of Continuity is analogous to the geometri­
cal axiom of the same name as used by Hilbert5 (Axiom V2) 
and ensures the "existence oflight signals." Before stating 
this axiom it is useful to establish a lemma which may be 
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scribed kinematically by the statement "given any path there 
is a faster path." 

Lemma 1.61 (there is no fastest path): Given a path Q 
and an event eiQ, (i) the set Q(e, +) has no first event, and 
(ii) the set Q(e, -) has no last event. 

The Axiom of Continuity which follows asserts that 
each path has a completeness property which ensures that 
the concept of "fastest signal" can be defined. Before stating 
the axiom we need the following definition: A linearly or­
dered set is conditionally complete if each bounded subset has 
an infimum and a supremum. 

Axiom VII, 1.62 (continuity): Each path is conditional­
ly complete. 

It is now possible to define two signal functions (see Fig. 
2); the forward signal function is defined 

f:Q:Q-R, 

if Q and R do not meet at Qx 

if Q and R meet at Qx' 

and the reverse signalfunction 

if Q and R do not meet at Q 

if Q and R meet at Qx' 

These signal functions correspond physically to light signals 
(see Fig. 2) and, as might be expected, it transpires (in the 
Signal Theorem 1.610) that pairs offunctions, such asf:Q 
andf OR' are inverses of each other. However, this is not 
immediately apparent within the present axiom system since 
there is no axiom corresponding to the property which 
Kronheimer and Penrose12 and Woodhouse13 have called 

Q R 

FIG. 2. Signal functions are defined by considering limiting properties of 
paths. Forward signal functions are illustrated by broken lines (----) and 
reverse signal functions are illustrated by dotted lines ( ..... ). 
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Q R Q R Q R 

FIG. 3. The signal function inequalities. 

"future and past distinguishing." 
An immediate and useful consequence of the Axiom of 

Continuity is the following: 
Lemma (monotonic sequence property): Any bounded 

monotone sequence of events on a path has a limit on the 
path (with respect to the order topology). 

Lemma 1.64 (signal functions are weakly order preserv­
ing): Given two paths Q, R with events Qx,QzEQ, then 

(i) Qx < Qz~f :Q(Qx)<J :Q(Q.), 

(ii) Qx < Qz~f RQ(Qx)<J RQ(Qz)· 

Lemma 1.65 (signal function inequalities): Given any 
two paths Q and R, then 

(ii) f ~R 0 f RQ>iQQ , 

where iQQ is the identity function on Q. Let 
Rc: = f :Q(Qa) and let Qb: = f (iR (Rd)' Then 

(iii) Qa < Qb~Rc <Rd 

(see Fig. 3). 

Theorem 1.66 (triangle inequalities): Let Q, R, S be 
three paths. Then 

Remark: In the previous axiomatic system (KA), simi­
lar properties were taken as axioms. 

Given two ~vents a, b and paths Q, R such that 

we say that a and b are (forward) signal related and write 
a abo The binary relation 0' is called the signal relation and an 
expression of the form a 0' b may be read as "a signal goes 
from a to b "or" a signal leaves a and arrives at b." Given 
three events a, b, c such that 

a a band b 0' C and a a c, 

we say that the ordered set of events la, b, c) is in optical 
line. 18 A similar definition applies to events which are (re­
verse) signal related. 
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Lemma 1.67 (optical line): If (Q, R, S) then, for all 
QuEQ, 

(i) the events Qu, f:Q(Qu)' fs'Q(Qu) are in optical line; 

(ii) the events Qu' f RQ(Qu), f SR (Qu) are in optical line. 

Theorem 1.68 (existence): Let Q, U be distinct paths 
which meet at some event X. Let Qa' Qb EQ be distinct events 
such that 

Then there exists a path S, between Q and U and distinct 
from both, such that 

(see Fig. 4). 

Remark: At this stage we can not assert that S is unique. 
The uniqueness ofS can, however, be asserted after the Sig­
nal Theorem (1.72). 

G. The axiom of isotropy 

The Principle of Relativity of Einstein6 states, in effect, 
that there is no preferred reference frame. In the present 
axiomatic system, the Axiom of Isotropy asserts that "all 
directions are equivalent" and so it is this axiom which per­
forms a similar role to Einstein's Principle of Relativity. 

Axiomatic systems for the classical geometries usually 
have a set of "congruence" axioms (e.g., Hilbere) or several 
symmetry axioms (e.g., Redei I9

). In the present axiomatic 
system for Minkowski space-time we do not need any con­
gruence axioms, and the Axiom of Isotropy is the only sym­
metry axiom required for categoricity. By means of "com­
parisons" using light signals and isotropy mappings, it is 
possible to compare intervals of distance and time, and so the 
concept of congruence can be developed without any further 
axioms. 

Q s u 

FIG. 4. The existence theorem. 
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Although the question of "relative simplicity" of ax i­
omatic structures can not be defined or answered in any pre­
cise way and is ultimately a matter of aesthetics or fashion, it 
appears to the author that the additional structure of Min­
kowski space-time, compared with the classical geometries, 
enables it to be categorized with fewer and simpler axioms. 

Axiom VIII, 1.71 (isotropy): Let Q, R, S be distinct 
paths meeting at x. If, for some event Qy EQ with Qy =Ix, 

fQR °f:Q(Qy) =fQs ofsQ(Qy), 

then there exists a map e of ~ into itself such that 
(i) e maps 9 into itself, 
(ii) for QzEQ, e (Qz) = Qz' 
(iii) e induces a bijection on the set SPR[x) of paths, 
(iv) e (R) = S. 
It may seem surprising that this axiom is sufficient for 

our purpose. 20 It transpires that e is an order-preserving bi­
jective mapping which sends signals onto signals as one 
would expect (and require), and this is demonstrated in 
Theorem 1.610 for the restriction to "one-dimensional mo­
tion" and in Theorem 2.31 for the general case. 

An immediate consequence of this axiom and the Col­
linear Sets Theorem (1.511) is that e sends collinear sets onto 
collinear sets. Furthermore if Q, R, S belong to a collinear 
set I, then e induces a mapping of I onto itself and the 
induced mapping has the same properties as stated in the 
axiom. 

Theorem 1.72 (signal): (i) Signal functions have inverses 
and, for any paths Q and R, 

fRQ = (fQR)-1 andf:Q = (fQR)-I. 

(ii) Signal functions are one to one onto mappings. (iii) Signal 
functions are strictly order preserving. (iv) Signal functions 
are continuous (with respect to the order topology on each 
path). 

Remarks: Thus, both forward and reverse signal func­
tions may be expressed in terms of the (forward) signal 
function 

fRQ: =f:Q, 

which corresponds physically to a light signal: The reverse 
signal function is related to its inverse, although the order of 
the path subscripts must be reversed; thus, 

fQR =fRd· 

In Sec. 2, superscript + and - signs will be used to indi­
cate "modified signal functions" as in Walker1

.2 and 
Schutz.4 After the proof of this theorem and throughout the 
rest of this chapter, we will dispense with the symbolsf+ 
andf- entirely. 

If three events, a, b, c are signal related as follows: 
a (7 band b (7 C and a (7 c, 

we say, as before, that the events are in optical line and de­
note this by la, b, c) where the notation indicates the direc­
tion of the (forward) signal relation. Similarly, a set of events 
[Q ~'l, Q ~2>, ... ,Q ~;I) J is in optica/line if and only if, for all a, b, 
c with 1 <,a<,b<,p;;;n, 

IQ lu) Qlb) Q(C» 
a' h teo 

Physically, a set of events would be in optical line if they lay 
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on a "light ray." The existence of such maximal sets of signal 
related events is proved much later within the present axi­
omatic system (see Sec. 2.D) since, at this stage, we can not 
yet assert that la, b, c) implies the collinearity of the events a, 
b, c. Thus, it would be premature to speak of a "light ray." 
However, useful results can be established if we restrict our 
attention to collinear sets. Anticipating the results of the 
following theorem we will define an optical line to be a maxi­
mal subset of a collinear set such that any three events are in 
optical line. 

Theorem 1.73 (optical line): Let I be a collinear set of 
paths and events belonging to the paths, let Q be any path in 
I, and let Qy be any event of Q. (i) There are two distinct 
optical lines, each containing Qy and exactly one event from 
each path in I (other than Q). The optical line which con­
tains events in the order from left to right is called a right­
directed oprica/line or simply a right optica/line. The other 
optical line is called a left optica/line. (ii) Each optical line is 
simply ordered, has no first or last event, and is dense in 
itself. 

Given a collinear set I and a path QEI, we see that the 
events e I and e2 are reflections of each other in Q if they are 
on opposite sides of Q in I and if there are two events Qa' 
QbEQ which are signal related to both el and e2, i.e., 
if Qa (7 e I (7 Qb and Qa (7 e2 (7 Qb' We say that two paths S, T 
are reflections of each other in Q if their sets of events are 
reflections in Q and we indicate this by writing S = T Q or 

T=SQ' 
Lemma 1.74 (reflection mapping): Given any collinear 

set I and any path Q in the collinear set, there is a reflection 
mapping ifJ of the collinear set onto itself such that 

(i) TEI=:>¢J (T)EI, 

(ii)for any paths T, UEI and any event Tx ET, 

fTU OfUT(Tx) = Tz:::::::;.f<f> 1T)<f> IU) of<f>IU)<f>ITM(Tx))=ifJ(Tzl, 

fUT(Tx ) = Uy:::::::;.f<f> (U)<f> (T)(ifJ (Tx)) = ifJ (Uy). 

H. Properties of collinear subSPRAYs 

Given a path Q and an event Qc EQ and a sub-SPRAY 
3?J[Qc)CSPR [Qc)' we say that YJ [Qc] is a bounded sub­
SPRA Y if there are events Qd' Qe after Qc such that, for all 
paths REYJ [Qc ], 

fQR °fRQ(Qd) <Qe' 

The next theorem establishes an important completeness 
property of bounded collinear sub-SPRA Y s. 

Theorem 1.81 (collinearity of the limit path): Let I be a 
collinear subset, let QEI be a path with an event Qc EQ, and 
let [R (n):n = 1,2, .. ; R1n)EI J be a bounded set of paths which 
meet at Qc' If (Q, Rill, ... ,R(n l, R(n + I),. •• ), there is a unique 
path S through Qc such that 

(i) (Q, ... ,R (n), R (n + I), .•• S) and 

(ii) for any event Qx EQ with Qx > Qc' 

fQs 0 fsQ(Qx) = sup[fQR ,,,. 0 fR''''Q(Qx)j, 

fsQ' 0 f QS'(Qx) = inf[fR-"~'Q 0 fQR',,,.(Qx)j. 

We call S the limit path of the sequence of paths (R (n». 
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I. The kinematics of collinear sets of paths 

It has now been shown that collinear sets of paths have 
properties corresponding to those which were taken as axi­
oms in the previous axiomatic system (KA), with two excep­
tions. The first exception is that the property of collinearity 
of the limit path (Theorem 1. 81) has been established from 
the Axiom of Continuity (Axiom VII, 1.62) rather than from 
an Axiom of Compactness (Axiom XI, 2.13, KA). The sec­
ond exception is that an axiom of dimension has not yet been 
stated. 

Neither of these exceptions affects the subsequent de­
velopment which leads up to the kinematics of one-dimen­
sional motion. All the details may be found in KA Chaps. 4-
8. Those kinematic relations which will be needed to fully 
develop Minkowski space-time will now be briefly reviewed 
for the sake of completeness of the present exposition. 

Given a collinear set ~, each path belongs to an equiv­
alence class of paths which are described as being parallel 
since they never meet (KA, 7.1). Whereas a "parallel postu­
late" is required to distinguish between the geometries of 
Euclid and Bolyai-Lobachevsky, the uniqueness of parallel­
ism may be deduced as a theorem (KA, Theorem 46, 7.5) for 
the present kinematic axiom system. 

The description of one-dimensional motion can be sim­
plified with the use of "modified signal functions" which are 
defined in the following way (KA, 43): Given any two paths 
Q, REI, the modified signalfunctionf /Q which is related to 
right optical lines is defined 

tRQ (Qx)' if fRQ (Qx) is to the right of Qx, 

f /Q(Qx) = Qx, if R meets Q at Qx, 

fiR! (Qx)' if f QR! (Qx) is to the left of Qx, 

and the modified signalfunctionf RQ' which is related to left 
optical lines, is defined in a similar manner. In the remaining 
part of this exposition, the symbolsf+ andf- will desig­
nate modified signal functions and not the forward and re­
verse signal functions ofSecs. l.A-l.G. 

The events on any path can be indexed with the real 
numbers, to within an arbitrary strictly increasing linear 
transformation (KA, 7.3-7.5), in such a way that, for any 
two (collinear) paths Q and T, the modified signal functions 
have the form (KA, Theorem 49, 7.5 and Theorem 51, 8.1) 

f QS(S,) = Qu"" + y and f QS(S,) = Qf3(!,' + D' 

where a Qs , (3QS, y, {j are real-valued constants. 
The directed rapidity of Q with respect to S is defined to 

be 

rQS = 1I210g(aQs(3Qs), 

(KA, 8.1) and for any three collinear paths Q, S, T it is shown 
(KA, Theorem 51, 8l.) that 

rQT = rQs + rST ' 

so that rapidity may be regarded as a "natural measure for 
speed." 

By considering signal functions between parallel paths, 
it is possible to represent an equivalence class of parallel 
paths as 

t S X;x real, S x Eo!" I, 
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with events 

{S::t real, S:EI J, 
where the coefficients of the ordered pair (x; t) of rea Is are 
called position-time coordinates of the event S: (KA, 8.4). 
The set of all events in~, indexed by the corresponding posi­
tion-time coordinates, is called a coordinate frame in~; the 
event (0; 0) is called the origin in position-time of the coordi­
nate frame; and the set of events {(a; t) t real) is called the 
origin in position of the coordinate frame. 

Finally, any path through the origin in position-time 
has coordinates which satisfy the equation 

xlt = tanh r = v, 

where r is the directed rapidity of the path and v is the veloc­
ity of the path with respect to the coordinate frame (KA, 
Theorem 56, 8.4). 

The reader is referred to KA Chaps. 4-8 for complete 
details of the definitions and theorems which have been 
briefly reviewed in this section. 

2. THREE-DIMENSIONAL KINEMATICS 

A. The axiom of dimension 

The axiom of dimension, which is required to specify 
the dimension of space-time could have been stated in sever­
al places within this axiomatic system and could even have 
been combined with the axiom of existence. However, this 
would have necessitated slight modifications2

! to preceding 
axioms and theorems, and it therefore seemed more natural 
to regard the properties of existence and dimension as being 
independent. 

Before stating the axiom it is necessary to define a con­
cept which is closely related to the concept of dimension. If 
three distinct paths Q, R, S of a SPRA Y can be joined by a 

path W which is not in the SPRAY, we write Q, R, Sand 
say that the three paths are dependent (Fig. 5). 

-----
WesaythatSisdependentonQ'!l,Q,2'if Q'!l Q,2, S; 

otherwise, (Q'!', Q,2l, SJ is an independent set of paths. Simi­
larly, T is dependent on Q' ! ), Q' 2), Q(3 ) if there are paths S' ! " 
S' 2) each dependent on two of the three paths Q' ! ), Q' 2), Q' -') 

Q R s 

FIG. 5. The paths Q, R, S are dependent. 
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such that S<I )S' 2)T; otherwise, (Q<I >, Q' 2 >, Q' 3 >, T 1 is an 
independent set. Finally, U is dependent on Q' I), Q' 2 >, Q' 3 >, 
Q(4) if there are paths r 1 ), r 2) each dependent on three of the 

four paths Q<I ), Q(2), Q(3), Q' 4) such that T<I ) r 2) U. 
The following definition enables us to specify the di­

mension of space-time. A SPRA Y is a 3-SPRA Y if (i) it 
contains four independent paths Q' 1 >, Q(2), Q' 3), Q' 4) and (ii) 
all paths ofthe SPRAY are dependent on Q' 1 >, Q' 2 >, Q' 3), 

Q(4). 

Axiom IX, 2.11 (dimension): If the set ofSPRA Ys is 
nonempty, then there is at least one 3-SPRA Y. 

B. Geometric properties of simultaneously coincident 
subsets 

Lemma 2.21: Each 3-SPRA Y is a three-dimensional 
ordered geometry. 

Proof The proof consists in showing that the axioms for 
an ordered geometry, as given by Veblen,14.22 are satisfied. 

Lemma: 2.31: Each 3-SPRA Y is a locally compact pro­
jective metric space. 

Lemma: 2.32: (i) Isotropy mappings are order-preserv­
ing bijections on JI and map signals onto signals. (ii) Rela­
tive rapidity is an invariant under isotropy mappings. 

Theorem 2.33: Each 3-SPRA Y is a hyperbolic space of 
three dimensions with curvature of -1: the "points" of the 
space are the paths of the 3-SPRA Y and relative rapidity is 
an intrinsic metric. 

C. Characterization of Minkowski space-time 

The usual characterization of Mink ow ski space-time in 
terms of coordinate frames and the in homogenous Lorentz 
transformations between them, as well as the kinematic de­
scription of the trajectories of paths, now follows according 
to the treatment given in KA23 (9.1-9.7, Appendix 2). 

The existence of optical lines may be established by con­
sidering any two given signal-related events and the set of all 
events which are signal related to both ofthem. Each of these 
events must satisfy two equations similar to Eq. (2) of Theo­
rem 61 (KA, 9.5). For any given value of coordinate time 
these equations describe sets of events lying on nonconcen­
tric spheres (in position space) with one point of tangency, so 
the set of all signal-related events is a linearly ordered set as 
described in Theorem 65 (KA, 9.7). 

Minkowski space-time is now fully characterized in 
terms of the conventional coordinate frames and the Lorentz 
transformations between them, together with the trajector­
ies of free particles and light signals which correspond, re­
spectively, to paths and optical lines. 

3. CONCLUSION 

Minkowski space-time has been developed from nine 
axioms which describe the kinematic properties of free parti­
cles. Thus, it has been shown that the axiomatic system is 
categoric. The question of independence of the axioms has 
not been discussed. 

Many of the proofs 1 t involve methods which are essen­
tially global in character: for example, the theory of collin-
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earity developed in Sec. I.E and the theory of parallelism 
which leads to the kinematics of one-dimensional motion in 
KA. 1 t It is conceivable that global axioms, similar to those 
used here, might be sufficient to categorise other space­
times with special symmetry properties, such as the de Sitter 
universe and the Robertson-Walker metrics, for example. 

Einstein's theory of General Relativity describes space­
times which need not have even local symmetries. Thus, 
some of the methods used here would require considerable 
modification before they could even be considered for an 
axiomatic system to describe general relativity. It appears 
that the pseudo-Riemannian space-times have somewhat in­
dependent substructures, namely, the causal, ditrerential­
topological, conformal, projective, and metric structures. 
Causal and topological properties have been discussed by 
Kronheimer and Penrosel2 while Castagnino,24 Kundt and 
Hotrman,25 Marzke and Wheeler,26 Pirani,27 and Synge28 

have considered questions relating to time measurement and 
the definition of the metric tensor. Axiomatic systems for 
general relativity have been proposed by Reichenbach29 and 
WeyI/o who showed how pseudo-Riemannian space-times 
could be developed from ditrerentiable manifolds by consid­
ering the paths of freely faIling particles and light signals. 
This approach has been futher developed by Castagnino,24 
and by Ehlers, Pirani, and Schild31 and Woodhouse,13 who 
show how the ditrerent mathematical structures can be suc­
cessively developed on a space-time manifold by considering 
axioms which describe the kinematic behavior offree parti­
cles and light signals. 
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The spreading of free wave packets is expressed by means of the entropy of position for a certain 
class of states. Connection between such formulation and the usual treatment is discussed. 
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1. INTRODUCTION 

In quantum mechanics we may define a notion which is 
a measure of uncertainty of the localization of a particle in 
the space. If t/J is a wavefunction which describes the state of 
the system then 1 t/J 12 is the probability density on the position 
space. We may consider the quantity 

S(It/J12)= - L It/J(x)1 2Inlt/J(x)1 2dx. 

It has the properties of an entropy and we call it the entropy 
of position. The uncertainty relation for position and mo­
mentum and spreading of a free wave packet expresses in 
principle the uncertainty of localization of a particle. The 
uncertainty of outcome of simultaneous measurement of po­
sition and momentum and increasing of uncertainty ofposi­
tion during the free movement of the particle would be ex­
pressed by means of such entropy. In Refs. 1 and 2 it was 
shown that the sum of these entropies for position and mo­
mentum in a given pure state is bounded from below. Using 
this inequality in the papers quoted above the authors de­
rived the uncertainty relation in the usual form. 

This article is an attempt to express the fact of spreading 
of a wave packet for a free particle by means of entropy of 
position. We also compare such formulation with the usual 
one. 

2. ENTROPY OF POSITION 

We consider a moving particle on a real line RI. (An 
extension of our result to higher dimensions is obvious.) The 
Hilbert space corresponding to this system is L 2(R,dx )-the 
space of square-integrable functions with the Lebesgue mea­
sure on a line. The position operator of the particle is defined 
as follows (Qt/J)(x) = xt/J(x) for every xERI and all wavefunc­
tions t/JED (Q )-the dense domain of Q in L 2(R I ,dx). From 
the spectral theorem3 we know that for every Borel set 
..1 E ::g (R I) [::g (R 1)---0--algebra of Borel sets on R I] a projec­
tor E (..1 ) corresponding to Q is defined by the equality 

(E (..1 )t/J)(x) = 1'<1 (x)t/J(x), 

for every t/JEL 2(R I,dx), where 1'<1 (x) is a characteristic func­
tion of ..1. 

The probability that the measurement of Q in a state t/J 
gives a result in the Borel set ..1, is 1l~(..1 ) = S.6 1 t/J(x) 12 dx. 
Thus for position measurement in a pure state the Radon­
Nikodym derivative isp(x) = 1t/J(xW and the entropy of po­
sition in a state t/J is equal to 

(1) 

The possibilities of defining and the general properties of the 
entropy of an observable were investigated for observables 
with purely discrete spectrum,4 for observables with abso­
lutely continuous spectrums and for generalized observa­
bles.6 In Refs 5 and 6 we obtained some inequalities for a von 
Neumann measurement of an observable with continuous 
spectrum and for a fuzzy observable which confirm our in­
terpretation of (1) as an uncertainty of an outcome of an 
observable measurement. 

3. ENTROPY OF POSITION AND A FREE WAVE PACKET 

The dynamics of the particle is described by the group 
of unitary operators U (t) = e - itH, where Ho = p2/2m, p­
the operator of momentum, m-mass of the particle. 

We show, that for a certain class of wave functions the 
effect of spreading of the wave packets may be expressed by 
means of the entropy of position. 

Let t/JEL 2(R 1)nL I(JRl) and 1It/Jllz = 1, then for t> 0 we 
have the following inequality: 

S (I t/J 12) + S (I t/J(t) 12) > In(et17/m), 

where t/JI..t) = e - ilH. t/J. To show (2) we need the following 
result of Ref. 1. 

Let t/JEL p(Rn)- the space of p-integrable functions 
with norm for 1 <.p<.2 

1It/Jllp =(f It/J(x)IPdnxYIP, 

and 

is a Fourier transform of t/J, then 

(2) 

II¢IIp' <.C(p',p)lIt/Jilp , (2a) 

where 

C(p',p) = ( 2~ )nI2
P
'( 21T ) - n/2P, and ~ + ~ = 1. 

p p p' p 

We take an explicit form U (t) = e - itH. for tER I and 
t/JEL 2(RI) 7: 

t/JI..x,t) = (e - ilH. t/J)(x) 

= l.i.m. (~)1I2 ( eim1x - yl'121t/JI.. y) dy, 
R~oo 2mt J I yl <R 

where l.i.m. denotes the limit in the L 2-norm. Using 

(3) 
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exp (
milx _ YI Z

) 

2t 

= exp( m;;2 ) exp( _ imtXY) exp( m;;2 ). 

we have 

h 
¢(x,t) = ( 7r y12 exp( i~;2 )F, ( ~x ). 

were 

( 
imy2) F,(y) = exp 2t ¢(y). 

Now we obtain 

( 
t ) - [(1/2) - (I/p')} A 

= - 11F,llp ' 
m 

( 
t ) - [(lIZ) - (I/p')} 

.:;; - C(p',p)IIF,lI p m 

( 
t ) - [(112) - (I/p')} 

= - C(p',p)II¢ll p , 
m 

(4) 

where in the second equality we have changed the variable in 
the integral, then we have used the mentioned inequality (2a) 
for the Fourier transform. Using (lIp') + (lip) = 1 we may 
write (4) in the form 

( 
t ) - [(112) - (I/p'») 

J(p') = m C(p',p)II¢llp -11¢(t)llp ' >0, 

for p'>2, The functionJis equal to zero atp' = 2 because 
1I¢11z = lI¢(t )liz and C (2,2) = 1. Thus the right derivative of 
J( p') at p' = 2 must be nonnegative. Because ifJE L 2nL !, 

exp( - itHo) extends uniquely to a map from L P(R!) to 
L P'(R!) by the Riesz-Thorin theorem8 for p'E[2, 00] (for de­
tails see Ref. 8, proof of Theorem IX. 30). The functionJ( p') 
is determined on the interval [2,00] and we may take such 
derivatives. For 1I¢1I2 = 1, the right derivative ofJ(p') at 
p' = 2 reduces to (2). 

Equality in (2) holds if 

( 
imy2 ) ¢(y) exp 2t = exp( - ay2), 

Such a function ¢ does not exist because ¢ is not a function of 
time. We have sharp inequality but In(1Tet 1m) is the best 
possible lower bound for the sum S (I ¢12) and S (I ¢(t ) 12). 

Using the concavity of entropy we may extend our in­
equality to mixed states, which have the following spectral 
decompositionp = ~ Pi I¢i > (¢i I, where I¢i > is the basis 
from L 2nL I. Extension to L 2(R") is trivial and yields 
n In(1Tet 1m) in (2). 

From (2) we see that the sum of uncertainties oflocal­
ization of a particle at t = 0 and t> 0 is bounded from below 
by an increasing function of time (logarithm). For two in­
stants of time t2 > t I such that 

In(1Tet2Im»S (I ¢(t 1)1 2
) + S (1¢1 2

), 

we have 

S (1¢(t2)1 2);>S (I ¢(t IW>, 
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If we wait sufficiently long then the uncertainty S (I ¢(t)l2) 
will increase. Thus (2) in a certain manner reflects the 
spreading of the free wave packets. 

4. DISCUSSION 

Usually in textbooks on quantum mechanics (for exam­
ple Ref. 9) the spreading of free wave packets is expressed by 
means of the quantity 

.:1Q 2 = f (x - (Q »21 ¢(x) 12 dx, where (Q> = (¢,Q¢). 

Further for ¢E D (Q )nD (P), whereD (P) is a domain of mo­
mentum P we obtain 

.:1Q; =.:1Q2 +2 [! (QP+PQ) - (Q) (P)]!'-

where 

2 t 2 
+.:1P -2 ' 

m 

.:1p 2= f (p- (P»2Itf(p)1 2dp . 

m 

Thus the standard deviation of position .:1Q; is an increasing 
function of time at least starting from a certain point at 
which it takes minimum. This means that the uncertainty 
(according to this measure) of particle position wil~ystem­
atically increase if we wait sufficiently long. When ifJE D (Q), 
then .:1 Q 2 = 00, and it is not a good measure of spreading of 
the free packets. Inequality (2) enlarges the set ofwavefunc­
tions for which we consider the effect of spreading. In L InL 2 
there existthe functions forwhich.:1Q 2 = 00 buttheentropy 
of position is finite. The following function is a simple 
example 

x = V2 -b-X[I.oo }(x), 
x 

where X[I.= }(x) is a characteristic function ofinterval [1,00]' 
If¢E D (Q)nD (P)andisintegrablethenofcoursetheentropy 
is also finite. 

We will show how (2) is connected with the usual de­
scription of spreading of wave packets for the free evolution. 
Let 

9)10= {1¢(X)1 2; f (x- (Q»11¢(x)1 1dx=.:1Q2} 

9)1, = {1¢(x,t)1 2; f (x- (Q),)21¢(x,t)1 2dx=.:1 Q ;} 

be two sets of wave functions (the functions are determined 
up to a factor eif(X),J-real function on RI) with a finite 
variance at t = 0 and t> O. Only for such sets does the posi­
tion observable exists. 10 Moreover, for every function be-
10ngingtothesesetsS (1¢12)and~ (I¢(t W)arefinite. Nodiffi­
cuI ties with the interpretation of S = ± 00 arise. The states 
ifJE 9)10 with maximal entropy of position has the following 
density of probability distribution 

1¢(x)l~ = (21T.:1Q2)-1/2 exp( - (x ;.:1~2»2 ). 

and similarly 

1¢(x,t)l~ = (21T.:1 Q ;)-1/2 exp(- (x- <0;,)2). 
2.:1Q, 
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Thus we obtain 

s (I ¢ 12) + S (I ¢(! ) 12).;;;S (1 ¢ I ~) + S (1 ¢(! ) 1 ~) 
=! In4t?e2LlQ 2LlQ;. 

Using (2) and the last inequality we have 

LlQ 2LlQ; > (t 214m2). 

We see that for t> 2LlQ 2m 

LlQ;>.1Q2 

holds. For a time smaller than 2AQ 2m from (2) we do not 
obtain any information above the behavior of the variance. 
Equation (2) becomes an equality on the Gaussian state for 
an asymptotic formula of e - itH,. 

(e - itH. ¢)(X)~( : ) 112 ¢( ~x ) 
in the sense that the difference goes to zero in theL 2-norm at 
!- 00. It is a slight modification ofIX.33 in Ref. 7. For long 
times, factors of the form exp(imx2/2t) may be neglected. A 
simple calculation for the asymptotic formula and 
l/JE D (Q )nD (P) shows that 

The last inequality becomes an equality also on the Gaussian 
state. We see that our result agrees with the usual formula­
tion for great values of time. 
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Using (3) simple calculations show that for ¢e LIn/.. 2 a 
more elementary notion also expresses the effect of 
spreading 

Jltit)([a,b ]) = f 1 ¢(x,!) 12 dx-o, 

when t~oo. 
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The nonrelativistic Coulomb Green's function G(+l(r 1,r2,k) is evaluated by explicit summation 
over discrete and continuum eigenstates in parabolic coordinates. This completes the derivation 
of Meixner, who was able to obtain only the r 1 = 0 and r2--oo limiting forms ofthe Green's 
function. Further progress is made possible by an integral representation for a product of two 
Whittaker functions given by Buchholz. We obtain the closed form for the Coulomb Green's 
function previously derived by Hostler, via an analogous summation in spherical polar 
coordinates. The Rutherford scattering limit of the Green's function is also demonstrated, 
starting with an integral representation in parabolic coordinates. 

PACS numbers: 03.65.Db, 02.30.Hq, 02.30.Gp 

1. INTRODUCTION 

The nonrelativistic Coulomb Green's function 
G (r1,r2,k) [G (1,2,k) for short] is the solution under specified 
boundary conditions of the equation 

(k 2 + V~ + 2Z Ir1)G (r1,r2,k) = {j (r1 - r2)' (1.1) 

Atomic units: h = m = e = 1, are employed for conve­
nience. Any Green's function can, in principle, be construct­
ed from its spectral representation 

G(12 k) = " ¢n(1)¢~(2) 
, , L.. k2 ' 

n - En 

(1.2) 

the summation running over the complete set of discrete and 
continuum eigenstates. Meixner1 in 1933 attempted to 
evaluate the Coulomb Green's function by explicit summa­
tion over eigenfunctions in parabolic coordinates. He was 
able, however, to obtain closed forms only in the special 
cases r I = 0 and r 2-- 00 • Hostler2 first worked out the gener­
al closed-form expression for G (1,2,k) by summing over 
Coulomb eigenfunctions in spherical polar coordinates. A 
key element in Hostler's derivation was an integral represen­
tation for a product of two Whittaker functions given by 
Buchholz.3 

We shall demonstrate in this paper that Hostler's result 
can also be derived by working in parabolic coordinates. We 
will thus explicitly complete the work of Meixner. In addi­
tion, we shall obtain in straightforward fashion the Ruther­
ford scattering limit of the Green's function and also a possi­
ble starting point for a compact treatment of the Stark effect. 

2. COULOMB EIGENFUNCTIONS IN PARABOLIC 
COORDINATES 

Parabolic coordinates (S,1],¢,) can be defined in terms 
of spherical polar coordinates (r,e,¢' ) and Cartesian coordi­
nates (x,y,z) by the relations 

5 = r(1 + cose) = r + z, 

1] = r( 1 - cose) = r - z, 

¢' = ¢' = tan-I(ylx). (2.1) 

Conversely 

x = (51])1/2 cos¢', Y = (51])1/2 sin¢" 

(2.2) 

The volume element is given by 

d 3r =!<S + 1]) ds d1] d¢' (0 <s, 1] < 00 ,0<¢'<2rr), (2.3) 

and the Laplacian operator by 

V2- _4_(~f:~ a a) 1 a
2 

- S + 1] as!> as + a1] 1] a1] + S1] a¢' 2 • 

(2.4) 

The Coulomb Schrodinger equation 

(E + V2 + 2Z Ir)¢ = 0, E = 2E = k 2 (2.5) 

is separable in parabolic coordinates as well as spherical po­
lar coordinates. The factorization 

¢( S,1],¢,) =fl( Of2(1])eim
"" m = 0, ± 1, ± 2, .. ·, (2.6) 

leads to the ordinary differential equations4 

where 

Zl +Z2 =z. (2.8) 

Either Zl or Z2labels the one-parameter family of degener­
ate eigenstates for each value of E = k 2. 

The subtitutions 

f(x) = X-
1r2M( - ikx), 

x = S,1], z= - ikx, VI.2=ZI.2Ik, (2.9) 

bring (2.7) into the form of Whittaker's differential equation 

" (1 iv 1 - m2) M (z)+ --+ -+ -- M(z) =0. (2.10) 
4 z 4Z2 

The solutions to (2.10) regular at x = 0 are the Whittaker 
functions M';'7A + ikxV For m;"O 

M ';'7v( + ikx) 

= (m!yl( + ikxym + 1)12 e'F ikx/2 

X IF1(m + 1)/2 ± iv; m + 1; ± ikx), (2.11) 

where IFI is a confluent hypergeometric function. For m < 0, 
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the corresponding Whittaker functions are given through 
the identity 

r «(1 - m)l2 - iv) M i~ m/2( - ikx) 

= r«l + m)l2 - iv) M';:,/Z (- ikx). (2.12) 

The functions (2.11) with alternative choice of signs are re­
lated by 

M~?v(ikx) = ehT(m + 1)/2 M';:,12( - ikx), (2.13) 

which shows incidentally that ei1Tjm + w
4

M ';:,Il( - ikx) is a 
real function. 

The asymptotic form for M as x-oo is given bl': 

M'/:,I2( _ ikx)-e - TTV/2 e 
[ 

(kx) - iv - ikx12 

r«m + 1)/2 - iv) 

+e-i1Tjm+l)/2 x e .(2.14) (k )iv ikx/2 ] 

r«m + 1)/2 + iv) 

For positive energy, the wavenumber k is real; to avoid di­
vergences in the wavefunctions (2.9) we must require that 

IImvl<~. (2.15) 

Positive-energy eigenstates can be specified by the two 
continuous quantum numbers 

vl=Zllk and v2=Z2Ik. (2.16) 

Thus, Eq. (2.8) implies 

(2.17) 

It is sufficient to assume k;;.O and to choose real values for VI 
and V2' Then both VI and V2 can run over the range 
( - 00, + 00) but, by virtue of (2.17), their sum must be 
nonnegative: 

VI + V 2;;.0. (2.18) 

For compactness, we shall continue to write k in the argu­
ments of Whittaker functions, understanding k to be a func­
tion of V I and V 2 via (2.17). 

The foregoing considerations lead to the following posi­
tive-energy Coulomb eigenfunctions in parabolic 
coordinates: 

tP",v,m (5,rJ,t/J) = ei1Tjm + 1)/2(21T)-3/2Z-ltlkelT(v, + v,)/2 

X I r «m + 1)12 - ivl ) I I r «m + 1)/2 - iv2) I (5"1)-1 /2 

X M '/:,:2( - ikt) M '/:,:2( - ikrJ )eim<l>. (2.19) 

The phase factor eilT(m + 1)/2 is retained for later convenience. 
These continuum eigenfunctions are orthonormalized ac­
cording to 

(2.20) 

Meixner! and other authors employed eigenfunctions normal­
ized toc5(k - k ')bet - [; '), in which [;corresponds toourvari­
able (VI - v1)12. The more symmetrical normalization 
scheme we have introduced will facilitate evaluation of the 
Green's function. 

Equation (2.20) can be demonstrated with the help of the 
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following integrals over Whittaker functions: 

1"0 M'/:,/2( - ikx)M';:,/2( - ik 'x) dx 

= 41Te - ilT(m + 1)lle - ""c5(k _ k 'y 1 r ( m ; 1 _ iv ) 12 

(2.21) 

and 

f' M';:,/2( - ikx)M'/:,(2( - ikx)x- I dx 

= 41Te- i1Tjm + 1)12e - "-Vc5(v _ v'Vlr (m; 1 _ iv ) 1
2

• 

(2.22) 

Equation (2.21) also occurs in the normalization of spherical 
eigenfunctions. Both (2.21) and (2.22) can be demonstrated 
from integral representations of Whittaker functions in terms 
of Bessel functions7 with use of an integral given by Watson. 8 

More simply, by virtue of the fact that the principal contribu­
tions to (2.21) and (2.22) come from the asymptotic region 
x- 00, it suffices to approximate the Whittaker functions by 
their asymptotic forms (2.14). Using (2.16), 

c5(VI - v; )c5(k - k ') = (Z2/k 2)c5(VI - v; )c5(V2 - v;), 

c5(V2 - vDc5(k - k ') = (Zl/k 2)c5(vl - v; )c5(V2 - vD, (2.23) 

which completes the required normalization. 
The negative-energy parabolic eigenfunctions are quite 

standard. 9 Expressed in terms of Whittaker functions 10; 

tPn,n 2m (5,rJ,t/J) 

= zl/2 [(lml+nl)!(lml+n2)!JII2(trJtlll 
1T! /1n n l!n2! 

XM ~~~~Iml + 1)/2 (zt In)M ~7~~lml + 1)/2 (Z1JIn)eim<l>, (2.24) 

nl,n1 = 0,1,2,. .. ; m = 0, ± 1, ± 2, ... ; 

n=nl +n2 + Iml +1 = 1,2,3,. ... 

We shall also require Whittaker functions of the second 
kind, W'/:,12( - ikx), which represent solutions to (2.10) hav­
ing the form of outgoing waves. Specifically we note the 
transformation II 

M;:/2( _ ikx) = e - m' [ W~7v(ikx) 
r«m + 1)/2 - iv) 

+ e - i(m + 1),,-12 W;:12( - ikx) ] , 
r(Cm + 1)/2 + iv) 

the identity l2 

Wi~m/2( - ikx) = W;:12(ikx), 

and the asymptotic form as x_ 00 13 

W;:12( - ikx)-( _ ikx)iveikx12. 

(2.25) 

(2.26) 

(2.27) 

Note that Eq. (2.14) also follows from (2.25) with (2.27). 
For values of v occurring in the discrete spectrum [cf. 

(2.24)] the two types of Whittaker functions become propor­
tional. 14 Specifically 

W~/2 ( ) _ ( )n'(' )IMm/2 ( ) 
n + (m + 1)/2 Z - - n + m. n' + (m + 1)12 Z. (2.28) 
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A key result, both in Hostler's derivation and in the 
present work, is an integral representation for a product of 
two Whittaker functions given by Buchholz.3 With appro­
priate specialization of the variables, we write 

r((m + 1)12 - iv)M;:/2( - iky)W;:I2( - ikx) 

= ( - it + Ik (xy)I/2 f" ds exp [ + ~ k (x + y) coshs] 

X J m (k ~ xy sinh s) [coth(sI2Wiv
, 

Re((m + 1)12 - iv) > 0, Imk > 0, x> y. (2.29) 

3. EVALUATION OF THE GREEN'S FUNCTION 

The summation (1.2) explicitly written out in terms of 
discrete and continuum parabolic quantum numbers 
becomes 

00 [00 00 (2 ZZ)-I 
G(I,2,k)= m~~'" n~on~o k + -;;z ¢n,n,,,, (1) 

X¢~,n,m(2)+ S: '" dV I S: '" dV2 O(VI + V2) 

X (k Z - KZ)-I ¢v,v,m (1)¢~,v,m (2)] . (3.1) 

The Heaviside function 

{
I, 

O(x)= 0, 
for x;;;.O, 

for x <0. 
(3.2) 

has been introduced to take account of the condition (2.18). 
The wavenumber in the eigenfunctions has been redesignat­
ed K, to reserve k for the Green's function. Putting in the 
eigenfunctions (2.19) and (2.24), we obtain 

The M function of the argument S> (the greater of SI' S2) 
can be transformed to a sum of Wfunctions using (2.25). We 
find 

ei,,;m + Il/2e 'JTV, 1 r (m ; 1 - iVI) 12 

XM;::2( - iKSI)M;::Z( - iKS2) 

r (m + 1 .) M ml2 (. J;- ) W ml2 (. J;- ) = --2- + IV I - iv, IK!:> < - iv, IK!:> > 
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r( m + 1 . ) Mm12( '.J;- )wmI2( 'J;-) + --2- -IVI iv, -IK!:> < iv, -IK!:». 

(3.4) 

We have made useof(2.13) to getM"';~v, to multiply wm/~". 
Now the first termrMWin (3.4) can be transformed into the 
second by the substitutions 

(3.5) 

By applying this in the continuum integral and noting the 
identity 

O(VI + V2) + O( - VI - v2) = 1, (3.6) 

the Heaviside function is eliminated. 
The functions of Tt I and Tt2 are transformed in an analo­

gous way. Under the double integration, the two terms 
rMW make equal contributions. The continuum part of the 
Green's function thus reduces to the compact form 

~ 2f'" dvlf'" dVz[(vI+v2)2-Zz/k2]-1 
47Tk -00 -00 

r ( m + 1 .) M m12( . J;- ) wm!2( . J;- ) X --2- - IV I iv, - IK!:> < iv, - IK!:> > 

r (m + I .) M m12( . ) W m/2( . ) X --2- - IV2 iv, - IK1J < iv, - IK1J> . 

(3.7) 

The integrals in (3.7) can be most readily evaluated by 
interpreting them as contour integrals in the complex planes 
of VI and V 2. The integrand is an analytic function of each 
variable in its lower half-plane with the exception of a set of 
simple poles. One should verify this, in particular, for V2 = 0 
and vl-OwithImvl <0. ThiscorrespondstoK = Z /vl-oo 
with IffiK> O. From (2.23) and (2.27) we find the relevant 
asymptotic dependence 

r«m + 1)12 - iv)M;~,!2( - iKX< )W;:!2( - iKX» 
iK(x - x )12 -e , (3.8) 

which approaches zero as IKI-oo with IffiK> 0. By virtue of 
(2.12) and (2.26), m in the functions rMW can be replaced 
by 1 m I. This will make more explicit the poles of the 
integrand. 

We note also the asymptotic behavior as V 1-00 with V2 

fixed. As k-o l5 

Thus each factor rMW -VI-I. Including the energy de­
nominator (_V\-2), the entire integrand behaves as V\-4 

when Iv\l-oo. 
Evidently, the VI integral can be evaluated by applica­

tion of the residue theorem after the contour is closed from 
below with a semicircle at infinity. As Ivll-oo, the contri­
bution from the semicircle approaches zero as a result of the 
asymptotic behavior discussed above. The singular points in 
the integrand arise from the factors r «\ml + 1)12 - iv\) 
and[(v\ + V 2)2 - Z 2/k 2]-1. The gamma function has poles at 
the points 

VI = - i«\m\ + 1)/2 + nJ, n l = 0,1,2,.··, (3.10) 

with the corresponding residues i( - Y'/nIL The energy de-
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nominator has a pole in the lower half-plane at If = k + i8 or 

VI = - V2 + Zlk - i8', (3.11) 

with residue k /2Z. Imk > 0 is taken, such that the resulting 
Green's function will correspond to G (+ I( 1,2,k ). 

The V I integral thereby reduces to ( - 2m) times the 
sum of the residues in the lower half-plane. The continuum 
integral (3.7) can thereby be expressed as a sum of two con­
tributions: (3.12) plus (3.13). From the poles of the gamma 
function [cf. (3.10)]: 

Z 00 i( - t, 
-2'TTi-- I --

4r?k 2 
II, =0 nil 

X 5~ 00 dV2[ (vi + VZ)2 _ !: ]-1 
XMI~1/2( _ ilf'f:' )WI~II2( - ilf'S W(lml + 1 - iV2) 

IVI ~ < IVI > 2 
(3.12) 

X M Im1/2( - ilf'TJ ) W Im1/2( - ilf'TJ ) 
IV~ < IV:, > , 

, .(Iml +l ), Z/(' ) VI == -I 2 + n l , If == VI + V2 . 

From the energy factor [cf. (3.11)]: 

2 · Z k foo d r (Iml + 1 . .) - 'TTl ----- v2 -IV + IV2 
4r?k z 2Z - 00 2 

X M J:'.:7v, ( - iks < ) W ):'.:;", ( - ikS < ) 

1 00 eim(</>, - </>,) 
G(+)(12k) =-- I 

' , 4ri2ik m= - 00 (§ <s > TJ < TJ> )112 

xr(lml + 1 _ iv )M!mI/2( - ikTJ ) 2 2 lV2 < 

(3.13) 

The second integration in (3.12) can be carried out in an 
exactly analogous way. The V2 contour, again closed by an 
infinite semicircle in the lower half-plane, encloses only the 
poles of r(lml + 1)/2 - iv2 ), at the points 

V 1 = - i((lml + 1)12 + n2 ), nz = 0,1,2, .. ·. (3.14) 

Thus, in Eq. (3.12), 

v' = - i(nl + n2 + Iml + 1)= - in, n = 1,2,3, .. ·, 

If' =Zlv' =iZln, (3.15) 

and (3.12) becomes 

'2 00 00 iZ(_)n,+n, Z ( 2 ZZ)-I 
(-2m) I I -- -n --

n,=On,=O nl!nz! 4fi3k 2 k 2 

XM ~';'~~Iml + 11/2 (Zs < In) W ~';'~7Iml + 1112 (Zs> In) 

XM ~7~~'m' + I)lZ (ZTJ < In) W~7~~,m' + 1)/2 (ZTJ> In). 
(3.16) 

Application of (2.28) shows now that (3.16) exactly cancels 
the sum over the discrete spectrum in (3.3). The Green's 
function is thus reduced to the contribution containing 
(3.13). Writing A in place of V 2 and reintroducing m in place 
of 1m I: 

X 5:00 dA [r(m;l -iv+iA )M~/-=i..!(-ikS<)W~/-=i,«-ikL)] 

X [r (m ; 1 _ iA ) M ;1/2 ( - ikTJ < ) W;1/2( - ikTJ> )] . 

This can also be expressed in the form 

GI+I(l,2,k)= 2~ m=~oo eiml
</>,-</>21( - 2~J 5:00 dz2tm+ I(S,S',Z-Z2)gl",+I(TJ,TJ',Z2), 

in which 

g~+ )(x,x',ZI.2) = (ikxtI/2(ikx')-1/2r (m ; 1 - iVI,2 )M~:~( - ikx <) W~:~( - ikx» (Z1,2 = kvl,z)' 

(3.17) 

(3.18) 

(3.19) 

The convolution integral in (3.17) or (3.18) is standard for Green's functions of separable operators. In the present case, a 
contour can be closed by an infinite semicircle in the lower half-plane such as to enclose the poles of r ((m + 1 )/2 - iA ) but 
exclUde those of r ((m + 1 )/2 - iv + iA ). Equation (3.19) represents the Green's function for the differential' equation (2.7) 
obtained after separation of variables, viz., 

( ZI'2 + ~x ~ + kZx - m
Z

)gl",+l(x,x',Z]'2) = 8(x -x'). (3.20) 
ax ax 4 4x 

Note that ZI.2 rather than E now plays the role of eigenvalue. This formulation of the separated Schr6dinger equation is 
convenient for treatment of the Stark effect. 16 Reduced Green's functions derived from (3.19) can provide an elegant alterna­
tive for computation of Stark-effect perturbation energies. 

Returning now to Eq. (3.17), Buchholz's integral representation (2.29) can be applied to each factor rMW giving, after 
some rearrangement: 

GI + 1(1,2,k) = ~ foo dA (00 ds (00 dt e - ikl2ls, + s,lcoshse - ikI21'1, + "hi coshl [coth(sI2)]2iV- 2i..! [coth(t 12)fi,( 
4ri2 - 00 Jo Jo 
X ! eim(</> , - </>,IJ m (k (SISZ)1/2 sinhs) J m ( - k (TJITJ2)1/2 sinht). (3.21) 

m= - 00 
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We have now been able to revert to the original parabolic 
coordinates SI''''I,S2,1h In the sum over Bessel functions we 
have noted that J ~ m (z) = J m ( - z) = ( - )mJ m (z). The in­
tegral over A gives a delta function: 

toooo dA [coth(s/2)] ~2i'( [coth(t /2)]2i'( 

= m5(ln coth(t /2) - In coth(s/2)) 

= 1T sinhs ~ (t - s). (3.22) 

The integral over t is thus immediate. The sum is in the form 
of Grafs addition theorem l7

: 

m= - 00 

r = (p2 + q2 _ 2pq coS¢ )1/2, 

where we identify 

p = k (SIS2)1/2 sinh s, 

q = - k ("'1"'2)1/2 sinh s, tP = tPl - tP2' 

(3.23) 

r = k [SIS2 + "'1"'2 + 2( SIS2"'1"'2)1/2 COS(tPl - tP2W /2 sinh s. 

(3.24) 

The Green's function thus reduces to 

G ( + l( 1 ,2,k ) = -'- ds sinh s eikv coshs ·k loo 
41T ° 

XJo(ku sinhs)[coth (S/2)]2iV, (3.25) 

where (cf. (2.1)] 

v=~( SI + Sz + "'I + "'2) = r l +'2 = ~(x + y), 

u==[ SIS2 + "'1"'2 + 2( SIS2'" 1"'2)1/2 COS(tPl - tP2)P/2 
= (2r l ·r2 +2rl'2)1/2 = (xy)1/2, (3.26) 

in terms of the variables 

(3.27) 

To complete the derivation, we make use of the identity 

Jo(ku sinh s) = 1 ~ uJI(ku sinh s), 
ku sinhs au 

(3.28) 

in conjunction with the integral representation (2.29) with 
m = 1. We obtain thereby 

G(+)(12k)= -1-~r(1-iv)MI/2(-iky) 
, , 41Tiku au IV 

x W::2( - ikx). (3.29) 

Noting, finally, that [cf. (3.26), (3.27)] 

~~ ___ 2_(~_ .i) 
u au x -y ax ay 

= - ':2 (~ - ~), (3.30) 

we obtain Hostler's expression for the Coulomb Green's 
function [2] 

G(+)(1,2,k)= _ 1 (~_ .i)r(l-iV) 
41Tikr 12 ax ay 

XM::2( - iky)W::2( - ikx). (3.31) 

The Green's function (3.31) applies to both attractive 
and repulsive Coulomb interactions. Most generally one can 
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redefine 

v=-ZZ'/k, (3.32) 

in which Z and Z' are the charges (in atomic units) of the 
interacting particles. For an electron interacting with a nu­
cleus, the problem we have considered explicitly, Z / = - 1. 

4. RUTHERFORD SeA TIERING LIMIT 

The continuum eigenfunction (2.19) with quantum 
numbersm=O,v l = -i/2,V2=V+il2(v= -ZZ'/k) 
represents scattering of an incident plane wave by a nucleus 
(Rutherford scattering). With use of (2.11) we obtain 18: 

t/{UTH(r) = eikt; 12e ~ ik7l!2 IFI(iv; l;ik",) 

= eikz IFI(iv;l;ik",) (4.1) 

normalized such that ¢(O) = 1. It is of interest to obtain this 
Rutherford scattering limit in an alternative way, by reduc­
tion of the Coulomb Green's function. G ( + )(R,r,k ) can be 
interpreted as the amplitude at point r for scattering of a 
spherical wave originating at R by the nucleus at r = O. As R 
is moved to infinity along the negative z axis, the spherical 
wave approaches modified plane-wave behavior in the vicin­
ity of the origin. The Rutherford scattering wave function 
(4.1) can thereby be represented as a limiting form of the 
Green's function as follows: 

./.RUTH( ) _ I· G (+ )(R,r,k) 
IfIk r - 1m . 

R_ 00 G ( + )(R,O,k ) 
(4.2) 

The denominator G ( + )(R,O,k ) is obtained readily from 
(3.31) with x = 2R, Y = o. From the limiting forms of 
M :~2( - iky) and its derivative l5 we obtain 

G(+)(R,O,k) = - 4:R r(1- iV)W::2( -2ikR). (4.3) 

To evaluate the limiting form of G ( + )(R,r ,k ) we make use of 
the integral formula (3.17) with the following specialization 
of the parabolic coordinates: 

S < = S I = r I + z I = R - R = €-+O, 

"'> ="'I='I- z l=2R-+oo, 

S> = S2 = S, '" < = "'2 = ",. 
For the factor in (3.17) containing S < = €15: 

(4.4) 

lim€-1/2Mm12. (-ik€)=(-ik)' /28 (4.5) 
£--<) IV - JV2 m,O' 

which eliminates all but the m = 0 term of the summation. 
With use of (4.3)-(4.5), the wavefunction (4.2) reduces to 

1jJ';UTH(r) = lim _1_ foo dA rq - iv + iA wq - iA) 
R-oO 21T ~ 00 r (1 - iv) 

M~,( - ik",) W~v~i'( - ikS) 
X (_ ik",)1/2 ( _ ikS)1/2 

[ 
WO ( - 2ikR) ] 

X (-2ikR )1/2 ~ . . 
Wive -2IkR) 

(4.6) 

From the asymptotic form of the Wfunctions [cf. (2.27)], the 
bracket in (4.6) can be reduced to 

( _ 2ikR ) 112 ~ iv + j}. • (4.7) 
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Note that (4.7) approaches zero as R--+-oo for IoU > O. 
Thus the integral (4.6) can be evaluated by closing a contour 
with a semicircle in the upper half of the complex A. plane. 
The integrand, specifically r <! - iv + iA. ), possesses.poles in 
the upper half-plane at the points where 

~ - iv + iA. = - n, n = 0,1,2,···. (4.8) 

However, the limi t of the factor (4.7) as R --+- 00 will approach 
zero unless n = O. Thus (4.6) reduces to 21Ti times the residue 
at A. = v + i/2 (iA. = iv + D, viz, 

~UTH(r) = M?v -1/2 ( - ikTJ) W?/2 ( - ik5) (4.9) 
( - ikTJ)1/2 ( - ik5)1/2 

NOW
l9 

W~/2( - iks) = (- iks)I!2eiks/2, 

while [cf. (2.11)] 

(4.10) 

M?v_ll2( - ikTJ) = (- ikTJ)I/2e -ik.,/2 lF1(iv;l;ikTJ), (4.11) 

which results in the Rutherford eigenfunction (4.1). 
The Rutherford scattering cross section follows from 

the asymptotic form (2.14): 

~UTH(r) = eiks /2 M?v -1/2 ( - ikTJ) 
k ( _ ik1J)I!2 

311 

_ e - Trv/2 eiks /2 [ (k1J) - i1' e - ik.,/2 
r(1- iv) 

(k )i1'-1 ] _ i 1J eik.,/2 

r(iv) 
- TrY/2 [ = e ei/cz-ivlog[k(r-z)] 

r(l - iv) 
_ ~ r(1 - tv) eikr+i1'IOg[k(r-Z)]]. 

k r(iv) (r - z) 
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(4.12) 

This corresponds to a scattering amplitude 

f(B) = - ir(1 - iv) 
kr(jv)(1 - cosO) , 

which leads to the famous Rutherford formula 

'I. Meixner, Math. Z. 36, 677 (1933). 
2L. Hostler, 1. Math. Phys. S, 591 (1964). 

(4.13) 

3H. Buchholz, The Confluent Hypergeometric Function (Springer, New 
York, 1969), p. 86, Eq. (5c). 

4H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and Two­
Electron Atoms (Academic, New York, 1957), p. 27. 

'Ref. 3, pp. 1 Iff. We follow throughout the notation of Buchholz except 
that we write, for compactness, M ~/2(Z) in place of vii •. ,,12 (z) and W ~12(z) in 

place of W •. ,,12 (z). 

"Ref. 3, p. 91, Eq. (3). 
7Ref. 3, p. 82, Eq. (I). 
BG.N. Watson, TheoryofBessel Functions, 2nd. ed. (Cambridge V.P., Cam­
bridge, 1966), p. 395, Eq. (I). 

°Ref. 4, p. 29. 
IORef. 3, p. 214, Eq. (Ia). 
"Ref. 3, p. 19, Eq. (20a). 
"Ref. 3, p. 19, Eq. (19). 
"Ref. 3, p. 90, Eq. (lb). 
"Ref. 3, p. 214, Eq. (Ie). 
"Ref. 3, p. 28. 
16Ref. 4, p. 229 ff. 
17Ref. 8, p. 359, Eq. (I). 
18Ref. 4, p. 30. 
,oRef. 3, p. 207. 
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On the Abel summability of partial wave amplitudes for Coulomb-type 
interactions 

F. Gesztesya) and C. 8. Lang 
Institutfiir Theoretische Physik, Universittft Graz, A-BOJO Graz, Austria 

(Received 19 November 1979; accepted for publication 7 December 1979) 

We prove that the sum of partial wave amplitudes for Coulomb-type potentials [e.g., V (r) 
= rlr + a (r2)] is convergent in the Abel sense although it diverges in the ordinary sense. The 
method of Abel summation is a generalization of the ordinary summation and allows one to sum 
certain divergent series explicitly. It is closely connected with analytic continuation; with the help 
of optimal conformal mappings the convergence of the Abel sum (for long- and short-range 
interactions) can be improved substantially. This enables us to obtain values of the scattering 
amplitude for each scattering angle (except forward direction). In particular, we show that the 
screened scattering amplitude converges in the Abel sense up to a phase factor to the un screened 
one if the screening is removed. 

PACS numbers: 03.6S.Nk, 02.30.Lt 

I. MOTIVATION AND INTRODUCTION 

The problem of whether a series obtained for a physical 
quantity is summable in the ordinary sense is a notorious 
one. The intention in all perturbative approaches is of course 
to get rapidly converging expressions that allow the determi­
nation of the result to arbitrary accuracy. Increasing com­
plexity of the problems, however, often makes it hardly pos­
sible to make sure that the perturbative scheme applied is 
actually adequate for the specific case and does lead to a 
convergent series. A classical example for a divergent partial 
wave expansion series is that of the nonrelativistic Coulomb 
amplitude. The sum of the partial wave amplitudes, deter­
mined from the asymptotic phases of the partial waves, does 
not converge to the full Coulomb scattering amplitude in the 
ordinary sense. The partial sums diverge oscillatorily and 
have no limit. 

On the other hands, naively one should expect that on 
the way to the series (i.e., by the manipulations required by 
the formal expansion algorithm) no information should be 
lost. That means that it should be possible to obtain the de­
sired results even from the divergent series. 1 It is well 
known2 by now3 that there are techniques to obtain from 
certain divergent series finite values. From the abstract point 
of view this is quite clear since it is just a convention (i.e., a 
definition) how to give an infinite series a value, as long as the 
internal consistency of the postulates is guaranteed. The ba­
sic idea is to reconstruct from the series the value of a func­
tion that leads, when expanded, to the series in question. One 
thereby assumes that the divergent series is just the result of 
the polynomial expansion of a function with certain singu­
larity structure applied outside its region of convergence­
the result of a method of analytic continuation that is not 
appropriate for the problem. For asymptotic series addition­
al assumptions on the function are necessary in order to 
guarantee uniqueness. For less divergent series other resum­
mation (i.e., reconstruction) procedures are possible. 

"Supported by Fonds zur Forderung der Wissenschaftlichen Forschung in 
Osterreich. 

We discuss only the case of partial wave expansions of 
nonrelativistic scattering amplitudes oflong and short range 
interactions. For Coulomb-type potentials [V(r) = r/r 
+ a (r-2)] the sum 

L (21 +1)( e2i8
, -1) p/(x), 

/ 

is divergent in the ordinary sense, the partial sums oscillate 
and grow without limit, and converge only in a distributional 
sense,4 i.e., when first multiplied with a certain test function 
inx = cosO and integrated over x. For short-range potentials 
[V(rl = O(r - 3 - ~ I as r~oo] the corresponding sum is even 
absolutely convergent in the ordinary sense but not the sepa­
rate sums 

L(21 + l)iio,p,(x) and L(21 + l)p,(xl. 
/ / 

We show that all these sums do exist as Abel sums, i.e., 
sums in a modified sense. Abel summation2

,5,6 is a direct 
generalization of ordinary summation and allows the sum­
mation of the above-mentioned partial wave amplitudes for 
each XE [ - 1, 1]. For ordinary convergent series Abel sum­
mation reduces to the ordinary one. We therefore propose to 
treat the sums of partial wave amplitUdes as Abel sums. 

The Abel sum can be considered as the Abel limit of the 
partial sums. The Abel limit again is a generalization of the 
ordinary limit and reduces to it when applied to quantities 
limitable in the ordinary sense. This Abel limit will be useful 
in demonstrating how the scattering amplitUde for a 
screened Coulomb potential is related to the normal Cou­
lomb amplitUde. 

In some respect Abel summability was already noted by 
Mott 7 -although he was not aware of Abel's work. For pure 
Coulomb scattering he reconstructed the correct amplitude 
from the divergent partial wave series in exactly the required 
way of Abel summation. We show how to use Abel summa­
tion in practical cases where no closed form of the result is 
accessible and where one accelerates convergence with con­
formal mapping techniques. In a certain sense the existence 
of the Abel sum (which we prove for Coulomb-type interac-
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tions) justifies a posteriori other practical techniques to ob­
tain from the divergent series a convergent one, e.g., multi­
plying with a singularity reducing function in x which leads 
to a resummation,8 "punctual" Pade approximation,9 or the 
Legendre Pade approximation. 10 

II. THE SCATTERING AMPLITUDE FOR COULOMB· 
TYPE POTENTIALS 

In this section let us briefly review what is known about 
nonrelativistic scattering amplitudes for spherically sym­
metric Coulomb-type potentials. We discuss first the case of 
pure Coulomb interactions and denote the potential by 

VC(r) = ylr, yER, e = Ii = 2m = 1. (2.1) 

The first rigorous approach for this type oflong-range po­
tentials within the framework of time-dependent scattering 
theory was initiated by Dollard II and relied on an appropri­
ate modification of the free time evolution operator (cf. also 
Ref. 12). It can be shown that Dollard's scattering operator 
actually coincides with the usual Coulomb S matrix. 13 An 
alternative description of the Coulomb scattering operator 
SC, based on an algebraic approach to scattering theory by 
Combes l4 and Lavine l5 (cf. also Ref 16), has been adoped by 
Grosse et al. l7

, exploiting the SO(3, 1) symmetry of the prob­
lem. As a result SC in the interaction picture can be 
written 17, 18 

SC= r(~+(L2+DI/2+iy/2Vf=-:1) , 

r (~ + (L 2 + DI/2 - iyltV -,j ) 
(2.2) 

where -,j denotes the kinetic energy operator and L 2 the 
square of the angular momentum operator. 

In momentum space S C acts on states C/>EC I(R 3) 
nL 2(R 3) as 

(SCc/>)(k) = lim _y_ r(1 + iyl21k I) 
€-.o+ 21Tilk I r(1 - iyl21k Il 
xl, d 3k / 8(lk 12 - Ik /12) 

x[ 41kl2 ]1-€+iYI2 I k l C/> k'. 
(k - k Y ( ) 

For c/>[(k) = Y['(k Ilk I)¢ (Ik I), Eq. (2.3) implies 

(scc/>[)(k) = exp(2i8Hlk I»c/>[(k), 

where o~(lk I) are the usual Coulomb phase shifts 

8,(lk I) = argr(l + I + iyl21 k I)· 

(2.3) 

(2.4) 

(2.5) 

Further on we abbreviate x = cosO = k·k 'Ilk Ilk /1, where 0 
denotes the scattering angle and, without loss of generality, 
put the incident momentum Ik I = 1/2. 

The Coulomb scattering amplitude l9 then reads 

j«x) = - y21 +iy r(l + iy) (l-x)-I-iY _ l<x< I, 
F(I- iy) , 

(2.6) 
and Eqs. (2.3)-(2.5) imply 

j«x) = ~ I(2/+1)(e2iO'-I)P[(x), 
I [=0 

(2.7) 

in the sense of distributions4
,20.21; this means that both sides 

have to be integrated with a twice continuously differentia-
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ble test function ¢(x) vanishing at x = 1 in order to obtain 
convergence of the sum over I. Consideringj«x) as a mere 
function the corresponding expansion into a Legendre series 
is divergent for all x. This is of course common to amplitudes 
with certain singularities at x = 1. A Legendre series for a 
function converges pointwise in the interior of the largest 
ellipse with foci ± 1 where it is holomorphic, but is diver­
gent outside. 22 On the boundary there may be regions of 
conditional convergence depending on the order of the sin­
gularity. Sincej«x) has a pole (and a branch point) atx = 1, 
the sum in Eq. (2.7) diverges in the ordinary sense for allxEC. 

However, one may expandj«x) in a Taylor series at, for 
example, x = 0 or x = -1 with radii of convergence 1 or 2, 
respectively. Alternatively, introducing the conformal 
variable 

1 - (l - X)1/2 
W= , 

1 + (1 _ X)1/2 
(2.8) 

which maps thex plane, cut from 1 to infinity, into theinteri­
or of the unit circle in the W plane, produces an optimal 
converging series in w n. (For a review on this type of tech­
niques see Ref. 23.) 

Let us now discuss the general case of Coulomb-type 
potentials 

VCr) = VC(r) + VS(r), (2.9) 

where V S denotes the short range part of the potential and 
fulfills 

1'''' dr rl VS(r) 1 < 00. (2.10) 

If one decomposes the total phase shift 0[, which is defined in 
terms of the asymptotic form of the radial scattering wave 
function, into 

(2.11) 

and assumes that 

(2.12) 

then a result by Semon and Taylor24 can be stated as follows: 
The sums in 

I(x) = ~ I (21 +1)( /iO! -1) p[(x) 
I [~O 

=j«x) + ~ I (21 +1)/iO'(e2iJl !_I)p[(x), (2.13) 
I [=0 

are both convergent in the sense of distributions. From Eq. 
(2.12) one concludes25 

l/iJl! -11 = 0 (I -2 - €), (2.14) 

and thus the second sum in Eq. (2.13) is not only convergent 
in the sense of distributions, but converges uniformly and 
absolutely for all XE[ -I, 1]. 

Another result by Semon and Taylor24 concernes 
screened Coulomb potentials. Let 

VR(r) = VC(r)aR(r) + VS(r), (2.15) 

where the screening function a R(r) obeys4.24 
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O.;;;aR (r).;;; 1, for R fixed, a R (r) __ ° monotonically 
R~oo 

like 0 (r - 2 - E) for some E> 0, for r fixed, a R (r) __ 1, 

(2.16) 

and V'(r) obeys Eq. (2.12). Using the method of variable 
phase26 the authors show that for large values of the screen­
ing radius R the phase shift {if that corresponds to the short 
range potential VR(r) behaves like 

R- ox 

8f -w(R) -- 8" (2.17) 

where 

w(R) = - Y f" dr r-1a R (r). (2.18) 

Since w(R ) does not depend on I, this shows thatfR (x), the 
scattering amplitude corresponding to VR(r), converges in 
the distributional sense to f(x) up to a phase factor24 

exp [ -2iw(R) ] fR (x) ----* f(x) (distributional). (2.19) 

Considered as a function, exp[ - 2iw(R ) lfR (x) does not con­
verge tof(x) in general. 27 For an alternative approach to 
screening where the screened MQSller operators converge to 
the unscreened ones (up to R-dependent phase factors) if the 
screening is removed see Ref. 28. 

III. ABEL SUMMABILITY OF SCATTERING 
AMPLITUDES 

In this section we first introduce the concept of Abel 
summability and then we prove that the partial wave expan­
sion of the scattering amplitude for Coulomb-type poten­
tials, although divergent in the ordinary sense, has a well 
defined Abel sum. 

A sum over a sequence of complex numbers !./c;' ~ 0 Cn is 
called convergent in the ordinary sense (or short: conver­
gent) with sum C if and only if 

s 
lim I L Cn - C I = 0. 
IV· oc 1/-0 

Then we write !.:~o Cn = C. 
Let us now introduce the more general concept of an 

Abel sum mabIe series. 2
.
6 Let [c n 1:;,= 0 be a sequence of com­

plex numbers and suppose that the power series !.:;' _ 0 cnY n 
is converging at least for I yl < 1 and define 
fey) = !.:;'= 0 cnyn. Then !.:;'= 0 Cn is called Abel convergent 
(Abel summable) with Abel sum C if and only if 

lim If(y)-CI =0. 
y .1 

In this case we write A-!.;: = 0 Cn = C. The Abel sum there­
fore is the value of a function which is known only from its 
power series. This value can be obtained by analytic continu­
ation to y = 1 from the values of the function inside the unit 
disc. Since the power series (the asymptotic behavior of the 
C n ) allows one to determine the position and type of the clos­
est singularities, the analytic continuation can be performed, 
for example, by a change of variables through a conformal 
mapping. 
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Abel's limit point theorem6 implies that the Abel sum­
mation fulfills the so-called consistency condition, i.e., if a 
sum exists in the ordinary sense then the Abel sum exists 
with the same value too: 

! Cn = C implies 
,,=0 

Obviously, this generalized summation procedure is, similar 
to other related ones like Pade or Borel summation, closely 
linked to the problem of analytic continuation. Whereasf( y) 
in the case of Abel summation should be holomorphic in the 
unit disc, this is not necessary for Borel summation, which 
applies to asymptotic series. There, however, certain supple­
mentary conditions need to be fulfilled in order to guarantee 
uniqueness of the sum. 2

.
3 We also note the great importance 

of such generalized summations in the theory of Fourier se­
ries (Fejer's theorem).6 

Before we state our main result concerning Abel sum­
mability of the partial wave expansion of Coulomb-type scat­
tering amplitudes we introduce a somewhat more general 
class of potentials including 1/r potentials. Let 

VCr) = L + a -~/4 + V ( ) , S r, yER, a;;;'O, 

with 

r r 

(if dr rl V'(r) I < 00. 

Jo 

(3.1) 

(3.2) 

The total phase shift29 corresponding to V (r) is denoted by 
8,. 

Then the scattering amplitudef(x) defined by the Abel 
sum 

00 1 2 '8 
f(x)=A- L --:-(2/+1)(e"-I)P,(x), -1.;;;x<l, (3.3) 

'-0 I 

exists. This means that, although the partial wave expansion 
for Coulomb-type scattering amplitudes diverges when 
summed in the ordinary sense, it is convergent when 
summed as an Abel series. 

To prove this we show that 

oc I 28 
f(x,y) = L --:- (21 +1)( e ' '-1) P,(x)y' 

,~O I 

- f c,(x)y', (3.4) 
"00 

has at least radius of convergence one in the y plane and that 
the limit limy .1 f(x, y) exists for XE [ -1, 1). 

We decompose 

8, = (T, + fl." 
where 

a, = arg{r [! + (/2 + 1+ a)I/2 + iy]) 

+ [I + ! - (/ 2 + 1+ a)I/2]1T/2, 

is the phase shift30 associated with the potential 

(3.5) 

(3.6) 

y a-1/4 ~D "0 (3.7) -;+ r ,Ye.l'\, a"", 

which of course reduces to the pure Coulomb potential for 
a = 1/4. We have to study the asymptotic behavior of c,(x) 
for Ixl < 1. For this purpose we note31 

F, Gesztesy and C.B, Lang 314 



                                                                                                                                    

P,(x) = 2(21Tl)-1/2(1 _ X 2)-1/4 

xcos[(l+Darccosx- :](1 +0(1-1», 

jxj < 1, (3.8) 
and 

exp(2iCT,) = PiY(1 + 0(1-1». (3.9) 

If V'(r) = 0 (r - t3) with f3 > 2 as r_ 00, then24
.2

5 

exp(2iJL,) = 1 + 0 (II - f3), (3.10) 

and finally we obtain asymptotically 

c,(x) = c(x)/I/2(1z,y -1) 

Xexp( ± il arccosx)(1 + 0(1-1», 

where c(x) depends only on x. 

jxj < 1, 
(3.11) 

From this asymptotic behavior one may determine type 
and position of the nearest singularities. If one expands 
(y + a) - b -I in a Taylor series 

(y+a)-b-I = f diy', 
'=0 

one gets asymptotically 

d, = (ab+1 reb + 1) )-I( - a) -'Ib (1 + 0 (I-I». (3.12) 

By comparison of Eqs. (3.11) and (3.12) we conclude that 
f(x,y), jxj < 1, has singularities in they plane of the type 

(y - exp( ± i arccosx» -3/2 -2iy , jxj < 1. (3.13) 

The same analysis performed for x = -1 shows that 
f( -1, y) has a singularity of the type 

(y +1)-Z -Ziy . (3.14) 

Note that only the kind but not the position of the singularity 
in the y plane is affected by exp(2i(j,). Its position 

exp( ± i arccosx) is entirely determined by P,(x) [see also 
Eq. (3.21)] and is not changed by higher order terms in 
Eq. (3.8)Y 

Equations (3.13) and (3.14) show thatf(x,y) converges 
ror jyj < 1 and can be analytically continued to y = 1 for 
-1 <x < 1. This proves the existence of the Abel sum of 

partial wave amplitudes 
f(x) = Iimf(x,y) 

y_L 

~ 1 2b 
= A- L -:- (21 +1)( e I 1_1) P,(x), -1<x < 1. 

'=0 I 
(3.15) 

D G) 
'( 

I ~~ 
A 'Ie 

E 
Q 

I 
I I ! 

J; 
,Y 

0 

FIG. I. This figure exhibits the mappingy-->z [Eq. (3.16») for a special value 
of p = 116. The points in the y plane denoted by capital letters are mapped 
to the z plane points denoted by the corresponding small letters. If the 
singularities closest to the origin B are the points D and 15, then an expan­
sion in polynomials in z will be convergent at the point c in the z plane. This 
practically allows the analytic continuation to y = I (point C) required in 
the Abel summation. 
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It remains to show how the continuation may be done in 
order to obtain numerical results. We introduce a conformal 
mapping y --+ Z (cf. Fig. 1): 

(y +1) 1/2p -1 
Z= , 

(y +1) 1/2p +1 

~ = -1,O,I,oo_z = 

y = ( 1 + Z )ZP -1, 
1 - z 

-1,0, ,1 . 21
/

Zp -1 ) 
21

/Zp +1 
(3.16) 

This mapping maps the interior of the sector generated by 
the points y = -1, y = exp( ± i arccos x) with apex 
y = -1 in the y plane into the interior of the unit circle in 
the Z plane (the opening angle of the sector is 21TP 
= arccos x). 

Writing 

f(x,y) = f c,(x)y' = f d,(X)ZI, Iyl< 1, (3.17) 
'=0 '=0 

one infers 

do(x) = co(x) = ~(/il>"_I), 
I 

dl(x) = mtl j~1 ktl :~ C ;m~~1 )(D( -1) j-k 
X k ( k - ;) .. , ( k _ m; I ) c/x), 

1= 1,2,3,... . (3.18) 

The conformal mapping was chosen in such a way (i.e.,y = 0 
mapped to z = 0) that each d, (x) can be evaluated from the 
knowledge of Ck (x), k<l, i.e., from the knowledge of (jo, ... ,(j,. 

Therefore it is now possible to determine the Abel sum 
[(x, 1) from Eq. (3.17) by evaluating the ordinary conver­
gent sum over z' at z(y = 1), 

t ( 21
/
2p 

- 1 )1 
[(x) = 1=0 dl(x) 21/2p + 1 . (3.17') 

For numerical results compare Sec.lV.32 

Mapping techniques like the one discussed are neces­
sary for Abel summation of Coulomb-type partial wave am­
plitudes. For short-range potentials [V (r) = 0 (r -3 - ), 

E> 0, as r_ 00 ] where the partial wave expansion converges 
already in the ordinary sense one may also use these confor­
mal mappings in order to accelerate the convergence. From 
the consistency condition discussed before we conclude that 
the natural way of summing partial wave expansions for 
scattering amplitudes is to perform Abel summations. For 
slowly convergent partial wave series it is possible to use 
rational approximants9 to determine the value of the Abel 
sum at y = 1. For functions with singularities at points 
Iy I = 1 like the Coulomb partial waves sum it is not clear 
whether analytic continuation with Pade approximants 
(that approximate the cut structure by poles) is adequate. 

Let us discuss two examples for which the Abel sum 
may be evaluated in closed form. We start with 

= 1 
8(x,y) = L -:- (21 +1)( -I) P,(x)y', 

1=0 I 

jx l<l, lyj<1. (3.19) 

with the help of the generating function of the Legendre 
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polynomials 

(y2 -2xy +lt1/2 = IP,(x)/, 

Ixl.;;;l, Iyl < 1, 

we obtain 

,~O 

(3.20) 

8(x,y) = i[ 2y ~ (y2 -2xy +1)-112 + ( 
= i(1 - y2)( y2 -2xy + 1 )-3/2. 

y2 -2xy +1)-1/2 ] 

(3.21) 

Thus, 

A- ! (21 +1)P,(x) 
,~O 

= lim 8(x,y) = { 0, 
y-I 00, 

x# 1, 

x=l. 

Remembering the closure relation for P,(x), i.e., 

I (I + DP,(x)P,(x') = 8(x - x'), 
,~ 0 

(3.22) 

in the sense of distributions, the result Eq. (3.22) looks famil­
iar [P,(1) = 1]. 

Equation (3.22) shows that one may use 

" 1 2/j c,(x) = -:- (21 +1) e I 'P,(x) (3.23) 
1 

instead of c,(x) in order to evaluate the Abel sum of the 
scattering amplitudef(x) for x# 1. It also shows that for 
ordinary convergent partial wave amplitudes the sum over 

2 '6 
(21 + l)e I 'P,(x) can only be Abel convergent. For these the 
reduction (3.23) is of course not advisable. 

The second example concerns the pure Coulomb scat­
tering amplituder(x); it has been evaluated by Mote who 
apparently was unaware of Abel's work. His procedure is 
actually Abel summation of the Coulomb partial wave am­
plitudes but seems to have been overlooked in most publica­
tions on that subject. His method is based on the formula31 

r(x)F(y) = - exp[ - i1r(x + y)] 

rex + y) 4sin 1TX sill1TY 

x£ dtt X
-

I (1-t)Y-I, x,y not integer. 

(3.24) 

Hel die closed path r starts from a point on the real taxis 
between 0 and 1, encircles t = 1 in the positive sense (coun­
terclockwise), t = 0 in the positive sense, then t = 1 in the 
negative sense, and t = 0 in the negative sense, before it re­
turns to the starting points. Thus, 

jC(x,y) 

= I ~ (21 + 1) r(1 + I + ~r) P,(xlY' 
, ~ 0 I r (1 + I - 'r) 

00 1 
= I. -:- (21 + 1)[F( - 2ir)(1 - exp(41Ty)) 

,~O I 

X(1 - exp( - 21Tr))]-1 

X £ dt t' + iY(l - t) - 2iy - IP,(xlY' 

= - [r ( - 2ir)( 1 - exp(41Tr))( 1 - exp( - 21Tr))]-1 

X£dtt iY(I-t)-2iY- 18(x,yt), Ixl.;;;l, jyj<I,(3.25) 
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and 

r(x) = A- ~ ~ (2/ + 1) F(1 + / + ~r) p/(x) 
,~O I F(1 + 1-1r) 

= [r ( - 2ir)( 1 - exp(41Tr))( 1 - exp( - 21Tr))] -I 

X£dtt iY(I-t)-2iY-'18(X,t), x#1. (3.26) 

The last integral can be evaluated explicitly,7 yielding exact­
ly the result (2.6) 

Finally, let us tum to screened Coulomb potentials and 
prove that the screened Coulomb-type scattering amplitudes 
converge to the unscreened ones (up to certain phase factors). 
We first introduce the concept of an Abel limit. 2.6 

A sequence of complex numbers (d n I;; ~ 0 is called con­
vergent in the Abel sense with Abel limit D if and only if the 
sum }:,;; ~ m dnyn (for any m~O) converges for at least jyj < 1 
and 

oc 

lim (1 - y) I. dnyn = D. 
y ~l 

(3.27) 

Then we write A-limn _ oo dn = D. It is obvious that a se­
quence limitable in the ordinary sense is also Abel limitable 
to the same limit. It can be easily shown that the Abel sum is 
just the Abel limit of the partial sums 

IV 00 

A-lim I Cn = A- I Cn' 
lV-ocn=O n=O 

(3.28) 

Let 

r a-1/4 s 
VCr) = -; + r + V (r), rER, a~O, 

and let Eqs. (2.12) and (3.2) be valid for V'(r). We then 
introduce the screened potential 

n = 1,2,3, .. ·, (3.29) 

where a nCr) fulfills Eqs. (2.16). 
Iff(x) andfn (x) denote the scattering amplitudes for 

V (r) and V nCr), respectively, then we can prove the following 
analog to Eq. (2.19). Up to a factor of modulus one, the Abel 
limit offn (x) as n tends to infinity equalsf(x): 

A-lim exp[ -2iw(n) ]fn(x) =f(x), x#l, (3.30) 
n .. oc 

where w(n) is defined in Eq. (2.18). 
Before proving this let us discuss the special situation of 

a sharp cutoff function 

an(r) = e (n - r), n = 1,2,3, .... (3.31) 

This case was analyzed by Semon and Taylor27 using Born 
and Eikonal approximations for the pure Coulomb potential 
(a = 1/4, VS = 0). In the Born approximationr(x) and 
f~ (x) are given by 

r·B(x) = ~, 
I-x 

f~,B(X) = ~ (I + cos[n«(1 - X)/2)1/2] J, 
I-x 
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and obviously I~B(X) does not approach!"' B(X) in the ordi­
nary sense as n-+ 00. The same holds in the Eikonal approxi­
mation.27 It is clear from the Riemann-Lebesgue Lemma33 

that, when smeared with test functions, the screened ampli­
tudes converge to the unscreened ones, i.e., distributional 
convergence4

.
24 holds. The same is however true if we take 

the Abel limit instead of an ordinary limit. In fact, 

A-lim cos(nz) = lim (1 - y) ! yncos(nz) 
n-.. o:; y~l_ n = 0 

= lim (l _ y) 1 - y cosz = 0, 
y-.L 1 -2y cosz + y2 
for z=/=2krr, k = 0, ± 1, ± 2, .. ·, (3.33) 

and thus the screened amplitude converges in this example 
in the Abel sense to the unscreened one. 

To prove the general case in Eq. (3.30) we write 

A-lim exp[ -2iw(n) 1 In (x) 

= lim (l - y) ! e -2iw(n) In (x)yn 
y-.L n = I 

= lim (l - y) ! yne -2iw(n) 
y-.L n = I 

00 1 20" , 
X lim r -:- (21 + 1)( e I I -1) P, (x)z 

z~.1- ,= 0 I 

= lim lim (l - y) ! yne -2iw(n) 
y_L z_L n = 1 

X ! ~ (21 +1) iiOi'p/(x)z' 
/=0 I 

= lim lim ! ~ (21 +1) iiOlp,(X)z' 
y-Lz~I-/=O I 

X{1-y)! exp[2i(87-w(n)-8,)]yn, x=/=1. 
n=1 

(3.34) 

Here we interchanged ~n and limz_ L with the help of bound 
(2.14) and Weierstrass criterion. For X=f= I the Abel sum 
(3.19) vanishes and therefore the contribution from the 
( -1) in the sum over I can be dropped. We subsequently 
interchanged ~n and ~, since Iyl < I and Izl < 1. From4

.
24 

lim (87 - wen»~ = 8/, (3 . .15) 
n----+oo 

and therefore 

A-lim exp [2i(87 - wen) - 8J] 

= lim (1 - y) ! y nexp[2i(87 - wen) - 8,)] = 1, 
y .1- n'~ I 

(3.36) 

we finally obtain the desired result 

A-lim exp( - 2iw(n»In (x) 

= lim ! ~ (21 +1) e2ilJIP/(x)z' 
z-I- '=0 I 

1 n; 
= A- r -:- (21 +1) e I IP,(X) = I(x), x=/= 1. (3.37) ,= 0 I 

This means that the specific form of the screening function 
a nCr) is irrelevant for the differential cross section if the Abel 
limit n-+ 00 is applied. 
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IV. NUMERICAL ILLUSTRATIONS AND CONCLUSION 

Having proved that Abel summation is appropriate for 
the partial wave expansions of scattering amplitudes for 
long- and short-range interactions, we now discuss a few 
numerical examples. For all our examples we choose a typi­
cal value of the Coulomb parameter 'Y = 0.1. In the figures 
we plot only the real parts of the quantities for convenience. 

In Fig. 2 we compare the partial sums of the diverging 
partial wave summation for pure Coulomb scattering 
(a=1/4)andx= -I 

IK(X = -1) 

= J.. ± (21 +1) [r(1 + l + iy) -1 ]( -1)' 
i '=0 rO+I-iy) 

(4.1) 

with the partial sums of the converging Abel summation in 
Eq. (3.17): 

K , 
IK(X = -1,y = 1) = r d,(x = -1) (z(y = 1», 

'=0 
(4.2) 

which converge for K-oo to the Abel sum of the partial 
wave amplitudes. For x = -1 we have p = 1 and 
z(y = 1) = (VT -1)/(yT +1) = 0.171573 for the map­
ping (3.16). The correct value of the Coulomb scattering 
amplitude (2.6) at x = -1 is ( -0.099344 +0.0114391) 
which is obtained with four digit accuracy from the 10th 
partial sum onwards (six digits for the 15th partial sum). 
An equivalent figure can be drawn for the case of VCr) 
= ylr + (a - Dlr, where the phase shifts are explicitly 

known from Eq. (3.6); the convergence properties are very 
similar. 

The rate of convergence is satisfactory for x S 0 but gets 
worse as x approaches one. In Fig. 3 we give the partial sum 

9 
I 

~ , 
1\ I '2,120 
I \ I 

0.1 I I I 

I I I 
I I I 

O. \ , 
I A-'2, 

I I I I 

-0.1 \ I \ f 
II 

I ' b I' 
I' 
J 

0 5 10 K 
FIG. 2. We compare the difference between the correct value of the real part 
of the Coulomb amplitude and the partial sums for the ordinary partial 
wave summation [denoted by ~"""fK(x = - 1) - /'(x = - I). cf. Eq. (4.1)] 
and the partial Abel sums [denoted by A-~==fK(x = - I. 
y = I) - /'(x = - 1). cf. Eq. (4.2)]. The normal partial sums diverge oscilla­
torily and are therefore scaled down by a factor of 20; the partial Abel sums 
converge quickly and are correct to four decimals for K> to. 
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-0.1 \ ~ 
\T 
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0 5 10 15 20 K 

FIG. 3. For x = 0.5 the convergence of the Abel sum is slow; the difference 
between the correct value and the divergent ordinary partial sums is denot­
ed by l:==/K(X = 0.51 - r(x = 0.51 and is scaled down by a factor of 10 in 
the figure. The difference between the correct value and the partial Abel 
sums is denoted by A_l:==/k(x = O.S,y = 11-r(x = 0.51. The convergence 
of the sum can be improved substantially if one sums the series in x ' [Eq. 
(4.311, where the expansion coefficients a, are themselves obtained from 
Abel sums. The difference between the correct valuer(x = 0.51 and the 
partial sums in x' is denoted by l:a and vanishes quickly. Even faster con­
vergence is achieved if one sums the corresponding series in W(xl', the opti­
mal conformal variable. The expansion coefficients p, can be computed 
from the a, . The difference between the correct value and the partial sums is 
denoted by l:p. At K = 7 the partial sum in w' is already correct for six 
digits. (Only the real parts are plotted. I 

(4.1) and the partial Abel sum (4.2) for pure Coulomb scat­
tering at x = 0.5; the corresponding values for p and z are 
p = 1/6andz = 7/9. The correct value of the scattering am­
plitude is ( -0.399885 -0.009592 z) and the deviation of 
the 20th partial Abel sum is still about 5%. 

A way out of the convergence problems for x ~ 0 is of­
fered by the expansion in x I or even (w(x)) I (cf. Eq. (2.8)] 
rather than PI(x). Although this is a technical detail, let us 
discuss this approach since it is helpful in practical summa­
tions. For simplicity we treat only the pure Coulomb poten­
tial, but the formulas derived may be easily generalized. 

For this purpose we expandjC(x, y) [cf. Eq. (3.23)] by 
expanding the Legendre polynomials31 into a series in x I. 

jC(x,y) = ! ~ (21 + 1) r(1 + 1 + ~y) PI(x)l 
1=0 I r (1 + 1 - lY) 

= t a/(y)x/, - l<x < 1, Iyl < 1, 
1=0 

a/(v =y2) = (2y)1 ! (_ l)k(4k + 21 + 1) 
r(1 + l)r(1/2) k=O 

X r (2k + 1 + 1 + iy)F (k + 1 + 1/2) vk 
r (2k + 1 + 1 - iy)F (k + 1) 

== f alk vk, Ivl < 1. (4.3) 
k=O 

The coefficients a/(y = 1) are again given by Abel summa­
ble series; the limit limu--.L a/(v) exists since the large k be­
havior implies a singularity of the type 

(v +1) -3/2-2iy-1 

for a/(v) (the factor y I may be omitted sincey-1). In order 
to determine a/(1) we apply the technique discussed in Sec. 
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TABLE I. The values of the first seven coefficitnts a, [Eq. (4.6)] and p, 
[determined from the a, with Eq. (4.9)] for the expansion of the Coulomb 
amplitude in x' [Eq. (4.3)] and in w(x) , [Eq. (4.8)]' 

Rea, Ima, Ret3, ImiJ, 

0 -0.199795 0.009063 - 0.199795 0.009063 
1 - 0.200701 -0.010916 - 0.802804 -0.043664 
2 - 0.200155 -0.020951 - 1.596872 - 0.247888 
3 - 0.199457 -0.027623 - 2.363740 - 0.558000 
4 -0.198766 - 0.032610 - 3.106192 - 0.918432 
5 -0.198114 - 0.036585 - 3.830596 - 1.317072 
6 - 0.197504 - 0.039887 - 4.532568 - 1.750256 

III with the mapping v_z [Eq. (3.16) andp = 1], i.e., 

() _~ k_~ k a l v-£.., alkv - £.., 1llkZ , 
k=o k=O 

(4.4) 

where the 1llk are determined from the a lk like the d 's from 
the c's in Eq. (3.18). 

In the special case of the Coulomb potential we can 
determine the correct values of a l by expanding!"(x) in a 
binomial series 

!"(x) = _ y21 +iy r(1 + iy) (l_x)-I-iY 

r(1- iy) 

= ! alxl, Ixl < 1, 
1=0 

a = ( -1 - iY )( -1) 1+1 y21 + iy r (1 + iy) 
I I r(l-iy)' 

1=0,1,2,···. (4.5) 

The partial Abel sums [cf. Eq. (4.4)] for v = 1 are rapidly 
approaching these correct values. In Table I we give the val­
ues of the first seven coefficients as obtained from the30th 
partial Abel sum 

30 

al= I 1lIk(Z(V = 1»\ (4.6) 
k=O 

which are correct for all six decimals. For positive x the rate 
of convergence is still improved if one introduces the confor­
mal mapping 

I - (1 - X)1/2 4w 
w- X= ----

- 1 + (1 - X)1/2 ' (1 + W)2 • (4.7) 

(x = - 00, -1, 0, 1 --+ w = -1, 
(1 - 112)/(1 + \1'2),0, 1). 

Then 

J"(x,y) = ! al(y)xl = ! /31(Y)WI, (4.8) 
1=0 1=0 

/3 ( ) - ~ (-1) 1+ k 4k r (I + k) ( ) (4 9) 
lY-k~O .r(2k)F(I-k+1)ak y 

.. 
In Table I we give /31 (y = 1) that are determined from 

the a', (y = 1). In Fig. 3 we also exhibit the partial sums of( 4.8) 
for the expansion in x (I.a ) and in w(I.p ) at x = 0.5; the 
comparison with the slowly convergent Abel sum (A-I.) 
clearly demonstrates the strongly improved rate of conver­
gence. Note however that polynomial expansions have sta­
bility problems; small errors in the coefficients may produce 
large deviations in the results. For the related questions of 
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stability of analytic continuations we refer to Ciulli et at. 23 

Concluding, we have shown that partial wav~ expan­
sions of scattering amplitudes for Coulomb-type potentials, 
although divergent when summed in the ordinary sense, 
converge when treated as Abel sums. Thus, from the theo­
retical point of view Abel's summation procedure is well 
suited to sum partial wave expansions of scattering ampli­
tudes for long-range as well as short-range interactions. We 
have also demonstrated that physical quantities for screened 
Coulomb-like potentials are in the Abel limit independent of 
the specific form of screening. Finally, we have shown how 
to obtain numerical results with the help of conformal map­
ping techniques and the construction of optimal converging 
series. 

• Abel, although contributing fundamental theorems and thus preparing 
the basis of nowadays limitation theory, condemns divergent series in his 
letter to Holmboe (1826): "Les series divergentes sont, en general, quelque 
chose de bien fatal, et c'est une honte qu'on ose y fonder aucune demon­
stration" (Hardy's translation: "Divergent series are the invention of the 
devil and it is shameful to base on them any demonstration whatsoever")! 
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It is shown that the multipole expansion of electrostatic energy can be expressed in the form of 
energy specification S.! We J = ([P]l' V(l)cj> ), where VU) is a differential operator, whereas cj> and 
[PL represent an arbitrary t.est potential and equivalent reduced volume multipole density, 
respectlvel~. Two electrostatic sources are I-equivalent if their energy specifications are identical. 
The formalism by means of which electrostatic multipole sources can be effectively handled is 
developed. 

PACS numbers: 41.10.Dq 

I. INTRODUCTION 

On reviewing problems regarding the foundation of 
macroscopic electrodynamics, it appears that certain of 
these demand further elaboration. One of these problems is 
concerned with the energy of an electrostatic system, and 
this may be analyzed with emphasis on two particular as­
pects. First, the procedure of integration by parts commonly 
employed in energy-integrals becomes progressively awk­
ward as multipoles of higher order are considered. The sec­
ond ~spect is the physical basis of the macroscopic electrody­
namics. It may happen that, due to the mathematical 
idealization involved, calculations including self-energy give 
rise to ill-defined results. This is an extremely serious issue to 
be settled in elementary-particles physics. In macroscopic 
electrodynamics, however, it may be reasonable to avoid the 
self-energy of charged particles completely in energy calcu­
lation, maintaining that the interaction energy of the system 
is fundamental to the entire theory. In other words, it is 
conjectured that any part of macroscopic electrodynamics 
may be developed by starting with the interaction energy of 
the source distribution of a system and arbitrary external 
field. 

It is the purpose of this paper to develop a formalism 
that refines and generalizes the concept of a potential equiv­
alence l of electrostatic sources along the lines discussed 
above. This formalism will allow multiple densities of an 
arbitrary high order to be included explicitly in the course of 
the analysis. Needless to say, the multipole properties of 
atoms and molecules are well defined and therefore it is very 
natural and important to consider an equivalency relation of 
sources including their arbitrary polarities. In the following, 
any source of electromagnetic field will be placed in a family 
of potential fields produced by external agents. Further­
more, besides the field itself, the field gradient and its tensor­
ial generalizations of higher orders are considered to be sig­
nificant probing agents that test the characteristics of a given 
source distribution. 

The main result established in this paper is the formal­
ism for handling a multipole of arbitrarily high order, based 
on the concept of a source body as defined in Def. 1 and its 
application to the multipole expansion of electrostatic ener­
gy. Subsequently, it will be shown that mUltipole densities 

")On leave of absence from the Technical University of Wroclaw. Poland. 

may always be considered equivalent to appropriate densi­
ties oflower orders. Both the aforementioned formalism and 
the concept of equivalency are based on the interaction be­
tween a given source body [P] and an externally applied 
field. To develop a consistent formalism that conforms with 
these objectives, the concept of energy specification2 is made 
precise by defining it as a set of all possible values of the 
functional ([P],Lcj> ), where L is a linear differential operator 
and cj> is an arbitrary test potential. In view of this, the theory 
of generalized functions appears to be a desirable framework 
with which to work. The merit of the distributional formal­
ism is clearly presented when one deals with discontinuities 
and other singularities of physical quantities. Thus a consid­
erable amount of applications ofthe generalized functions to 
macroscopic electrodynamics have been given by now. In 
particular, the description of electromagnetic sources has 
been discussed in this context. Mazur3 and de Groot and his 
school4 have developed the generalized description of the 
multipole electric and magnetic sources with polarity of an 
arbitrary high order by employing the Taylor series-type ex­
pansion of the [) function. The generalized formulation of 
Maxwell's equations has been studied by several authors.s.b .

7 

Some applications of the vector generalized functions are 
also discussed by Gagnon. 8 In the present paper, the merit of 
the distributional formalism will be emphasized in a broader 
sense in that, by its virtue, the field-gradient qualities of an 
external field may be related straightforwardly with the 
boundary effects that appear upon forcing the support of a 
source density to vanish outside a finite space. 

In Sec. II a notation will be introduced in which various 
tensor operations are incorporated with the distributional 
formalism. In particular, the formula that generalizes a clas­
sical identity V ·(cj>a) = V cj>·a + cj>V'a is of special interest. In 
Sec. III the concepts of the source body and the energy speci­
fication of order I are defined. It is shown in Sec. IV how to 
transform an energy integral of a system into another one 
which is more readily ameanable to physical interpretation 
by systematically using the procedure 

([P]m,Lcj> )g;;(Vlm-ll[p]m,VIlIcj» 

= ([PL,eq,V(lI4», 

where the original differential operator L is factored like 

(1 ) 

L = V (m I)V (I) while [P] m and [PL.eq are a given multi­
pole source body of the order m and reduced multipole 
source body of order I, respectively. Furthermore, the above 
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procedure yields an additive version of the multipole expan­
sion of interaction energy. Finally, in Sec. V the importance 
of the formalism and the consequences for its application are 
pointed out. 

II. DIVERGENCE ITERATIONS OF CONTRACTION 

Let R 3 be a real three-dimensional Euclidean space with 
a fixed base and let F = I Fj"'-jk I = I FJk J, a = I a"""m ) 
= I a 1m)' respectively, denote sufficiently smooth tensor 

functions defined on R 3. The k-element (m-element) set of 
indicesj a ( if3) is denoted by J k (1m). The sth tensorial contrac­
tion of F and a is defined as 

Ci>I(F,a) = {f:FJk ,J,aJlm ,} = {FJk ,J,aJlm J, (2) 

where the contraction in the second member is performed 
over arbitrary s-element subset Js chosen as common subset 
from J k and 1m. It is assumed in the following that a contrac­
tion involved in (2) starts with the last available index of F 
and the first available index of a, whereupon the available 
pair of indices will be subsequently contracted; such a proce­
dure continues s times. The I th iterations of gradient and 
divergence are defined, respectively, by 

V(/)F = Dh,···Dh,FJ"'-jk' 

V(/)·F = D ···Dh F 
hi I Jl···h r·· h l' 

where Dh denotes a partial derivative with respect to the 
variable X h • By direct computation one verifies that for 
m > k = s;;;,o (Appendix A), 

(3) 

(4) 

One can generalize the above formula to obtain the (m - s)th 
divergence iteration. In fact, a remarkably useful formula, 

t= "1-S 

Vim - >1 . [CISI(F,a)] = I Cis + 1 I(VII IF, Vim - s - 1 I .a), 
1=0 

may be proved by introducing for each t 

Cis + 'I(VI/IF,Vlm -s- 'loa) 

= I DH,FJ,DHm . ,. ,aJ,H,Hm .,. " 
H, 

(5) 

(6) 

The summation in (6) is performed on all t-elements sets H, 
that are possible under the condition H, C CIs, where CIs is 
understood as a complement of Is with respect to the set 1m. 
The detailed calculations necessary to prove Eq. (5) are pre­
sented in Appendix A. 

For a scalar test function </J, the derivative of a general­
ized scalar function p is defined by9 

(p',</J) = - (p,</J'). (7) 

For a generalized vector function p, the following, formula 
will be useful 

(V'p,</J) = (D,p,,</J) = (p" -D,</J) = (p, - V</J), (8) 

where ( p,e!» = ~,( p,,</J,) = (p,,</J') is understood. In or­
der to generalize the above procedure, the generalized sth 
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contraction C(s) (F,e!» of a generalized tensor function F will 
be introduced. Let F be a tensor generalized function of or­
der k and let e!> be a tensor test function of the order m in the 
sense that all components of e!> belong to the Schwartz space 
!iJ. For O<;;s<;;min(k,m) a generalized function C~) is defined 
by 

(9) 

where a contraction is carried out with respect to the "inner" 
set of indices, Js ' as explained at the beginning ofthis section, 
Eq. (12). 

III. ENERGY SPECIFICATIONS OF ORDER / 

Let fl and Sn denote, respectively, a simply connected 
region in the three-dimensional space and the surface bound­
ing the region. A characteristic function 0 (fl ) is defined, as 
usual, by 

{
I, 

o(fl) = 1] [Sn(x)] = 0, 
Sn(X);;;'O, 

Sn(X) <0, ' 
(to) 

where x is an arbitrary point in the space and Sn(x) = 0 
defines the surface S. The sources to be considered in the 
present paper may have an arbitrary support. Furthermore, 
we make it a rule to employ an integral extended over the 
entire space. Hence, a source density is given in the whole 
space even if the distribution in individual cases extends over 
a finite space only. 10 A generalized function corresponding 
to a source distribution in this sense may be denoted by [P] 
and the physical objects that embody such a source distribu­
tion will be called the physical or source bodies. In order to 
deal with multipole densities of arbitrarily high order a sys­
tem of notations must be developed which is capable enough 
to present the symbol's meaning clearly and consistently in 
any situation of application. Definite forward steps to 
achieve our goal will be made by introducing two definitions. 

Definition 1: An electrostatic multipole source body of 
order r is a generalized function 

[p(m)]r = c(m - r) [v(m - r)o(fl ),p(m)]. (11) 

The list of the quantities on the right-hand side reads 
p(m) 

o(fl) 
c<m - r) 

Tensor source density, sufficiently regular 
and determined in the whole space R 3, 

Characteristic function of the source support, 
The (m - r)th tensorial contraction 
defined by (2). 

The quantity that appears for m = r, [p(m)]m = [P] m' will 
be called an elementary source body or elementary volume 
source density. For m > r, a source body [p(m)t will be 
called a physical surface or simply a layer. Occasionally it is 
convenient to use a traditional notation that is applicable 
when m = 0. For example, [P]o = [p] is a source body asso­
ciated with a volume charge density. 

In the present analysis of the interaction energy be­
tween an arbitrary source body [P] and a test field </J, the 
quality of a source body will be categorized by applying the 
multipole expansion as defined by (11), while the energy in­
tegral will be subject to its own multipole expansion. In such 
an expansion of energy integrals, integrals of the type 
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«(P],L</J ) will be used. A suitably chosen set of such integrals 
is the basis of the formalism to be developed. The class of 
operators L may be generalized, but for the purpose oflaying 
a foundation for the macroscopic electrostatics, we limit it to 
linear differential operators L = Vim - /)V(/) required for the 
multipole expansion of energy (Appendix B). With the 
above remarks in mind, the following definition is 
introduced. 

Definition 2: An electrostatic energy specification of the 
order 1 of a multipole source body [P] m is a set S 1 We J of 
functionals, where an individual functional We is the energy 

We =c(m)([P]m,v(m-/)(V(I)</J», (12) 

evaluated for a particular test potential of the family g;. The 
factorization Vim - /)V(/) indicates explicitly that V(l)</J, the 
1 th tensorial derivative of test field, is being investigated in 
the specification. 

As is the case with a test functionf(x) discussed in the 
standard reference on the macroscopic averaging process, II 
the test potential here introduced does not need to be speci­
fied in detail. All that is required is that it is sufficiently 
smooth and it vanishes outside bounded regions. Two source 
bodies [PIL, [P2 L are said to be equivalent if, and only if, 
for some (l), (l = 0,1,2,···), 

([PLL, (I)</J > = ([P2 L, (I)</J >. (13) 

IV. REDUCED MUL TIPOLE DENSITIES 

In this section it is shown that a distribution of multi­
pole densities of order m>1 contained in a region fl can be 
effectively replaced by equivalent volume multipole densi­
ties of order I. This result leads naturally to the additive form 
of the multipole expansion of energy. First consider a single 
elementary multipole source body [P] m' In view of Eq. (5) 
and Def. 2, [P] m is equivalent to the sum of the bodies of 
order I, i.e., 

m-I 
b(fl )plml~( - lr -I L C(tl 

1=0 

x [\i'lllb(fl), Vim -1- II.plml]. 

Indeed, using a definition of the generalized derivative 

c(m) (b(fl )p(m>, VIm -I)(V(I)</J > 

= C(/)« - l)m - 'D ···D. 
'1+ I I", 

X [b(fl )oP;,.;(,,,,], Dh/··Dh , </J ) 

(14) 

= C(l) « - 1) m - Iv(m I ) (b(fl )p(m», V(I)</J >, (15) 

and it is sufficient to apply Eq. (5) in order to obtain the 
decomposition (14). Suppose that a region fl contains multi­
pole moment densities of orders m for every m from 1 to 
M,I<m<M. From Eq. (5) one obtains 

M L (_I)",-/v(m-I).[p(m)] 
fn'--=-{ 

J\.1 m-I L L (_l)m- /C(t)(V lt )b(fl), v(m-I-tl.p(m», 
m= 1[=0 

(16) 

and after changing the order of summation in (16), the ener­
gy specification S ! We I of order 1 for the source body 
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'J.1ji [Pl m =b(fl)\P(I) + ... p(n)l becomes 
M 

S [We 1 = L C'ml(b(fl )plml, Vim - li(Vlil</J» 
m=1 

M 

= L (-lr- I Clil (Vlm--li,[p]m' Vi/l</J > 
m=1 

= C<I) (m~ I ~tol (_I)m - IC(I) 

X (V(tlt5(fl), VIm - 1- I).p(m», V(I)</J ) 

= C(I)(~ol C(t)(VII)t5(fl), 

XL f (_I)m- /V lm- I -I).P(In»), V(/)</J) 
III m ----" 1+ I 

=C(I) ('~)I C(t\V(I)b(fl),prr), V(t)</J) 

= C(I) ('~ol [PI L,V(I)</J ) . (17) 

Multipole densities 

M 
P/~= L L (_I)m- /v(m-'-t).p(ln) (18) 

IIi m = /·t I 

of the source bodies [PI L will be referred to as the reduced 
volume source densities of order I. Note here that t = 0 cor­
responds to the interior of a region nand t> 1 represent 
supports of source distributions at the boundary. Assuming 
Pro = plji and prr = @:i/~, (t> 1), Eq. (17) can be presented in 
the more explicit form 

S [We I = C(I) ([Plji] + '~II [@:irr], V(I)</J ). (19) 

Since Eq. (19) remains valid for an arbitrary M, the follow­
ing property has been proved: An elementary source body 
['J.

m 
p(m)] containing volume multipole moment densities of 

an arbitrary high order is equivalent, in the sense ofthe ener­
gy specification of order 1 to source bodies with reduced mul­
tipole densities 

P/.I = L !. (- l)m - Iv(m - I I).p(m). (20) 
Il, In -= 1+( 

In view of the classical expression for the energy of a con­
tinuous charge distribution in an external field 

We = ( p(T)</J (T) dt'JT = ([ p],</J >, 
)J1 

(21) 

the case I = 0 is of particular importance. Indeed, reduced 
multipole densities become simply the volume charge densi­
ties and consequently the multi pole expansion of the energy 
can be written in the "additive" form. Furthermore, the last 
formula establishes an equivalency relation between a multi­
pole density distribution and an equivalent volume charge 
distribution. 

V. CONCLUDING REMARKS 

Evidently the energy specification formalism developed 
in the present paper deals with multipole distributions of 
higher order consistently. The basic physical ideas underly­
ing the formalism are commonly accepted ones, and a con-
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cept of the generalized derivative has been extensively ap­
plied. The multipole expansion of electrostatic energy is a 
crucial preliminary step that must be taken before dealing 
with a bulk material based on the macroscopic distribution 
of molecular species. On realizing this circumstance, it has 
been shown that the generalized derivative effectively han­
dles an arbitrary source and family of external fields. The 
interpretation of the intermediate and final results in terms 
of familiar physical images is naturally accomplished by 
adopting procedures similar to procedures in conventional 
electrodynamics. Thus, interaction between a source p and 
an external potential rp, We = Sprpd{), has been handled 
along the line discussed above. The subsequent step of devel­
opment was to transform the terms of the form p(m)·V1m)c/> 
into the formpm C/>, wherepm represents an equivalent charge 
density. When this is accomplished, the resultant additive 
character of equivalent charge densities is apparent, as may 
be schematically shown by 

(22) 

It is interesting to note that the basic formula (20) deter­
mines an equivalent volume multipole source density of the 
order I, if one wishes to stop a "reduction" process at the 
level I. Moreover, Eq. (20) includes the boundary effects that 
result from forcing all the sources to vanish outside the 
source body. It can be easily seen that for I = 0 the volume 
moment density becomes simply the volume charge density. 
Furthermore, a classical Lorentz's "dipole approximation" 
requires a test field to be in the form E, = - V c/> and conse­
quently Eq. (20) yields, inside a region (t = 0), 

(23) 

and at its boundary, 

-15o., = P, = I I (_I)mv(m - t).p(m l . (24) 
/II m ""-'- { 

For t = lone obtains the more general case of a known for­
mula according to which a volume multipole distribution 
inside a region is equivalent to the sum of the volume charge 
density (23) and volume charge density2 

150 . 1 = I I (- I)mv(m -ll.p(ml, (25) 
II, m = I 

which corresponds to a surface charge at the boundary. An 
additive version of the multi pole expansion will prove to be a 
convenient setting in which the notions of polarization 
charges and currents have the more rigorous meaning. This 
is, however, the subject of a separate paper. 
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APPENDIX A 

In this Appendix, Eq. (5) is derived. Let F and a denote, 
respectively, tensorial functions of order sand m (m > s). In 
the following, summation is understood for all repeated indi­
ces. Using a definition of the tensorial contraction one 
obtains 

Vim - s).C(S)(F a) = Vim - s). (F a .. .) 
, ll"'}, J,"')1 I, 1 1"'Jm 

= D;, , , ... D;", (Fj'''j, aj"j,;, , '''';", 

=D;," , ... D;", ,(D;mFj'''j, 

Xaj"j,;,. ,"';m + Fj'''j,D;",aj,j,;" ,,,.;"') 

= D;" , ... D;", ,(D;m ,D;",Fj'''j, 

Xaj,o'j,i, , "";", +D;",Fj'''j,D;", laic-jl'";''' 

+ Dim IFjI"J,D;majdl"';m 

+ FjI"j,D;m ID;makjl''';m I;J .. · 
= D",-t 1···DimFjI··-j\aj,·1Ii, t J.·.im 

+ D;" I .. ·D;", ,FjI"j,D;maj,,,;,,, 

+ ... D;, , 2 ... D;",FjI"j,D;" lajc·jli., I'";''' 

+ ... + FjI'''j,D;" 1 .. ·D;",D;,,,aj'''';m 

where H, denote all possible t-element (O<,t<,m - s) subsets 
of the set tis+ 1 • .. im J. For m - s = 1, (AI) yields 

V.C(s)(F,a) = CIS + 1)(VF,a) + C(S)(F, V .a) (A2) 

and, for example, for s = 1, m = 2, one obtained directly 

V·C(F,a) = V.(F;aij) = Dj(F;aij) = DjF;aij + F;Djaij 

= C (2 )(D[Fn,aij) + C(Fn,DAj) 

= C(2)(VF,a) + C(F,V.a). (A3) 

APPENDIX B 

Let naP = Rand nofl = ~denotethepointsPandfl, 
respectively. In addition, let us define r = 1TP = R - ~. Us­
ing the Taylor expansion a potential c/> can be written 12 

c/> (P)~ m~o ( _l)m(p(m).v(m)(lIR) = f (plr) d{), (BI) 

where 

and 

r 
! _1_( _I)m(~(m).v(m»(lIR) 
m~O m! 

p(m) = _1_ f d{) p~(m) 
m! 

(B2) 

(B3) 

denotes a mUltipole moment density of order m with respect 
to flo of a volume source density p. A mutual energy between 
a source distribution and test field then, can be expressed by 

We = J d{) pc/> = < p, c/», (B4) 

where c/> is an arbitrary test potential. Expanding c/> in the 
vicinity of no, one obtains 
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We = f d{}11 p(D)tjJ (D) = f d{}11 p(D)tjJ (no + ~) 

f d{}11 p(D) (~o ~! (~·v njm).tjJ (Do») 

! (P~~)·v~~» tjJ (Do). (BS) 
m =0 

Eq. (BS) determines the type of differential operators L to be 
used in the formalism. 

IN. Bleinstein and J. K. Cohen, J. Math. Phys. 18, 194 (1977). 
2To the knowledge of the author, a notion of the energy specification was 
used for the first time by A. Skopec in description of dipole distributions in 
dielectrics (private communication). 

3D. Mazur and B. R. A. Nijboer, Physica 19, 971 (1953). 
'S.R. de Grott, "The Maxwell equations: nonrelativistic and relativistic 

324 J. Math. Phys., Vol. 22, No.2, February 1981 

derivations from electron theory," In Studies in Statistical Mechanics, Vol. 
IV (North-Holland, Amsterdam, 1969). 

SM. Bouix, C.R. Acad. Sci. 242, 2858 (1958). 
OR. Radulet and R.1. Ciric, Rev. Roum. Sci. Tech. Ser. Electrotech. 15, 565 
(1971). 

7M. Idemen, "The Maxwell equations in the sense of distributions," IEEE 
Trans. AP·21, 736 (1973). 

KR. J. Gagnon, Amer. J. Phys. 38,879 (1970). 
91. M. Gel'fand and G. E. Shilov, Generalized Functions (Academic, New 
York,1964). 

10K. O. Friedrichs, Mathematical Methods of Electromagnetic Theory (New 
York V.P., New York, 1974), p. 49. 

"J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), p. 
228. 

12C. B. Kadafar, In!. J. Eng. Sci. 9, 831 (1971). 
13In the abstract of this paper, the term "equivalent reduced volume densi­

ty," in its full form, has been used. As a result of using the generalized 
function formalism, any density in the present formalism means a volume 
density, even though some of them may correspond to a surface or line 
density in physical interpretation. Hereafter we abbreviate it as the vol­
ume density, retaining the italic form to emphasize the point of view ofthe 
present formalism. 

Stanislaw J. Dolzycki 324 



                                                                                                                                    

On the Lorentz dipole approximation in static electrodynamics 
Stanislaw J. Dolzycki a) 

Department of Electrical Engineering, Marquette University, Milwaukee, Wisconsin 53233 

(Received 12 June 1979; accepted for publication 29 February 1980) 

The energy specification S [ We J = ([ P] I ~ 0' qJ ) of electrostatic sources introduced in the 
preceding paper is further developed. The electrostatic potential <P due to a source distribution is 
defined as a generalized function satisfying the energy specification equation S [ We J = ( - coVin) 
.V1n)<p, qJ), where n denotes the order ofa multipole approximation is reviewed. Specifically, the 
generalized function of an equivalent field corresponding to a classical field intensity E is 
introduced in terms of a given energy specification S [ We J. Besides the equivalent field, a family 
of generalized functions Dn referred to as the characteristic fields is introduced to deal with the 
displacement vector D. A formal description of the so-called polarization charges comes out of an 
analysis of an equivalent field. Equivalent fields of magnetostatic problems are discussed on the 
basis of the magnetostatic energy specification S [ Wm J. 
PACS numbers: 41.10.Dq 

I. INTRODUCTION 

In this paper the electrostatic energy specification will 
be further developed as a continuation of the previous work. I 
For all practical purposes, the energy specification of order 
I = 0 is of particular interest. In this case, all macroscopic 
multi pole moment densities will be reduced to equivalent 
volume charge densities. 2 For example, the commonly 
known procedure to handle a volume dipole moment density 
P represents an important case of such a situation. Indeed, 
from a macroscopic point of view, if there are no higher 
multi pole moment densities within a given bounded region 
fl the potential <p at a point x outside fl is given by 

<p (.i) = i d 3X (p(i')1 
11 

Ii - i'l + P(i')·(i - iVli - i'1 3
), 

where P is a macroscopic volume dipole density and p is a 
volume charge density located within the region. Using a 
well-known procedure,3 the potential can be written 

<p= i d 3x' [p(x')/lx-x'l +P(x')'V'(1IIx-x'I)] 
!I 

= ( d 3x' [p(x')/lx-x'l + [V'·(P1IIx-x'l) 
J!I 

- 11 I x - x' I V'·P] I 

i d3X'p(x')/lx-x'l + ( d 3x(-V,P/lx-x'l) 
!I Ju 

+ 1" dS P·nl I x - x' I . 

In view of the above formula, one usually considers that the 
combination of the volume charge density - V·P and sur­
face charge density P'D is equivalent, as far as the resultant 
potential is concerned, to the volume dipole moment density 
P. Recently, Bleinstein et al. 4 have mentioned that this po­
tential equivalency can be used to demonstrate the existence 
as well as nonuniqueness of nonradiating sources in station-

'''On leave of absence from the Technical University of WrocIaw, Poland. 

ary fields. To quote Ref. 4, " ... one can use Green's theorem 
to replace a source distribution in a domain by a monopole­
dipole distribution over any surface bounding that domain 
such that each yields the same field outside the bounding 
surface. The difference of these source distributions then 
yields zero field outside the bounding surface." 

In this paper, a more general and rigorous analysis will 
be worked out on the same problem. Using the formalism 
developed in the previous paper, the energy We of a given 
source distribution will be systematically replaced by the 
standardized form of the energy specification S [ We J 

= ([o],</> ), where [0] = [PL ~ 0 is a reduced volume charge 
density and </> is an arbitrary test potential of the external 
field. Furthermore, by virtue of the requirement that the 
energy specification S [ We I be kept invariant, the general­
ized function of an electrostatic potential <P will be defined 
uniquely once the order of multi pole approximation is speci­
fied. The classical Lorentz dipole approximation appears to 
be the lowest order case of the so-defined multi pole expan­
sion formalism. It will be shown how to work out a formal 
description of polarization sources up to an arbitrary order 
of multi pole expansion. One advantage of the present for­
malism is that, due to the mathematical streamlining, so to 
speak, a more adequate interpretation and definite meaning 
is assigned to the so-called true and bound charge-currents 
that otherwise must be presented in terms of figurative com­
parisons and arguments of a highly speculative nature ("po­
larization charge," "cutting of dipoles" etc.). It becomes evi­
dent, also, the such expressions as " the same field outside a 
domain" and "difference between sources" acquire quite 
definite and precise meaning when considered in the here 
proposed scheme of energy specification. The formalism de­
veloped in the previous paper provides all formulas needed 
in this systematic reduction of energy specification to the 
standardized form. 

II. EQUIVALENT AND CHARACTERISTIC FIELDS 

In this section the nature of the polarization charge is 
discussed by means of energy specification of order 1= O. It 
is shown that a formal description of polarization sources 

325 J. Math. Phys. 22 (2), February 1981 0022·2488/81/020325-06$1.00 © 1981 American Institute of Physics 325 



                                                                                                                                    

can be given in terms of characteristic and equivalent sources 
by transforming the so-called energy specification equation. 
To begin with, a simple case of energy specification S I We I 
will be discussed. Let the point charges ql, ... ,qn be placed at 
the points T1, ... ,Tn. Let a test potential t/J be a sufficiently 
smooth scalar function vanishing outside the bounded re­
gion. The energy of the system consisting of the point 
charges Iql, ... ,qn I and an external field represented by the 
test potential t/J is given by 

We = i qkt/J (Tk)' (1) 
k=1 

By definition, We is always finite and, in view of discussion 
given at the beginning of the previous paper, it is assumed to 
be the only meaningful energy-characterization of electro­
magnetic sources. In other words, the interaction energy be­
tween a given charge distribution and an external source is 
considered a crucial entity to be produced by a macroscopic 
experiment. Its fundamental significance arises from the fact 
that it remains invariant throughout the application of the 
present formalism. The set of numbers obtained from Eq. (1) 
for all elements t/J of a given space fiJ of test potentials repre­
sents a linear functional defined on fiJ. This functional will 
be referred to as the energy specification S I We I of the point 
charge system. Similarly, for a volume charge density p lo­
calized in a region f} and arbitrary test potential t/J, one can 
define an integral 

We = i p(T)t/J (T) d1J 
n 

(2) 

representing the electric field energy of the system. 
The energy specification S { We I represents a set of en­

ergies associated with a given set up of sources and family of 
external test fields. Note that such energies are functionals of 
the source distribution and are invariant under coordinate 
transformations. A specific analytical form of We can be 
deduced from the multipole expansion of energy. Indeed, 
this expansion defines the characteristic way in which var­
ious source multi poles interact with an external field. Elec­
tric charges interact with an external potential, dipoles with 
an electric field, quadrupoles with a field gradient, and so 
forth. For example, for a given test potential, a distribution 
of dipoles localized at the points T1, ... ,Tn has the energy 
given by 

We = i Pk"<Vt/J )T, ' (3) 
k=1 

where Pk is a dipole moment at the point T k • Similarly, for a 
volume dipole moment density P one obtains 

We = In P·Vt/J d1J, (4) 

and for a volume quadrupole moment density PaP 

We = (( I PaP a
2

t/J ) d1J. In a.p aaaf3 
(5) 

It is the goal of the present scheme to exploit the wealth 
of forms that are obtained by transforming the functional 
sets (3}-(5) as exhaustively and properly as possible to cover 
various aspects of electromagnetism. Such transformations 
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are dictated by the basic principle that an energy is a scalar. 
Probably, it is not improper to explain the goal of the present 
scheme more colloquially by comparison with the advantage 
of variational formalism. 5 There is a stationarity require­
ment imposed on a functional derived from a scalar Lagran­
gian function serves in compact form as a representative for 
the wealth offield equations. In other words, one starts with 
a compact functional form and obtains a variety of equations 
and their consequences upon developing the formalism. One 
may describe that situation by stating that the variational 
formula is the "pre-generating functional form" of the field 
equations. The purpose of the present paper is to work on the 
simplest version of the energy specification S ( We I, a func­
tional set written in shorthand, and to assert that it is possi­
ble to transform S I We ) from its "pre-generating functional 
form" to a standardized form S I ([p],t/J ); t/JE fiJ I useful in 
electrostatics. In other words, one can always, at least for­
mally, relate an appropriate energy specification with a type 
of potential that represents the laboratory sitiuation in 
which actual measurements are to be performed. Therefore 
it is essential that in the standardized form the energy is 
always expressed in terms of a test potential itself rather than 
in terms ofits derivatives as may happen for "pre-generating 
functional forms." 

It is proposed that one work according to the conceptu­
al deduction scheme 

We=?( [p],t/J ) , 

where the deduction is based on the invariance of energy 

[p] represents a volume source density ofthe equivalent 
field. For simplicity of notation, the energy specification 

(6) 

S I < [ p],t/J ) ;t/JE fiJ I will be designated as < [ p],t/J ), where t/J 
should be considered an arbitrary element of a given space 
!iJ of test potentials. An observation offundamental impor­
tance is that the version of the multipole expansion devel­
oped in Ref. 1 (Eq. 22) makes it possible to express, for I = 0, 
an arbitrary source body as the combination of energy­
equivalent volume charge densities. 2 

For example, employing the definition of generalized 
derivative the expression (4) can be transformed as 

We = 1 p·Vt/J d1J=? J o(f} )P·Vt/Jd1J 

= (o(f) )P,Vt/J ) = ( - V·(o(f) )P),t/J ) 
= ( - o(f) )V·p - Vo(f} ).p,t/J ) = ([ p],~ ) 

=SIWel, 
(7) 

where a volume charge density [p] of the equivalent field is 

[p] = 0 (f})( - V·P) - Vo (f) )·P. (8) 

The last formula corresponds to a well-known property that 
a volume dipole moment density distribution is equivalent to 
the volume charge density p = - v·p within the region f} 
and the surface charge density on the boundary. Although in 
classical formulation one usually restricts oneself to presen­
tation of the above property for volume-type distributions, it 
is quite legitimite to apply, formally, the same procedure to 
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other source distributions. Thus, for a dipole curve with a 
linear density Pa(Ta). one obtains 

We = 1 Pa(Tex)(V</J k dt 

=> f Oex (T - To)P a (Ta)-(V </J ) d{) 

= (oa(T - Ta)Pa,v</J) = (- V [oa(T - To)Pa ].</J) 
= ([ p ].</J ) = S { We I . (9) 

where 

[p} = oa(T - Ta)( - V-Pa) - VOa-Pa . (10) 

Similarly, for formula (3) one obtains 

We = ktl pk"!V</J )r,=> f ktl otT - TdpdV</J) dtJ 

i (o(T - Tdpk.V</J) 
k=1 

i (- V-(o(T - Tdpd.</J ) 
k=1 

= ([ p]'</J ) = S ! We) • 

where 

[p1 = i otT - Td( - V-Pk) - i Vo(T - Td-Pk • 
k=1 k=1 

and. using (5). 

We = L (~Pa.t1 a~t{3 ) dtJ=>C2
) (0(11 )p(2)'V(2)</J) 

= c( - V-(o(11 )p(2). V</J ) 
= C( - 0(11 )V_P(2) - Vo (11 )_p(2), V</J > 
= (V-[ - 0(11 )V-P(2) - Vo(11 )-P(2)].</J ) 
= 0 (11 )(V(2)_P(2») + 2VO (11 )_(V_P(2») 

+ V(2)b' (11)(2)-P(2l,</J ) 

(11) 

(12) 

=([p],</J)=S!We !; (13) 

[p] = 0(11 )V(2).P(2) + VO (11 )_[2V-P(2)] + V(2)0(11 )(2).P(2).(14) 

Formulas (8), (10), (12). and (14) indicate a general character 
of the formalism and reveal existing regUlarities. The first 
terms in these formulas represent the interior of supports 
and associated volume charge densities. whereas the follow­
ing terms represent volume charge densities that are equiv­
alent to surface distributions at the boundary. Equation (14) 
appears to be particularly relevant to the philosophy used 
here. In that case the second term represents an equivalent 
dipole density 2V-P(2) localized on the boundary V{j (11). the 
product Vb' (11 )'2V-P(2), however. should be interpreted as a 
volume charge density resulting from a nonuniform dipole 
distribution 2V-P(2). The third term represents an equivalent 
volume charge density due to a quadrupole distribution as­
sociated with a "dipole" surface V(2)·{j (11 ). It is interesting to 
note that all terms in the above equations are meaningful 
since source densities P are functions defined in the whole 
space. This remark is methodically important since usually 
the first term in Eq. (12). for example, is assumed to be zero. 
The energy specification formalism directly relates bound­
ary effects with analytical properties of test potentials. 1n-
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deed, the nature of boundary effects depends upon what dif­
ferential aspects of external potentials are taken into account 
(slope. curvature. and so on). In other words, one may main­
tain that the boundary effects included in [p] and analytical 
properties of external feilds are. in a sense, "dual" 
phenomena. 

The merits of the formalism may become more evident 
when a multipole of higher order is handled. Taking into 
account the structure ofEqs. (8)-(14). one easily finds that a 
general form of an equivalent volume charge density is now 
given by 

[p} = r. otT - Tk)qk + b'ex(T - Ta)r(T) 
k 

+ b's(T - Ts)a{T) + 8(11 ion 

- v.{ ~O(T- Tdpk +8oPk +osPs +o(I1)P 

- v.[ (~O(T - TkJPa.{3;k + ... + 0(11 JPa.t1) + ... J}. (15) 

Assigning the symbols 9 (1
) for elementary source bodies of 

order /, Eq. (15) can be written 

[p} = 9(0) _ V.{ 9(1) - V·(9(2) - ... 1 
= 9(0) _ V.9(1) + V(2).9(2) - .. . 

= f [p(l)] , (16) 
1=0 

where [p(/)1 represents an equivalent source body of order 0 
corresponding to a given multi pole source body of order [. 
Now, using the concept of energy specification of order 0, 
one can define the electrostatic potential tP and, in turn, fam­
ilies of so-called characteristic and equivalent fields satisfy­
ing the multipole version of Maxwell's equation 
V.D= 9(0). 

Suppose that the electric potential tP is a generalized 
function satisfying the energy specification equation 

( - Eo V(It). v(n)tP.</J > = S ( We J = ([ p L</J > . (17) 

Equation (17) has the same form as Poisson's equation ex­
cept for the fact that additional iterations of the operator 
div(grad) are considered. Defining the generalized vector 
function E by E = - VtP, Eq. (17) can be written 

EOv(n)·v(n-I)E= [pl. 

and. using (18) and (16), one obtains 

(Eo v<n)·v(n -l)E,</J ) 

= (&,(0) _ V&( I) + ... +( _l)nvn 

.[&,(n) _ V.9(n+I) + ... ),</J) 

= (v(n).!Eov<n -I)E + (_1)n + 19(n) 

+ (_I)n+2V.9(n+l) + ... J,</J) 

(18) 

= (9(0) _ V&<1) + ... +( _ly- I v(n-l).9(n-I),</J), 

or 

V(It)'[EO Vln - I)E + ( - It + 19(1t) + ... ] 
= 9(0) _ V.9(J) + ... + ( _ It - Iv(n - 1).91" - I). 

(19) 

Equation (19) clearly displays the nature of a "multi pole 
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approximation" of order n and demonstrates how to apply 
the energy specification equation (17) to each specific elec­
trostatic problem. Hence, a formal separation between the 
so-called true and bounded sources is a direct consequence of 
the energy specification equation (17). Indeed, assuming 
n = 1, one obtains the classical Lorentz dipole approxima­
tion. Equation (17) becomes the Poisson equation 

( - EoLil/>,t/J ) = S I We J = ([ p],t/J ) . (20) 

Equation (20) can also be written as 

S I We J = ([ p ],t/J ) = (g> (0) - V&> (! ) + ... ,t/J) 
= ( - EoLil/>,t/J) = (EoVl/>,Vt/J) 

= (- EoE,vt/J) = (EoV·E,t/J) (21) 

or 

V'(EoE) = g><o) _ V.g>< I) + ... . (22) 

On the other hand, for n = 1, Eq. (19) becomes 

(23) 

or 

(24) 

where D is a generalized displacement vector. To describe 
approximations of higher orders, it is convenient to intro­
duce the family Dn satisfying 

v1nl.Dn = g>101 _ V.g>1I1 + ... + ( _ If - 1).g>ln - II. 

(25) 

It is seen that in the "quadrupole approximation" the dis­
placement vector D2 is defined by.charge distributions g>101 
and equivalent dipole distributions 9 111• Similarly, for 
n = 3, Eq. (25) becomes 

and (18) becomes 

EoV(}).V<2)E = [pl· 

(26) 

(27) 

It is interesting to note that for every n all sources are neces­
sary to determine the vectorE. Since [p] is a sum of all equiv­
alent source bodies of the system, the field E can be interpret­
ed as an equivalent field that is generated by all sources for 
any multi pole approximation. At this point a certain clarifi­
cation seems to be proper. The field E in Eq. (22) is a general­
ized function and thereby it depends upon a given family of 
external fields. This dependence on the auxiliary fields is 
crucial to recognize the structure of the formalism. Using an 
analogy with quantum theory one may assert that each indi­
vidual distribution of external sources determines the experi­
mental arrangements that can be set up for the system, just as 
the wavefunction in quantum mechanics determines the 
state of a system. A measurement made on the system yields 
a real number which can be interpreted as the interaction 
energy between a given source distribution [P] and an auxil­
iary testing source. The results of independently performed 
experiments obtained for all possible auxiliary fields within a 
given family define the energy specification S I We ]. Subse­
quently, the equivalent field E due to [P] is determined in 
terms of the energy specification S I We] rather than directly 
by means of sources as is the case in traditional field theory. 
Similar remarks apply to vectors Dn' 
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A different structure shown in Eq. (25) indicates, how­
ever, that vectors Dn dependexplicidy on the order n of the 
multipole approximations. Indeed, it can be seen that they 
are determined by the energy specification of all multi pole 
densities of orders less than the order of a given approxima­
tion. In this sense, the vectors D n represent the characteristic 
fields of the multi pole approximation. These results offer a 
simple and consistent interpretation of so-called bound or 
polarization charges. In view of Eqs. (18) and (25), polariza­
tion sources can be defined as a difference between equiv­
alent and characteristic sources. As is shown above, the 
character of polarization sources depends upon the order of 
the multi pole approximation. Specifically, in the classical 
dipole approximation free charges are the sources of the 
characteristic field D and polarization charges are the 
sources that should be added to free charges in order to ob­
tain sources of the equivalent field E. 

III. ARBITRARY CURRENT DISTRIBUTION AS A 
VOLUME CURRENT DENSITY 

Infinite values of energies for idealized sources in a 
magnetostatic field can be avoided by the introduction of 
appropriate magnetic energy specifications S I W m ].

6 Con­
sider a current loop localized in an external magnetic flux 
IJIm • The classical expression for the magnetic energy is given 
by 

(28) 

where d is a corresponding vecotr test potential. In the 
analogous way, for an arbitrary volume current density jeT) 
one can assign a real number 

Wm = r j(T).d(T) d{}, 
J!l 

(29) 

which corresponds to the magnetic energy of a current loop 
in an external field. The set of all numbers obtained through 
(28) or (29) for a given family of vector test potentials defines 
the linear functional S I W m ]. It will be referred to, in the 
following, as the magnetic energy specification. Two mag· 
netic sources are considered to be equivalent if their magnet­
ic energy specifications are identical. It can be shown that 
the concept of generalized derivative makes it possible to 
transform the functional set S I W m ] of a system to the stan­
dardized from (m,d). In fact, the scheme of conceptual 
deduction Wm=>(m,d) based on the invariancy condition 

S!Wm ] =S!(U],.w');dEfi) (30) 

may be applied where, as previously, the symbol (m,d) 
will be understood asS! (m,d),dEfi)). For example, Eqs. 
(28) and (29) become 

i £ dl·d = i f (),.d d{}::::>«()" i,d) 

=(U],d)=S!Wm ), (31) 

L j-.{f d{} = f o(n )j-d d{} = ([j],d) = S ! W,n]· (32) 

The energy specification of a magnetic dipole can be ob­
tained directly from Eq. (28). Indeed, using Stoke's theorem 
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one obtains 

(8 u i,d) = (VX8s i,d) = (8s i,VXd). (33) 

Let S-+O and i-+ 00 in Eq. (33) so that the product is remains 
constant. In such a case the loop becomes a magnetic dipole 
having the moment m = em (limiS), where em is the unit 
vector normal to Sand 8s i-+8m • Hence the energy specifica­
tion S ! W m J of magnetic dipoles localized at the points 
T1, ... ,Tn andhavingmagneticmomentM = ~D(T- Tk)mk 
is given by 

Wm=>( ktl D(T - Tkmk,vXd) 

= (Vx( ktl D(T- Tk)mk )'d) = ([j],d), (34) 

where the volume current density of the equivalent field is 

[J] = i V X (D(T - Tk)mk) 
k~1 

= i D(T - Td(Vxmk) + i VDxmk • (35) 
k~1 k~1 

Similarly, for a volume magnetic moment density distribut­
ed within a bounded region fl the energy specification takes 
the form 

Wm=> = (D(fl)M,VXd) = (VX(D(fl)M),d) 

= ([j],d) =S!WmJ, 

where 

fj] = D(fl)VXM + VD(fl)XM. (36) 

In a similar fashion one finds, for a surface magnetic dipole 
moment density 

Wm=>(V X (DJT - T,)M,),d) = ([j],d) = S! Wm J, 
where 

fj] = Ds VXMs + VDs(T - Ts)XMs . (37) 

The first term in Eq. (37) represents a surface current density 
and the second term corresponds to the linear current densi­
ty on the boundary a of the surface S. Suppose that the gen­
eralized function of a vector potential A and a generalized 
magnetic field vector B are defined by the energy specifica­
tion equation 

lIflo(Vx(VXA),.ct") =S!Wm] = (fj],.ct") 

and assume that 

B=VXA. 

(38) 

(39) 

Equations (34)-(37) indicate that an equivalent current den­
sity fj] can be written in the form 

fj] = U(O)] + U(I)] = U(O)] + V Xvii 

= [foIl + Vx [~D(T - Tdmk + Du(T - Ta)Mu 

+ DsMs + D(fl )Mn ]. (40) 

Substituting Eqs. (39) and (40) into (38) yields 

lIflo(V XB,.ct") = ([j(O)] + V XvII,.ct") = (fj],.ct") (41) 

or 

(42) 
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where B - flcrH = .w-' is referred to as the magnetic field 
intensity. 

This demonstrates that the vectors Band.w-' represent, 
respectively, an equivalent and characteristic field with re­
spect to the energy specification Eq. (30). 

IV. CONCLUSIONS REMARKS 

The formalism developed in this paper makes it possible 
to (a) express an arbitrary source in the form of an equivalent 
volume source density, (b) achieve a significant simplifica­
tion and uniformity of traditional formulas, and (c) provide 
opportunities for new interesting physical interpretations. 
For example, in a time-variant case the electric test field in 
Lorentz's approximation assumes the form E, 
= - VrjJ - ad f(at). A total polarization charge-current 

can be found directly from the energy specification S ! We ] 
+ S ! W m ]. Indeed, for a volume dipole moment density P 

one obtains 

(D (fl )P,E,) = (D (fl )P, - VrjJ - ad fat) 

= (D (fl W·p + VD·P,rjJ) + (D (fl )aPfat,d) 

= ([ p],rjJ) + ([j],.ct") = S! We] + S! Wm J, 
where [p] and fj] denote, respectively, equivalent charges 
and currents. The result is consistent with classical theory, 
as it should be. It is hardly surprising that classical integral 
formulas are phrased succintly in terms of the energy specifi­
cation S ! We ] and S ! W m ]. As a matter offact, the distribu­
tional approach simplifies an integration by parts and this is 
the property that makes the generalized derivative a very 
convenient tool with which to deal. In particular, the rigor­
ous description of the so-called polarization charge-cur­
rents, in view of the "additive" version of the multipole ex­
pansion, seems to be expected. After all, polarization sources 
are a part of the physical description of a problem. However, 
if one examines the mathematical structure of the energy 
specification formalism, a desired linkage between between 
the physical and mathematical aspects is now available in 
rigorous analytical form. 

It should be emphasized that the formulas representing 
energy integrals can be viewed as a bilinear form-type for­
malism in which both topological properties of sources and 
analytical characterization of probing agents are considered 
simultaneously. It is believed that such an approach within 
classical electrodynamics is conceptually closer to formal­
isms used in quantum theory and abstract field theory. 

ACKNOWLEDGMENTS 

The author is indebted to Professor Smio Tani for many 
valuable discussions concerning the presentation of the work 
and suggested improvements in notation. He also thanks 
Professor Jan K. Sedivy for discussions and encouragement 
and the referee of the journal for suggestions. 

's. J. Dolzycki, J. Math. Phys. 22,320 (1981). 
'See footnote 13 in Ref. I. 

Stanislaw J. Dolzycki 329 



                                                                                                                                    

'J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), p. 145. 
4N. Bleinstein and J. K. Cohen, J. Math. Phys. 18, 194 (1977). 
'This point has been suggested by S. Tani. For classical mechanics, the same 
kind of point of view has been stated before, see, e.g., C. Lanczos, The 

330 J. Math. Phys., Vol. 22, No.2, February 1981 

Variational Principles of Mechanics, 4th ed. (University of Toronto Press, 
Toronto, 1970), Chaps. I and 2. 

6 A. Skopec, Technical University ofW roc1aw, Poland, preprint (May 1974) 
(unpublished). 

Stanislaw J. Dolzycki 330 



                                                                                                                                    

An example of an JY-space a) 

G. A. J. Sparling 
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 

K. P. Ted 
Mathematical Institute, St. Giles, Oxford, England 

(Received 8 May 1978; accepted for publication 14 Dcember 1979) 

The good cut equation for a specific asymptotic shear is solved and the metric of the associated 
cW'-space is obtained. The cW'-space is found to be type N, asymptotically flat and positive 
frequency. 

PACS numbers: 04.20.Cv 

Since cW'-space was introduced by Newman, I the sub­
ject has been developed in a series ofpapers.2

•
3

•
4 However 

one stumbling block up to now has been the absence of any 
specific nontrivial examples of cW'-spaces. It is our purpose 
here to describe such an example which leads to a left-flat 
space of some interest in its own right, and which provides an 
arena for the testing of future developments in the subject. 

An cW'-space is defined as the space of asymptotically 
shear-free cuts (good cuts) of the complexified future null 
infinity C f+ of an asymptotically flat space-time Jt. 1 

Equivalently, the cW'-space of Jt is the space of solutions of 
the good cut equation, I 

cfz gl) = a O(Z,tl), (1.1) 

which are regular on the entire Riemann sphere of t when 
t = t. Here a O(u,tl) is the asymptotic shear of an outgoing 
Bondi family of null hypersurfaces in Jt (see Refs. 1,2 for 
defini tions). 

This solution space is known to be four-dimensional3 so 
that cW'-space is a four-dimensional complex manifold. In 
terms of the solution of (1.1) there is a natural definition of a 
quadratic metric on the cW'-space which automatically gives 
rise to a self-dual curvature tensor. 

No solutions of (I. I) for nonzero a 0 have hitherto been 
found, except for the essentially trivial case when a 0 is linear 
in u. In this paper we solve (1.1) and obtain the metric of cW'­
space in the particular case 

a O(u,ti) =;1 /[u\1 + tt)2]. (1.2) 

Here;1 is a parameter for bookkeeping purposes and will 
turn out to measure the "strength" of the curvature. 

While a 0 given by (1.2) is singular at zero u (so that a 
space-time whose asymptotic shear was this would have a 
singularity in its radiation field) this singularity is easily re­
moved by a complex translation in u. We shall return to this 
point, but for ease of calculation we work with (1.2). 

The good cut equation becomes 

<fZ ((1 +tt?Z.!:),!: =;1/[Z3(1 +tt?]. (1.3) 

This may be directly integrated, the constants of integration 
being fixed by the regularity requirement, but it is easier to 
make the ansatz (with hindsight) 

(Z (z",tlW = Z2 + ;1S2, 

Z = z"lagl), 

")Work supported in part by NSF grant. 

s =~fa(tl), 
z" = (u,x,Y,u), 

1 - -
fa = --- (1,t,t,tt)· 

I +tt 

(1.4) 

The z" are the four parameters on which the solution de­
pends (and thus are coordinates on cW'-space) and the good 
cut equation (1.3) serves to fix the four ~ in terms of the z". 

Substituting (1.4) into (1.3) leads to 

zos - soz = 1/(1 + tt), (1.5) 

which gives three conditions on the sa. To fix sa uniquely, we 
recall that 

1]ab/al
b 

=0, 

where 1]ab is the Minkowski metric in null coordinates: 

ab (~ 1] = o 
1 

o 
o 

-1 
o 

Thus in (1.4) the trace 

1] ab (z"~ + ;1~Sb), 

o 
-1 

o 
o 

is undetermined and we may choose sa such that 

1]abSusb = O. 

Then (1.6) and (1.5) lead to 

I 
~ = (Y,u,O,O), 

uu-XY 

(1.6) 

(1.7) 

and (1.7) with (1.4) provide the full solution of the good cut 
equation. 

The general methods of Refs. 2 or 3 may be used to 
obtain the metric from Z (z a,tl) but it is quicker to use the 
methods of the Penrose Twistor Theory.5 To define the con­
formal metric first, suppose two infinitesimally separated 
points of cW'-space to have coordinates z a and z a + dz a with 
corresponding good cuts 

u = Z(za,tl), 

u + du = Z (za,tl) + dZ (za,tl), 

where 

dZ= dzaZ,a' 
then the condition that dz a be a null displacement3 ,5 is that 
du vanish along a curve of constant t, i.e., that one can find a 
value to of t such that 
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(1.8) 

for all t. From (1.4) with an obvious notation this means 

zdz +Asds = O. (1.9) 

The left-hand side of (1.9) is quadratic in t, giving three 
conditions involving r', dr', and to. The object now is to 
eliminate to and obtain a quadratic relation among the dr'. 
This calculation is greatly facilitated by the Penrose "blob" 
notation6 with the result 

U 
2dudv-2dXdY- --=-~-3 (Ydv-vdYf=o, 

(uv -XY) 
(1.10) 

as the condition for dr' to be null. We now observe that the 
metric 

U 
ds2 = 2du dv - 2dX dY - 3 (Y dv - V dY)2, 

(uv-XY) 
(1.11) 

has Plebartski's second form for the general left-flat metric 7 

if one makes the identifications 

p=v, q= Y, X=U, y=X, 

1 
8 = ---- = ---=--

2(px - qy) 
(1.12) 

2(uv-XY) 

Further, 8 satisfies Plebanski's second "heavenly" equation 

e,px - e,qy - (e,XXe,yy - (8,Xy)2) = O. 

Thus (1.11) is already a left-flat metric and the JY'-space 
metric which we are seeking can differ from (1.11) by at most 
a constant conformal factor. Twistor methods may again be 
used to find that this constant is unity, so that (1.11) is the 
JY'-space metric arising from the shear (1.2). 

Since (1.11) is in Kerr-Schild form, the curvature must 
be algebraically special. The simplest way to calculate the 
curvature is to use the results of PlebanskC and one then 
finds that the JY'-space is type N. Further the curvature is 
nonsingular everywhere except on the surface 

uv - XY = O. (1.13) 

Again, since ( 1. 11) is in Kerr-Schild form, there is a canoni­
cal Minkowski background in which to discuss properties of 
the metric. Regarded as an "already linearized" solution on 
this background, the solution is one of Penrose's elementary 
states8 and is singular on the light-cone of the origin (1.13). It 
is possible to deal with this singularity and the singularity in 
(T 0 simultaneously. If in (1.2) we make a translation 

(1.14) 

where fa is as in (1.4) and t a is timelike and future-pointing 
with respect to 'Y/ab, then (T 0 becomes holomorphic in the 
lower half of the complex u-plane, i.e., positive frequency. 
With 
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we transform the Z of (1.5) by 

ZhZ + italag,t), (1.15) 

to obtain a solution of the new good cut equation. With 
(1.15), the limit Zo of Z for zero A is 

Zo = (r' + it a)fa g,t), 

so it is natural to transform to new coordinates on the JY'­
space given by 

so that 

Zo = z,a1ag,t)· 

This is just a translation of the background Minkowski 
space, with the result that the curvature is nonsingular away 
from the (background) light-cone of the point 

In particular, this means that the curvature is nonsingular in 
the (background) past-tube in primed coordinates and we 
may take this as a definition of positive frequency for the 
Weyl tensor in this case. There is as yet no definition ofposi­
tive frequency in a general curved space but any definition 
will presumably reduce to this one in this case. This leads to 
the conjecture that a positive frequency (T 0 gives rise to a 
positive frequency JY'-space. 

With the identification of (1.11) as an elementary state, 
we see that it is asymptotically flat. (At least on the real 
section in the primed coordinates, where the usual definition 
of asymptotic simplicity is applicable. The question of 
whether this solution is asymptotically flat according to the 
general definition of Ref. 4 is currently under investigation.) 
We are thus led to conjecture in general that asymptotic 
flatness of the K-space arises from appropriate large u be­
havior of (T 0, specifically that 

(T 0 _ u-3
, large I u I, 

for asymptotic flatness. 
We conclude by remarking that a number of generaliza­

tions of the solution presented here are possible, giving solu­
tions of the good cut equation for other shears and JY'-spaces 
of other algebraic types. 
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Introducing the notions of vector and bivector differentiation into the Dirac algebra, considered 
as a Clifford algebra, makes possible an extremely concise and geometrically transparent 
treatment of the curvature tensor and its properties, and of related topics such as Lorentz 
invariants, characteristic equations, Petrov types, and principal null directions by explicit 
construction. 

PACS numbers: 04.20.Cv, 02.40,Ky, 02.40.Re 

INTRODUCTION 

The Riemann curvature tensor is the crucial geometric 
ingredient in the study of general relativity. It is for this 
reason that the curvature tensor and its properties and invar­
iants have attracted wide attention. The original classifica­
tion of the curvature tensor for empty space was carried out 
by Petrov I using matrix methods. Subsequently, a number of 
different methods and refinements have been introduced. 
Noteworthy of mention is the spin or approach used by Wit­
ten,2 and later refined by Penrose3 in his systematic study of 
the coincidence patterns of the four principal null directions. 
But, as anyone who is familiar with calculations with spinors 
knows, these methods are only adapted to certain kinds of 
problems. Classical tensor methods have also been used with 
some success, for example,4 but the computational aspects of 
this approach are formidable. Thorpe5 notes that computa­
tions are considerably simplified by using the Hodge star 
operator to make the space ofbivectors into a complex Eu­
clidean space, but he ignores the possibility of utilizing the 
underiyng Lie algebra ofbivectors. Stehney6 modifies 
Thorpe's approach to the requirements of matrix methods 
and produces a classification scheme based on the minimal 
polynomial of a complex 3 X 3 matrix, but her methods lack 
conceptual clarity, and her algorithm works only for repeat­
ed principal null directions. 

The purpose of the present work is to cover much the 
same ground as the above authors, but in a coordinate-free 
formalism whose power, simplicity, and geometric transpar­
ency have yet to be recognized; a formalism which has all the 
advantages of each of the above mentioned approaches, and 
the defects of none. 

In Sec. 1, following Hestenes,7.8 we introduce the 16-
dimensional Clifford algebra called the Dirac algebra of 
space-time in agreement with the name given its matrix re­
presentation. (Clifford algebra of2 "-dimensions has been ex­
tensively developed in the book, Clifford Algebras and 
Geometric Calculus: A Unified Language for Mathematics 
and Physics, 9 using an abstract approach,t° rather than a 
matrix representation such as is used by Cartan, 11 and oth­
ers). The even subalgebra, consisting of scalars, bivectors, 
and pseudoscalars of the Dirac algebra, make up the Pauli 
algebra of space. The Pauli algebra can be fruitfully com-

"'Research supported by NSF grant gi GF41959 through an exchange pro­
gram with State University of New York at Stony Brook. 

pared to the popular Gibbs-Heaviside vector algebra, be­
cause many identities of the former are the "complexified" 
versions of the latter. A discussion ofbivectors and null bi­
vectors is given, and a multiplication table of basis elements 
is included. 

In Sec. 2 we complement the algebraic machinery intro­
duced in Sec. 1 by introducing the operations of vector and 
bivector differentiation. These operations simplify and gen­
eralize the operation of contraction in tensor algerbra. They 
were originally developed as a coordinate-free tool for the 
study oflinear transformations in Ref. 12. 

In Sec. 3 we study general properties oflinear operators 
on the space ofbivectors by decomposing it into the sum of 
dual and antidual operator parts. A dual operator is equiv­
alent to a general linear operator on a complex three-dimen­
sional Euclidean space. Using the new method ofbivector 
derivatives, the determinant, characteristic polynomial and 
Cayley-Hamilton theorem are derived for dual operators. In 
our approach it is unnecessary to introduce the Hodge-star 
operator, because in the Dirac algebra duality is simply ex­
pressed by multiplication by the unit pseudoscalar element. 
Finally, we show that an antidual bivector operator can be 
expressed entirely in terms of two symmetric trace-free vec­
tor operators. In another paperl3 we show how the problem 
of the classification of these symmetric vector operators is 
directly correlated to the Petrov classification. 

In Sec. 4 we give a complete classification of dual opera­
t~rs based on explicit construction of their principal null 
blve~tors. !he classification of a dual skew-symmetric oper­
ator IS eqUIvalent to the classification of an electromagnetic 
field b~ its pri.nc~pal null directions. A dual symmetric oper­
ator With vaOlshlOg trace is equivalent to the conformal cur­
vature tensor. The Petrov-Penrose classification of dual 
symmetric operators is carried out by construction of its four 
principal null bivectors, based on a new canonical form in­
volving a complex scalar, a bivector, and a null eigenbivec­
to~. T.his new canonical form provides a simple geometric 
cntenon for the various coincidence patterns of the four 
principal null directions. In addition, it makes it trivial to 
give simple examples of conformal curvature tensors of any 
desired type. 

In Sec. 5, curvature invariants, which are complex sca­
lars, are defined in terms of the bivector derivative, and it is 
shown that a curvature operator has nine complex scalars 
~hree of which are real. When the extra Bianchi identity i: 
Imposed, these 15 real scalars reduce down to the well 
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known 14 real invariants of the Riemann curvature tensor. 
Various well known properties and identities of Riemann 
curvature are then derived in the spacetime algebra (STA)I 
formalism. In each case the simplicicy and geometric trans­
parency of our methods are apparent. A table is included 
comparing the appearance of well known formulas in the 
tensor, STA, and spinor formalism. We believe a close ex­
amination of this table and the methods of this paper will 
show the judgment of Misner, Thorne, Wheelerl4 (p. 1165) 
that "the spin or formalism is a more powerful method than 
any other for deriving the Petrov-Pirani algebraic classifica­
tion of the conformal curvature tensor, and for proving theo­
rems about algebraic properties of curvature tensors," needs 
reexamination. See also Ref. 13. 

1. SPACE-TIME ALGEBRA 

Let x be a generic point in spacetime. Following Hes­
tenes,7 we select a set of orthonormal vectors eo, e l , ez, e3 

tangent to the point x, and subject them to the rules: 

e~ = 1, ei = e~ = e; = - 1, (1.1) 

euev = - eveu for u,v = 0,1,2,3 and u=l=v. (1.2) 

The orthonormal vectors ! e u ), under the rules for geometric 
multiplication (1.1) and (1.2) generate a real Clifford Algebra 
of 24 = 16 dimensions called the Dirac Algebra !» in agree­
ment with the name given its matrix representation. Symbol­
lically we write!» = !» ° + !» 1 + !» 2 + !» 3 + !» 4' to ex­
press the Dirac algebra!» as the sum of linear subspaces of 
scalars, vectors, bivectors, trivectors, and pseudoscalars, re­
spectively. 

For purposes of orientation and fixing the notation that 
will be used here, let us review some of the basic operations 
and identities in !». Let a, b be vectors in!» I' 

then 

3 

a = aUeu == I aUeu , b = /3Ueu ' 
U=O 

a.b =2(ab + ba) = a O /30 - a l /3 1 - a 2 {32 - a 3{33 g(a,b) 
(1.3) 

and 

a /\ b =!(ab - ba) 

lala
O

) )a2aO) 
= /P/30 e l /\eo + /32/30 e2 /\eO 

la'aol la3a21 + /33/30 e3 /\eO + /33/32 e3 /\e2 

la
l 

a31 la
2
a

l I + {31 {33 el /\e3 + {32/31 e2 /\e l • 

From the definitions (1.3) and (1.4), it is clear that 

ab = ~(ab + ba) + ~(ab - ba) = a·b + a /\b, 

(1.4) 

(1.5) 

i.e., the geometric product of two vectors can be decomposed 
into the sum of an inner product or (real) scalar part, and an 
outer product or bivector part. The metric tensor g(a, b) of 
spacetime is determined by the inner product and is, of 
course, invariant under local Lorentz transformations. 

Define the bivectors 

EI = e1 /\eo = e1eO' E2 = e2/\eO' E3 = e3 /\eO' (1.6) 
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E4=e3/\e2=e3e2' E5 =e1 f\e3• E6=e2/\e). 

The unit pseudoscalar I, defined by 

/ = eo /\ e l /\ e2 /\ e3 = eOele2e3 = E IE 2E 3 , (1.7) 

has the property /2 = -1, and assigns a unique orientation 
to the Dirac algebra!». The duality of the bivectors E I' E2• 

E3 and E4• E 5 , E6 has the simple algebraic expression 

E4 = lEI = El. E5 = IE2 , E6 = IE,. (1.8) 

Note that the bivectors E I, E 2, E3 satisfy the following rules 
of multiplication: 

E ~ = E ~ = E ~ = 1 (E ~ = E; = E ~ = - 1), (1.9) 

E;~ = - ~E;, for i = j = 1,2,3 and i=jj, (1.10) 

and generate a 23 = 8 dimensional Clifford algebra called 
the Pauli albegra 9, which is the even subalgebra of !» 
consisting of the scalars, bivectors, and pseudoscalars. 

Operations similar to (1.3) and (1.4) can be defined in 
the Pauli algebra 9. Thus, let A, B be bivectors in fiJ 2' then 

J 

A = a'E; = I a'E;, B={3;E;, 
i= 1 

where a; and /3; are "complex" scalars of the form 

a; = a'; + a";/ and /3 ; = /3 ,; + {3 ";1 

and I is the unit pseudoscalar defined in (1.7). Now define: 

A oB==~(AB + BA ) = a l/3 I + a 2/3 2 + a 3/3 3 

=G(A,B) (1.11) 

(1.12) 

From (1.11) and (1.12) it follows that 

AB _!(AB +BA) + ~(AB - BA) =AoB +AXB, 
(1.13) 

i.e., the geometric product ofbivectors can be decomposed 
into the sum of a symmetric product, or complex scalar part, 
and a Lie product, or bivector part. The metric tensor 
G (A ,B ) defined by the symmetric product (1.11) turns the 
space of bivectors fiJ 2 into a complex Euclidean space, as is 
noted by Thorpe,5 and like g(a, b) is Lorentz invariant. 

The operations A 0 B and A X B in the Pauli algebra can 
be expressed entirely in terms of the operations ( 1. 3) and ( 1. 4) 
in the Dirac algebra. Thus, let A = a /\ band B = c /\ d, then 

AoB = A·B + A /\B = scalar + pseudoscalar (1.14) 

where 

A·B = (a /\ b )·(c /\ d) = (a·d )(b·c) - (a·c)(b·d), 

A/\B=al\bl\cl\d= 

and 

aO a l a 2 a 3 

{30{31{32/3 3 

yO yl Y r I, 

8° 8 1 82 83 
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A xB=(a/\b)x(c/\d) 

= a /\ (b·(c/\d» + (a.(c/\d» /\b (1.15) 

= (b·c)a /\ d - (b·d)a /\ c 

+ (a.c)d /\ b - (a·d)c /\ b. 

Note also the duality relations 

I(A.B) = (IA )/\B and I(A /\B) = (IA ).B (1.16) 

between A·B and A /\B. 
There are two triple products in the Pauli algebra g; 

built up from the symmetric and Lie products. They are giv­
en by 

a l a 2 a 3 

(A XB)oC= pi p2 p3 I=Ao(B XC) 

yl r r 
and 

A X(BXC)=(AoB)C-(AoC)B. 

(1.17) 

(1.18) 

From (1.17), it follows that three bivectors A, B, C are linear­
ly independent over the complex scalars iff their triple prod­
uct (1.17) is nonvanishing. The identities (1.11), (1.12), (1.17), 
and (1.18) of the Pauli algebra obviously parallel their 
Gibbs-Heaviside vector algebra counterparts, and this sug­
gests that the former are in some sense the "complexified" 
version of the latter. 

We conclude this section with a discussion and classifi­
cation ofbivectors. 11 A bivector B is said to 
besimp/e if 

B 2 = B.B + B /\B = B.B, (1.19) 

i.e., B 2 is a (real) scalar. The bivector B is said to be null if 

B 2 = 0 and B#O. (1.20) 

A simple bivector can always be factored into the prod­
uct of two anticommuting (orthogonal) Dirac vectors, i.e., 
B = ab = - ba. A non-null bivector C #0 can always be 
uniquely expressed in the form 

C=pe I8A,forp;;>0,0.;;;8<21T,andA 2 = I, (1.21) 

and a null bivector N can always be uniquely expressed in the 
form 

N=p(1 +A I)A2' p>O, and 

AI A2 AI2 N 

AI 1 AI2 A2 N 

A2 -AJ2 1 -AI I-AI . (1.24) 

AI2 -A2 AI -1 -1 +AI 

N -N I +AI -I-AI 0 

2. VECTOR AND BIVECTOR DIFFERENTIATION 

Two notions of differentiation are fundamental to the 
methods of this work, the vector derivative a v' defined for 
differentiable fi) -valued functions of a vector variable 
ffi) I--+fi) , and the bivector derivative a B' defined for differ­
entiable functions of a bivector variable F:fi) 2--+fi) . The vec­
tor derivative is characterized by two properties: 

aB behaves algebraically like a vector in fi) I' (2.3) 

a.af=a.aJ(v)==-(d Idt}f(v + ta)I,=o' (2.2) 

The bivector derivative is characterized by two similar prop­
erties: 

a B behaves algebraically like a vector in fi) 2' (2.3) 

A.aF==A·aBF(B)==-(d Idt)F(B + tA )1,=0' (2.4) 

We shall not be precise in specifying conditions for vector 
and bivector differentiability, because we shall be concerned 
here only with derivatives oflinear functions, which always 
exist. 

Because of property (2.1), a v can be expressed in terms 
of the orthonormal basis {e u J by 

a==-av = eoeo·av - elel·av - e2e2·av - e3e3·av' (2.5) 

Simple but important formulas for the vector derivative are 

a·av = a = av·a, 

au = 4 ¢:> a·v = 4 and a /\ v = 0, 

a /\av = 3a = av /\a, 

(2.6) 

(2.7) 

(2.8) 

av /\auu /\v = 12 = avauu /\v, (2.9) 

which can be easily derived from (2.1), (2.2), (2.5) and alge-
Ai =A ~ = I, and AIA2 = -A~I' (1.22) braic identities from Sec. 1. For example, to prove (2.6), note 

that 
To prove (1.21), note that we can definep2e218=C2#0, and 
A = P -Ie - 18C, from which the required properties easily 
follow. For the case of the null bivector N, there exists an 
orthonormal basis au related to the orthonormal basis ell 

of (1.1) by a proper Lorentz transformation, which satisfies: 

N =pa2n =pa2(aO + aJi =pa2aoOO(aO + aJ! (1.23) 

=pA2(1 -AJ! =p(1 +A I)A2' 

where n = ao + a I is a null vector, A I = a I /\ ao = a lao, and 
A2 = a2 /\ ao = a2aO' 

The following is a multiplication table for A 1> A 2, A 12 
==A IA2' and a null bivector N = (1 + A I)A2: 
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a·avv==-(d Idt)(v + ta)I,=o = a. 

Identity (2.7) follows by using (2.5) and (2.6) to get 

avv = eoeo·avv - elel·avv - e2e2·avV - e3e3·avV 

= e~ - ei - e~ - e~ = 4. 

Identity (2.8) then follows by using (1.5), (2.1), (2.7), and 
(2.6) to get 

a /\ au = aav - a·av = 4a - a = 3a. 
Because of its property (2.3), the bivector derivative a

B 
can be expressed in terms of the orthonormal timelike bivec­
tor basis {E; J by 

a=aB =EIEI oaB +E2E2 oaB +E3E3 oaB • (2.10) 

Simple, but important, formulas for the bivector derivative 
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are 

A·aB=A =aB·A, 

A l\aB = - I(IA ).aB = A = aB I\A, 

AoaB =A·aB +A l\aB = 2A = aBoA 

aB = 6 <;:xl oB = 6 and aXB = 0, 

A XaB=4A =aB XA, 

aB XaAA XB = 24 = aBaAA XB, 

a c 0 a B x a A A X B 0 C = 48 

= aCaBaAA xB 0 C, 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

and these formulas can be derived from (2.3), (2.4), (2.10) 
and the algebraic identities in Sec. 1. For example, to prove 
the left-hand side of (2.11), use definition (2.4) to get 

A·aB=(dldt)(B+tA)I,~o =A I,~o =A. 

The left-hand side of (2.12) is a consequence of (2.11) and 
(1.16). To prove the right-hand side of(2.11), we use (2.10), 
(1.14), and what we have just proved, to get 

aB·A = E 1E 1oaB.A + E 2E 2
oaB·A + E 3E 3

0aB.A 

= E1(E1·a - I (IEj)·a)B.A + ... 
= Ej(Ej.A - I (IEd·A ) + ... 
= E1EjoA + EzE 20A +E3E30A =A. 

The right-hand side of (2.12) now easily follows from the 
right-hand sidesof(2.11) and (1.16). Finally, to see that (2. 16) 
is a consequence of(2.14) and (2.13), first use (2.3) and (1.14) 
and write 

A XaB =AaB -AoaB = 6A - 2A = 4A. 

There is a close relationship between the vector and 
bivector derivatives of a linear function F (B ). It is given by 

aBF(B) = au l\au F(B) = !au l\au F(u 1\ v), (2.18) 

where B = ~u 1\ v. This relationship is checked for the identi­
ty F(B) = B by comparing (2.9) and (2.14). The vector and 
bivector derivatives, and their natural generalization to 2"­
dimensional Clifford algebra were originally developed as 
coordinate-free tools for use in linear algebra and differen­
tial geometry in Ref. 12, and since have been extensively 
used in Ref. 9. 

3. BIVECTOR OPERATORS 

By a bivector operator F (B) we mean a linear bivector­
valued function of the bivector variable B. If in addition F 
satisfies 

F(IB) = IF(B), 

we say that F is dual. If instead F satisfies 

F(IB) = -IF(B), 

(3.1) 

(3.2) 

we say that F is antidual. A bivector operator can always be 
split into the sum of dual and antidual parts, as is evident in 

F(B)=S(B)+T(B), (3.3) 

where 

and 
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S (B) = ![F(B) - IF(IB)], 

T(B) = UF(B) + IF(IB)]. 

Using formulas (2.11), (2.12), and (2.13), we calculate 
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derivatives of F(B), finding 

AoaF=AoaS +AoaT= 2S(A), 

since 

and 

AoaS=S(AoaB) = 2S(A) 

AoaT= T(A.aB) - T(A l\aB) 

= T(A ) - T(A ) = O. 

From (3.4) and (2.13) it follows that 

aF= !aA A oaF = as = aos + axs, 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

which shows that the bivector derivative of F is completely 
determined by the bivector derivative of its dual part. As a 
consequence of this, it follows that 

aT=O, (3.8) 

i.e., the derivative of an antidual operator vanishes. 
An operator F (B ) is said to besymmetric (with respect to 

the metric g) if 

F(A ).B = A.F(B )<:>F(A ) = Ft(A )==aBF(B ).A 
(3.9) 

and skew-symmetric (w.r.t.g) if 

F(A ).B = -A·F(B)<:>F(A) = - Ft(A). (3.10) 

Differentiating the first expressions in (3.9) and (3.10) by 
a A a B gives, with the help of (2. 11), 

axF= !(aF - Fa) = 0 (3.11) 

and 

(3.12) 

respectively, where J differentiates to the left. Thus, sym­
metric operators have vanishing curl, whereas skew-sym­
metric operators have vanishing trace. Symmetric bivector 
operators are known in the literature as curvature operators, 
and will be studied in Sec. 5. 

An operator is said to be dual symmetric if it is both dual 
and symmetric, and dual skew-symmetric if it is both dual 
and skew-symmetric. An operator is dual symmetric iff 

F{A loB = AoF(B), (3.13) 

i.e., Fis symmetric w.r.t. the metric G, or equivalently, iff 

AoaF= 2F(A) = aFoA. 

To establish (3.13), note by using (l.l6) that 

F(A)I\B= -I(IF(A)).B= -IF(IA)·B 
= - I(IA )·F(B) = A I\F(B) 

(3.14) 

and combine this result with (3.9). Property (3.14) follows 
directly from (3.13) and (2.13). An operator is dual skew­
symmetric iff 

F(A loB = - AoF(B), (3.15) 

i.e., Fis skew-symmetric w.r.t. the metric G, or, equivalent­
ly, iff 

F(B) = lB X(aXF). (3.16) 

The proof of (3.15) is similar to that of (3.13). The proof of 
(3.16) follows by using (l.l8), (3.15), and (2.13) to get 

B X(aXF) = BoaF - aFoB = 4F(B). 
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There is an important identity satisfied by dual opera­
tors F(B). It is given by 

F(A XC) +F(A )XC+A XF(C) 
= !aoFAXC + !(A XC)X(aXF). (3.17) 

In the special case that Fis also symmetric, (3.17) reduces to 

F (A XC) + F (A ) X C + A X F (C) = !aO FAX C. 
(3.18) 

In the special case that F is dual skew-symmetric, (3.17) re­
duces to (3.16). Identity (3.18) follows by equating the right 
sides of the identitites 

A X(C xa)F- C X(A xa)F 
=aoFAXC-2F(A XC) 

and 

A X(C xa)F- C X(A xa)F 
= aoF AoC - 2CF(A) - aoFCA + 2AF(C) 
= -2CXF(A)-2F(C)XA, 

and the general identity (3.17) follows by combining (3.18) 
and (3.16). 

We will now find the determinant, the characteristic 
equation, and the Cayley-Hamilton theorem for a dual oper­
ator F(B). Define 

det(F) = (1I48)ac oaB XaA F(A )XF(B )oF(C). (3.19) 

In terms of the orthonormal basis (Ej I, with the help of 
(1.17) and (2.10), it is not difficult to check that 

det(F) = -IF(El)XF(E2)oF(E3) = IF(Ej)oEjl. (3.20) 

For F(B) = B, from (2.17) or (1.7) it can be seen that 
det(F) = 1, as would be expected. Carrying out the indicated 
differentiation in (3.19) gives 

det(F) = 1I48[8aoF 3 - 6aoF aoF 2 + (aOF)3], (3.21) 

which expresses the det(F) in terms of the complex scalars 
aoF, aoF 2

, and aoF3. Note the these three complex scalars 
correspond to six real scalars, and are Lorentz invariant; 
more about them later. In the case that F is dual skew-sym­
metric, det(F) = 0, since aoF = 0 = aoF3. 

To obtain the characteristic polynomial for F, define 

F'=F - J. =F(B) - J.B. 

Then t{I(J. ) is given by 

t{I(J. ) = det(F') = det(F - J. ). 

Using (3.23), and (3.19) or (3.21), we compute 

t{I(J. ) = J. 3 - !aoFJ. 2 - UaoF2 - !(JOF)2]J. 

- 1I48[8aoF 3 
- 6aoFaoF 2 + (aOFf]· 

(3.22) 

(3.23) 

(3.24) 

In the case that F is dual skew-symmetric, t{I(J. ) simplifies to 

¢(J.) = J. [J. + ~(aoF2)./2][J. - ~(aOF2)./2]. 

The Cayley-Hamilton for F says simply that 

t{I(F)=O, (3.26) 

i.e., F satisfies its characteristic equation. The method of 
proof of(3.26) is to decompose det(F jA, which is the last term 
in t{I(F), into the sum ofthe other terms. This is accomplished 
in the following steps: 
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48A det(F) = Aa30a2Xa. F I XF2oF3 
= 6a2 Xa 1 FI XF2oF(A) 

= 6a2 Xal FIXFzF(A) - 6a2Xa l(FlxF2)XF(A) 
= [6(aoF)2 - 12BoF2]F(A) - 2480F F2(A) 

+ 48F3(A). 

This formulation and proof of the Cayley-Hamilton theo­
rem was first found for linear transformations in Ref. 12. 

We will now show that an anti dual operator T (B) can be 
expressed entirely in terms of two symmetric trace-free vec­
tor operators. First consider the identity 

T(B) = !(B.aJ.au T(u /\ v) 

= !B.avau T(u /\ v) - B XaA T(A) 

= ~·Juau T(u /\ v). 
(3.27) 

The last equality is a consequence of (3.6) and (3.8), since 

B X a A T (A ) = BaA T (A ) - Boa A T (A ) = O. 

Now define the vector operators 

t(v)=au.T(u/\v) and f(V)=a".T(u/\vI). (3.28) 

An easy consequence of (3.8) is that t (v) and f(V) satisfy 

aut (v) = 0 = aJ(v), 

which means t (v) and f(V) are symmetric trace-free operators. 
We can now express (3.27) in the form 

T(B) = ~.au [a".T(u /\v) + au·T(u /\v /)1] (3.29) 

= E (B) + D (B ), 

where 

E(B)=~.Jvt(v) =Et(B) 

is an antidual symmetric bivector operator, and 

D (B )===~.aJ(v)I = - D t(B) 

(3.30) 

(3.31) 

is an antidual skew-symmetric bivector operator. The sym­
metry of E (B ) follows from the steps 

Et(B) 
===aAE(A ).B = !aA [A.aut(v)].B = !aAA. [aut (v)·B ] 
= HSB:J:v]t (v)·B = E (B ), 

and the skew-symmetry of D (B ) can be similarly established. 

We have the following important properties of E (B ) and 
D(B): 

au /\ E k (u /\ v) = 0, for k = 1,2,·" (3.32) 

and 

au /\D 2k(U /\ v) = 0 = au·D 2k -I(U /\ v), for k = 1,2, ... , 
(3.33) 

which can be proved by using induction on k and the symme­
try of t (v) and f(v). 

Combining the results of (3.3), (3.13), (3.16), and 
(3.29), we find that a general bivector operator can always be 
decomposed into 

F(B) = [H(B) + E(B)] + [J(B) + D(B)], (3.34) 

where H (B) is dual symmetric, E (B ) is antidual symmetric, 
J (B) is dual skew-symmetric, and D (B ) is antidual skew­
symmetric. The classification of trace-free symmetric vector 

Garret Sobczyk 337 



                                                                                                                                    

operator is carried out in Ref. 13 by reducing the problem to 
the Petrov classification of a correlated Weyl tensor. 

4. CLASSIFICATION OF DUAL OPERATORS 

Let Fbe a dual operator, i.e., one satisfying (3.1). TheF 
has the characteristic polynomial ¢(A ) given by (3.24), and 
setting 

(4.1) 

gives the characteristic equation for F. The solutions A I' A2, 

A3 are the eigenvalues of F. Writing 

(4.2) 

we find, on expanding the right-hand side of (4.2) and equat­
ing the coefficients of A with those in (3.24), that 

!JOF k = A 7 + A ~ + A ~ for k = 1,2,3. (4.3) 
The characteristic roots of (4.1) have multiplicity I, 2, 

or 3 according to whether 

A1 #A2 7q 3 for multiplicity I, (4.4) 

(4.5) 

Al = A2 = A3 for multiplicity 3, (4.6) 

Conditions for (4.4), (4.5), (4.6) can be given in terms of JoF, 
JoF 2, JoF 3,13.15 

We see from (3.23) and (3.20) that, for each eigenvalue 

[F(EI) - AkE1] X [F(E2) - AkE2]o [F(E3) - AkE3 ] = 0, 

which implies, because of (1.17), that there exist eigenbivec­

tors satisfying 

(4.7) 

We will consider the classification of dual symmetric and 
dual skew-symmetric operators separately. This is justified 
by the fact that we can always decompose F into 

F(B) = H (B) + J (B), 

where 

H(B)=HF(B) +Ft(B)] = !JBF(B)·B 

is dual symmetric, and 

J(B) = HF(B) - Ft(B)] = lB X(JXF) 

is dual skew-symmetric. 

(4.8) 

Let J (B) be a dual skew-symmetric operator. Then by 
(3.16), J(B) can be writtern in the form 

J(B) =B XQ, (4.9) 

where Q = lJXJ. From (4.9) we calculate 

J2(B) = (B XQ)XQ=B QoQ-BoQQ (4.10) 

and 

(4.11) 

from which is follows that JJk = 4Q\ which implies 

JoJ=O, JoP=4Q2, JOJ3=O. (4.12) 
The characteristic polynomial (3.25) of J (B) can be written 
in terms of Q 2, getting 

(4.13) 

From (4.13) it is clear that the key to the classification of 
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F (B) is the bivector Q. The canonical forms (1.21) and (1.22) 
for a bivector tell us that 

Q=O or Q=pewAI or Q=p(1 +A 1)A 2. 
The case Q = 0 is trivial. 

For the case Q = pe lOA I' we construct the null bivec­
tors N = (1 + A tlA 2' and M = (1 - A tlA 2' and note, with the 
help of table (1.23), that 

A1=!NxM, NoM = 2, A1oN=0=A1oM. 

It then follows, using (1.18), that 

J (B) = B X Q = lpeIO B X (N X M) 

= lpeW(BoN M - BoM N). 

(4.14) 

(4.15) 

From the canonical form (4.15) of J (B), with the help of 
(4.14), we can read off the eigenbivectors and eigenvalues of 
J. Thus, 

J(Ad = OAI' J(N) = -pewN, J(M) =peIoM. 
(4.16) 

For the case Q =pN, whereN = (1 + AtlA2' Q2 = 0, 

J(B) =pB XN=p(BoA1N -BoNAd (4.17) 
is the desired canonical form. We calculate 

J(N) = 0, J(Ad =pAI' J(Ad =pN, 

(4.18) 

from which it follows thatN is the only eigenbivector ofJ (B ). 
The above cases can be summarized in the following table 
enumerating the number of null eigenbivectors of J (B ): 

11 Q2#0 

I(Q#O) -(Q=O) Q2=0. 
(4.19) 

Of course it closely parallels that given by Penrose,3 in his 
spinor classification of an electromagnetic field. The bivec­
tor Q represents an electromagnetic field at a point in space­
time. 

We will now carry out the classification ofa dual sym­
metric operator H (B ) into the so-called Petrov types. Be­
cause of (4.7), H has eigenbivectors and values satisfying 

H (Ck ) = Ak Ck, for k = 1,2,3. (4.20) 

That orthogonal bivectors correspond to distinct eigenval­
ues follows from the standard argument: 

(Aj - Aj)CjOCj = H(Cj)oCj - Cj 0 H(~) = O. (4.21) 
Furthermore, because of the bivector classifications (1.21) 
and (1.22), and the fact thatHis dual, each eigenbivector C of 
H can be replaced by 11 time-like eigenbivector A, with 
A 2 = I, or by a null bivector N = (1 + A 1)A2' having the 
same eigenvalue as C. We will always assume that the eigen­
bivectors Ck of H have been so normalized. The operator 
H (B ) is said to be of Petrov 

Type I:if i Ck I spans a three-dim. space, 
Type II:if I Ck I spans a two-dim. space, 
Type III:if i C k I spans one-dim. space. 

Suppose H is Type I. If the eigenvalues A k are distinct, then 
by (4.21) the Ck 's are orthogonal. This excludes the possibil­
ity that one or more of the eigenbivectors are null, because 
inspection of table (1.23) shows that if an eigenbivector Cis 
orthogonal to a null eigenbivector N = (1 + A I)A z, then C 
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must be of the form C = A I + aN. so that the eigenbivectors 
Ck could span at most a two-dim. space. If the eigenvalues 
are not distinct. simple orthonormal space-like bivectors can 
still be choosen with the same multiplicity as the repeated 
roots. 

SupposeH is type II. Then the eigenvalues of H cannot 
all be distinct. for othewise. because of (4.21), H would be 
Type I. Also, H cannot have two orthonormal time-like ei­
genbivectorsA I,A 2, forin this case, lettingA3 = IA I XA 2, we 
find by using (3.18) that 

H(A,XA z) +H(A 1)XA2 +A I XH(A 2) = !aoHA1XAz, 

or 

H(A3) = HaoH -AI -Az)A3' 

so thatA3 would be an eigenbivector also, contradicting the 
assumption that H is Type II. Thus, H must have a null 
eigenbivector N = (1 + A I)A2 satisfying 

H(N) =ANN. (4.22) 

and a time-like bivector of the form C1 = A I + aN. satisfy­
ing 

H(C,) =AICI· 

Equations (4.22), (4.23) imply 

H(A,) =A1A j +!31N, 

where 

!31==A IOH(A2) =AzoH(AI) = a(AI -AN)' 

(4.23) 

(4.24) 

In the degenerate case when Al = AN' (4.24) reduces to 

H(A\)=A\A I• and /3,=0. (4.25) 

Finally. note that A , X N = N, and using this in identity 
(3.18), together with (4.24) and (4.22), shows that 

!aoH = Al + UN. (4.26) 

for Type II. 
Suppose H is Type III. Then H has one eigenbivector, a 

null bivector N. satisfying 

H(N) = ANN, (4.27) 

and 

(4.28) 

The above classification scheme can be refined by intro­
ducing the notion of principal null directions of H. These are 
null bivectors M which satisfy 

H(M)oM = 0 and M2 = 0, (4.29) 

and were used by Penrose3 in his refinement of the Petrov 
classification of the conformal curvature tensor using spin­
ors. The condition (4.29) was first noted in a remark by 
Thorpe.5 The principal null bevectors of H are explicitly cal­
culated below, and their coincidence patterns are specified 
by new and simple conditions. 

For the case thattheA k ' S are distinct, H (B ) has a basis of 
orthonormal time-like eigenbivectorsA I> A 2• A 3• In terms of 
this basis we can write 

(4.30) 

Imposing the condition (4.29) leads to the equations 

339 J. Math. Phys., Vol. 22, No.2, February 1981 

MoM=aT +a~ +a~ =0, or a~ = -(a~ + aD. 

and 

H(M)oM =Ala~ +AP~ -A 3(ai + a~) = 0, 

whereM = alA) + azA2 + a~3' which has solutions 

a)= ±~A2-A3' a 2 = ±~A3-A), 

a 3 = ~A) - A2 (4.31) 

which correspond to four distinct principal null directions. 
For all other cases there will be a null eigenbivector 

N = (I + A IlAz for which H (N) = ANN. In these cases, we 
expandH(B lin the basis A I>A 2,A 12 = A IAz, finding, with the 
help of(1.23) and (3.18), 

H(B) = (BoAIAI +B N/3IlAI +BoHzA2 (4.32) 

+ (BoH2 -ANBoN)A\2' 

where!3I==A ,oH(A 2), H z==H(A2), andA,=!aoH - UN' 
AN-NoHz· 

Note thatH (B ) is defined entirely in terms of the independent 
quantities 

(4.33) 

where H2 is an arbitrary bivector (six parameters), N is an 
arbitrary null bivector (four parameters), and ~aoH is an ar­
bitrary complex scalar (two parameters), maki~g up 12 inde­
pendent parameters in all. 

We are now ready to solve for principal null bivectors 
by imposing (4.29) on the expansion (4.32). This is done in 
the steps below: 

M=aIA I + azAz +a~w MOM=a~ +a~ -ai = 0, 

H(M) = [AlaI + (az - a 3)!3j]A\ + M ° HzAz 

+ [MoHz - AN(aZ - a 3)]A 12 

= [Aja l - y!3I]A) + [!3la l +ANaZ - !3zy]A2 

+ [!3ja l + (AN - !3z)Y+ANa z)A12 

and 

H(M)oM = !32y2 + (e>x - 2a 1 /3))y 

in terms of the new variables: 

x=a3 +aZ' y=a3 -a2, e>=AI-AN, 

!31 = A 1oH2• !32 =A2I oH2• 

Thus the equation 

(4.34) 

H(M)oM=O¢:?8xy + /3zy2 =2/3la l y. (4.35) 

and for y:10# PI' we find 

a, = [112/3J(8x + /3zy]. 

Squaring the equation in (4.35) leads to the equation 

y2[(8x+ P2y/-4Pfxyl=O. (4.36) 

Analysis of equation (4.36) together with (4.35) leads to the 
following classification scheme of the principal null direc­
tions of H (B ): 

1111(#Ak's) 

211(/3f #8/32) 22 (/3 ~ = 8 !3z) 8#0 

31(P, #0) 4(P, = 0# (2) -(PI = 0 = (2) 8=0 

III II I (4.37) 
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As an example of the kind of analysis involved in the 
above classification, we will carry it to completion in the 
more involved case fil '10'1 fi2 and {j '10. In this case, set 
x = 1 in (4.36), and factor the resulting quadratic equation 
in y, getting 

2{[ ({j 2Pi) ][ ({) 2Pi) ]} y y+ /3;- fi~ +€ y+ /3;- fi~ -€ 

=0, 

where 

€ = 2 fil J {) fiz - fi ~ 
fi2 -V fi ~ 

This equation reduces to 

( 
p2 )2 

y2 y- pi =0, 

(4.38) 

(4.39) 

We see that for €i=O (or {) fi2i= fiD, Eq. (4.38) has double 
solution for y = 0, and two single solutions corresponding to 
the zeros of the other factors. The corresponding principal 
null bivectors can be exhibited explicitly by going back to the 
original variables. Similarly, (4.39) gives two double princi­
pal null bivectors for each of the roots of its repeated factors, 
when {) fiz = fi 7). 

InthecasethaqaoH =,11 + ,12 + ,13 = 0, thethreePe­
trov types can be efficiently characterized by the canonical 
forms 

H(B) = (U I + Az)BoAIA I + (U z + AdBaA:zAz 

- (AI +AdB, 

for type I, 

H(B) = ANB - 3ANBoCIC1 + flBoNN, 

where 

f C1 =A\ + aN
2

}, 

lit = fiz + 3A N a 

for type II, and 

H(B) = BoNC I = BoC1N, 
where 

CI = PIA 1+ Jj3zN, 

(4.40) 

(4.41) 

(4.42) 

for type III. The canonical form (4.40) can be derived imme-
3 

diately from (4.30) and the fact that B = I. BoAkA k • To 
k= I 

derive (4.41), we use the properties (4.22)-(4.26), together 
with (1.18) and (1.23) and the fact that C I XN = N, to 
calculate 

H(B )XN = H{B )X(C1 XN) = H{B )oCIN - H(B )oNCI 

=AN(B XN - 3BoC1N), 

which implies that 
[H(B) -ANB + 3AN BoCICdxN=0 for all B. 

Applying AzX to this last identity, and again utilizing (1.18) 
and (1.23), yields 

H(B) -ANB + 3ANBoC1C I 

=A2°(H(B}-ANB+ 3ANBoCICdN 
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= BO[H(Az) -ANAz + 3ANaCdN. (4.43) 

Applying (4.43) with B = A z gives 

H(A z) -ANAz + 3AN + C I = [A zaH2 -AN + 3ANa2]N 

=flN, 
(4.44) 

wherefl fi2 + 3A N a z. Then (4.41) now follows trivially from 
(4.43) and (4.44). Finally, to derive (4.42), we note from (4.32) 
that for type III, H (B ) reduces to the form 

H(B) = BON filA I + BoH(Az)N, (4.45) 

from which it follows that 

H (A 2) = filA I + fi2N. 

Together, (4.45) and (4.46) imply (4.42), where 
C I filA I +¥3zN. 

5. RIEMANN CURVATURE: INVARIANTS AND 
PROPERTIES 

(4.46) 

Recall that a curvature operator R (B ) is a bivector oper­
ator satisfying (3.9). From (3.34) it follows tht R (B) can be 
written in the form 

R (B) =H(B) +E(B) =Rt(B), 

where 

H(B)=![R -I(RI)](B) =Ht(B) 

is a dual symmetric bivector operator, and 

E(B)=HR + I(RI)](B) = Et(B) 

(5.1) 

is an antidual symmetric bivector operator. We shall now 
study the Lorentz invariants of R in terms of complex scalars 
of R. By complex scalars of R we mean all possible rational 
linear combinations of complex scalar derivatives of R k and 
its dual (RJ) \ for k = 1,2,..·. Thus, 

aoR + IaoR 2 + 3ao(RJ)2 - 2aa(RI)4 (5.2) 

is a complex scalar of R. Note that (5.2) is also a Lorentz 
invariant of R; we will show that all Lorentz invariants of R 
can be so expressed. 

Squaring both sides of (5.1), considered as an operator 
equation, leads to 

R 2(B) = [H2 + E2](B) + [HE + EH](B), (5.3) 

where 

H2(B) =![R z - IR 21](B) - H(RI)2 - I (RI)2I](B ) 

and 

E2(B) = llR 2 - IR 2I](B) + U(RI)2 - I(RIf](B) 

are dual symmetric operators, and 

[HE + EH](B) = HR 2 + IR 2J](B) 

is antidual. Since H 2 and E 2 are symmetric, it follows by 
(3.11) that 

axH 2 = 0 = aXE2. (5.4) 

Because of(3.8), derivatives of R Z(B) can be entirely ex­
pressed in terms of H 2 and E z, getting 

aR 2 = aH 2 + aE 2 = aoH2 + aoEl. (5.5) 
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Now defining K _E2, note that 

aoHK = KH(aB loB = aoKH, (5.6) 

aoEHE= aBO [E(B)oaAEH(A )] = E(aA)oEH(A) 

= a·E2H - al\E2H = a·KH - aI\KH, 

and more generally, 

aoEiHEJ 

{ 

0 if i + j is odd 

fs1.05m = (- 1YJI\KlU+JIH + a·KJ(i+JIH 

if i + j is even. 

(5.7) 

From the above remarks it follows that the complex 
scalars of R can be expressed entirely in terms of complex 
scalars of the form ao H iK J. But the characteristic equations 
of H, K and HK are aU of the third order; with the help of the 
Cayley-Hamilton theorem (3.26), and (3.32), it follows that 
all complex scalars of R can be expressed in terms of rational 
polynomials in 

JOH, aoH2, aoH3; a-K, a.K2, a-K 3
; 

(5.8) 

and their complex conjugates. Thus, R has a total of 
3 X 6 -3 = 15 independent invariants, and, as we shall 
shortly see, the added symmetry of the Riemann curvature 
tensor reduces this number to the well known 14. (If the same 
analysis of invariants is carried out for a general bivector 
operator given by (3.34), in addition to the 15 invariants 
found in (5.8), there are 15 more given by 
aoJ2; a·L, a.L 2

, J·L 3
; Jo(HL), Jo(HLf, 

a 0 (HL )3; a 0 HJ 2
, J 0 H 2J,whereL =D2,makingupa 

total of 30 independent scalar invariants.) 

For the remainder of this section, letR (B) bea bivector 
operator with the property 

J a 1\ R (a 1\ b ) = O. (5.9) 

An operator with the property (5.9) is called Riemann cur­
vature, because it is equivalent to the usual Riemann curva­
ture tensor RUkl by way of the identification 

Rijk,===R (ei I\e).(ek I\e,), (5.10) 

the same as is made by Thorpe in Ref. 5. The identities 

(a 1\ b ). [ad 1\ ac 1\ R (c 1\ d)] 

and 

=[(a I\b ).ad ].[ac I\R (cl\d)] 

- R (a 1\ b) + R tea 1\ b) 

(a 1\ b 1\ c)· [au 1\ R (v 1\ d) J=R (c 1\ d)-(a 1\ b) + R (a 1\ d) 

·(b 1\ c) + R (b 1\ d )·(c 1\ a), 
together with (5.9), show that 

R (a 1\ b He 1\ d) = (a 1\ b)oR (c 1\ d) (5.11) 

and 

R (a 1\ b He 1\ d) + R (b 1\ c)·(a 1\ d) + R (c 1\ a)·(b 1\ d) 
= O. (5.12) 

Identity (5.11) say that R (B) is a symmetric operator, and 
(5.12) is the famous Bianchi identity. (The other Bianchi 
identity in this formalism has the form V 1\ R = 0, and can be 
found in (9); this paper is exclusively concerned with local 
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properties of operators at a point x in curved spacetime.) 
Thus, (5.9) is equivalent to the two well known conditions 
(5.11) and (5.12). 

Now let S (B )=R (B ).B be the sectional curvature de­
fined by R (B). The sectional curvature satisfies the impor­
tant identity 

avl\auS(ul\v)lu=a.u=b =2av l\[v.R(al\v)Jlv=h 

=6R(al\b). (5.13) 

A well-known consequence of this identity is that 
S (u 1\ v)===O iff R (u 1\ v)=O, for all u, VE§ I' 

From the curvature operator R (B) we construct the 
Ricci operator by contraction: 

R (b )=aa·R (a I\b). 

The Ricci tensor is identified by 

Rij=R (e,.)·ej , 

(5.14) 

(5.15) 

and the property that the Ricci tensor is symmetric is equiv­
alent to 

a B XR (B) = !aa 1\ [au·R (a I\b)] = ~ab I\R (b) = O. 
(5.16) 

Scalar curvature is constructed by contracting (5.14), get­
ting 

(5.17) 

Notice that we use only the domain to distinguish between 
Riemann, Ricci, and scalar curvature. 

We now decompose R (B), as is done in Refs. 15 and 4, 
by writing 

R (B) = C (B) + E (B ) + G (B), 

where 

and 

C(B) = R (B) - !B.a,,[R (v) - (l/6)vR], 

E (B) = ~B.av [R (v) - (l/4)vR ], 

G(B) = (l/12)BR. 

(5.18) 

The conformal curvature operator C (B ) has the properties 

aaC(a I\b) = 0 = aBC(B) and C(IB) = IC(B). 
(5.19) 

The Einstein operator E (B) has the properties 

E(B) = !B.avE(v) = !CE(a) 1\ b + a I\E(b)] and 

E(IB) = - IE (B), (5.20) 

whereE(v)=aa ·E(a I\b) = R (v) - !vRandabE(b) = O.An 
important consequence of the fact that E (B) is completely 
determined by the symmetric vector operator E (v), as given 
in (5.20), is that 

aBEk(B) = aB·Ek(B), for k = 1,2,3,·... (5.21) 

[Recall (3.32)]. The operator G (B) satisfies 

aaG(al\b)=£bR, aBG(B)=!R, G(IB)=IG(B). 
(5.22) 

A comparison of the decompositions (5.1) and (5.18), 
together with the properties of C, E, and G given above, 
shows that 
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H(B) = C(B) + G(B) (5.23) 

and that E (B ) has been correctly identified. Because of prop­
erties (5.19), (5.22), and (5.23), aBH (B) = aB·H (B) and 
therefore the 15 real in varian ts determined by (5.8) red uce to 
the well known 15 -1 = 14 for Riemann curvature. 

If spacetime is not empty but is filled with sourceless 
electromagnetic fields, the Ricci operator (5.14) satisfies 

R (v) = - QvQ, (5.24) 

where Qis the electromagnetic bivector definingJ (B ) in (4.9). 
It is easy to check that in this case the scalar curvature 
R ==av·R (v) = 0, as is well known. From this it follows that 
E (v)=R (v), and from (5.20) we calculate 

E(B)=B·QQ-BAQQ=(B.Q-BAQ)Q. (5.25) 

Equation (5.25) shows that the Einstein operator determines 
Q uniquely up to a phase e [(). Further discussion of these 
problems in the language ofspinors can be found in (2), (3), 
and (15). There is a discussion of Maxwell's equation and 
properties of electromagnetic fields in the ST A formalism in 
Ref. 7. 

To demonstrate the geometric transparency of the spa-
cetime algebra (ST A) formalism, we give a new geometric 
argument for the well known numbers of independent pa­
rameters (IP) of the Riemann, Conformal Weyl, and Ein­
stein tensors. Let F (B) be a general bivector operator. Then 
F (B) has 6 X 6 = 36 IP, since both the domain and range ofF 
are the six-dim. bivector space g; 2' Taking the contraction 
and curl of F (B ) defines the operators 

feb )=a a ·F (a 1\ b ) (5.26) 
and 

T(b)=aa I\F(al\b). (5.27) 
J 

TENSOR STA 

Q 

IQ 

The operator T (b ) determines 4 X 4 = 16 IP of F (B ), since 
the domain and range of T are the four-dim. spaces g; I and 
!iJ 3' A similar argument shows thatf(b) also determines 
4 X 4 = 16 IP of F (B); but these degrees of freedom are not 
completely independent ofthose determined by T (b ), since it 
is easy to show that 

(5.28) 

The relation (5.28) shows thatf(b )and T(b ) have six param­
eters in common, i.e., they determine a common bivector. 
The proof that (5.28) is an integrability condition which 
guarantees the existence of an operator F (B ) satisfying (5 .26) 
and (5.27) will be given elsewhere. 

From the above considerations we can read off the 
numbers of IP for the various operators and their corre­
sponding tensors. Thus, for Riemann curvature, (5.27) van­
ishes leaving 36 - 16 = 20 IP. For conformal curvature, 
both (5.27) and (5.26) vanish, and taking into consideration 
(5.28), this leaves 36 - 16 - 16 + 6 = 10 IP. For Einstein 
curvature, since it is completely determined by (5.26), and 
(5.28) vanishes, taking into account that ab·E (b) = 0, gives 
16 - 6 - I = 9IP. 

To bring out the advantages of the STA formalism over 
the tensor and spinor formalisms, we present the following 
table of how basic quantities and relationships find expres­
sion in each. 

SPINOR 

t/> af3 

- it/> af3 

R uvrs = (e u l\ev)·R (er I\es) R (B) = C (B) + E (B) + G (B) tP af3yo ,t/> af3ft v .A 
(5.29) 

{
Ruvrs ~ Rruvs + R vrus = O} 
R uvrs - R rsuv 

aaI\R(aAb)=O 
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Linearization stability of Einstein equations coupled with self-gravitating 
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In this paper, we extend the work of Fischer-Marsden and Moncriefon the linearization stability 
of vacuum spacetimes to the case of vacuum Einstein equations coupled with self-gravitating 
scalar fields. We prove that the coupled system is linearization stable under some suitable 
conditions. We also prove the relation between linearization stability and the condition that 
spacetime admits Killing fields analogous to the work of Moncrief. 

PACS numbers: 04.40. + c 

In this paper, we extend the work of Fischer-Marsden 1 

and Moncrief on linearization stability of vacuum space­
times to the case of gravity coupled with self-gravitating sca­
lar fields. Such a system is considered by Francaviglia3 

where he proved the "existence" results following Fisher­
Marsden. 4 We refer to Francaviglia3 for details regarding 
Lagrangian and Hamiltonian formulations of the system. 
The sign conventions we follow are those of Ref. 1. 

The configuration space for the system is JI X.'Y 
where JI is the space of Riemannian metrics on M, andY is 
the space of C 00 functions on M, Mbeing a three-dimension­
al compact orientable Riemannian manifold without 
boundary. 

The Einstein equation is 

Gp.v = XTp.v' whereGp.v = Rp.v - ~R gp.v' 

is the classical Einstein tensor and Tis the stress-energy ten­
sor. In our problem, the scalar field is described by 

Til-" = - {3 (2r/J,p. r/J,v - g!,v(r/J,pr/J ,p + m2r/J 2», 
m2

, {3being two positive constants related respectively to the 
mass of the field and to the choice of units. As remarked in 
Ref. 3, this case applies to TTO mesons (m =FO) and to the 
Brans-Dicke field. If {3 is allowed to take negative values, the 
validity of the results can be extended to the C field proposed 
by Hoyle-Narlikar, which is related to the so-called "steady­
state universe." 

In our system, the evolution equations can be derived 
from the variational principle 

1= f [1T'J(ag,/ at) + a(ar/J / at) - N·£" T - x·/ T ] dt, 

where TT is the momentum density conjugate to g, 
(7 = - 4{3Y/lg being scalar density conjugate to r/J. TT, (7 are to 
be obtained by using the so-called Christodoulou-DeWitt 
metric defined in Ref. 3. We refer to it for details. J.lg denotes 
the volume element corresponding to g. d¥' T is the total Ha­
miltonian defined by 

£" T = £"G + £"F' 

where 

£"G = TT"TT' - !(tfTT')2 - R (g), 

and 

(I) 

The expression for £" F follows from the stress-energy 
tensor (cf., Ref. 3, p. 512). Here TT = TT' ® J.lg and 
A (r/J) = r/J,ir/J ,i + m2r/J 2. Lastly / T is the moments 
constraint, 

/T=/G +/F' 
where 

/G = -2(8gTT)=2TT// j , 

and 

/F = -(7r/J,i' 

(2) 

The signs here follow the sign convention of the shift 
vector field in Ref. 1. 

The constraint equations are 

£" T = 0 and /" T = O. 

The evolution equations derived from the variational princi­
ple can be written in a compact form as 

(alat {~ ) ~ J 0 D<P '(N,x), 

where tP = (£"F' /" T) and Jbeing the anti symmetric 
matrix 

(3) 

N is the lapse function and X is the shift vector field. * de­
notes the adjoint operator. 

DtP *(N,x) = D£"~-N + D/"~.X. 
We obtain 

D£"'f.·N 
= [ - NSg(TT,TT) + (N Eing-Hess N - giJN)#/lg 

+ {3N (2jJ - gA (r/J »J.lg - {3Nrg/lg, 

-4{3N (iJ r/J + m 2r/J ) /lg +4{3 (V N· V r/J #)/lg' 

2N (TT' - !(tfTT')g),( - (7'N 14{3»). (4) 

See Ref. 1 for notations. In addition, 

¢)ESz(M), ¢)ij = r/J,i'r/J,j' i,j = 1,2,3; (7 = (7' ®J.lg . 

To find D /"'!f.X, we proceed as in Ref. 1 for the term (7V r/J, 
and get 
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Df't·X = (Lx 1T, - Lxg, + Lxa, - LxfjJ). 

Here ,f 7 = f T(g,fjJ,1T,a). We write 

Dfr,·X = (L x1T,Lxa, - Lxg, - LA), (5) 

changing the order for consistency of notation. Thus evolu­
tion equations are obtained as 

ag/at = 2N (1T' - Htr1T')g) - Lxg, (6) 

a1T/at=NSg(1T,1T)- [N Eing-Hess N-gilN]#/lg 

+ {3Nrg/l g - {3N(2¢ - gA (fjJ »/lg - L x 1T, (7) 

afjJ fat = - a'N /4{3 - LxfjJ, (8) 

aa/at = 4{3N(ilfjJ + m 2fjJ )/lg -4{3(VNV fjJ #)/lg - Lxa . 
(9) 

The negative signs of Lie derivatives in Eqs. (6)-(9) are due 
to the sign of the shift vector field in Ref. 1. We now derive 
conservation laws analogous to Refs. 1 and 3. 

We have, fqr diffeomorphism 1/ on M, 

K(1/!g, 1/*1T, 1/*fjJ, 1/*a) = 1/* K(g,1T,fjJ,a), 

and 

f(1/*g, 1/*1T, 1/*fjJ, 1/*a) = 1/* f(g,1T,fjJ,a). 

Thus, if 1/, is a curve in ~ (M) with 1/0 = id and 

(d/dt)1/, I,~o =X, 

then 

DK(g,1T,fjJ,a).(Lxg, L x 1T, LA, Lxa) = Lx K(g,1T,fjJ,a), 

Df(g,1T,fjJ,a).(Lxg, L x 1T, LA, Lxa) = L x/(g,1T,fjJ,a). 

Hence 

D4> (g,1T,fjJ,a).(L xg, L x 1T, LxfjJ, Lxa) = Lx 4> (g,1T,fjJ,a). 

We now consider 

aK(g,fjJ,1T,a) 

at 

Then 

= DK(g,fjJ,1T,a)·[(ag/at ),(afjJ fat ),(a1T/at ),(aa/at)] 

= DK.jo[D4> *.(;)] 
(Change of order of variables is for convenience) 

= D7ti.joDK(g,fjJ,1T,a)*·N + D" (y,fjJ,1T,a)*'X] 

= DK·joDK*·N + DK·( - Lxg, - LxfjJ, 

- L x 1T, - Lxa) 

= DK·joDK*·N + DK·( - Lxg, - LxfjJ, 

- L x 1T, - Lxa). 

We now compute DK·joDK*·N, as in Ref. 1: 

DK·JoDK*·N 

344 

= DK(g,1T,fjJ,a).(D"K*.N, - DgK*-N, 

D"K*.N, - D",K*.N) 

= DgK.(D"K*.N) - D"K·(DgK*.N) 

+ Dd>K.(D"K*·N) - D"K·(D",K*.N), 
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where K = KG + K F • 

Out of these, 

D",K~·N = 0 = D,,~.N, 

D",KG =0, DuKG =0, 

D1TK~.N = 0, D"KF = 0, D"KF#O. 

Thus 

DK·joDK*·N 

Now 

= DgKG·(D11'~.N) + DgKF·(D"K~·N) 
- [D".K G·DgK~·N + D"K G·DgK~.N] 

+ D",KF·(DuK~·N) - D"KF·(D",n·N ), 

DgK F·h = - f3fg·h + {3 (2¢ - gA (fjJ )).h, 

therefore 

DgKF·(D!,~.N) 

= DgKF·(Na"KG) (cf. Ref. 1) 

= DgKF·( - 2k·N) = - 2NDgK F·k 

= - 2N [ - f3fg·k + {3 (2¢ - gA (fjJ )).k ] 
= 2Nf3 [fg·k - 2¢.k + A (fjJ )g.k ]. 

D"KG'{j) = a1T K G·{j) = - 2k'{j), 

therefore 

D"KG·(Dg~.N) 

= - 2k· [ - {3f Ng/lg + f3N (2¢ - gA (fjJ )}jLg ] 

= 2Nf3 (fg·k - 2jJ.k + A (fjJ )g.k }jLg. 

So that 

DgKF·D"K~-N - D1TKG·Dgn·N = 0, 

D",KF·I/J = - 2f3(2m2fjJ.1/J + 2VfjJ #·VI/J) 

= - 4f3(m2 fjJ.1/J + VfjJ #.VI/J). 

DyK~·N Na' 
D"n·N = _ 4f3 = - 4f3 

(DyKF'E = - 4f3Y'E/lg = a·E). 

Therefore 

(10) 

(11) 

(12) 

D",KF·D(JK~.N = (m 2 fjJNa' + VfjJ #·V(Na')), (13) 

D",n·N = - 4f3N(ilfjJ + m2fjJ) + 4f3(VN.VfjJ #). 

Therefore 

- DaKF·(D",K~.N) 

= - Na'(il</J + m 2</J) + a(VN·V</J #). 

Hence 

D",KF·(DaK~.N) - D"KF·(D",K~.N) 

= VfjJ #.(VN)a + VfjJ #.N(Va) 

- Nm:lfjJ + aVN·VfjJ # 

= - Na·ilfjJ + NVfjJ #·Va + 2a·VN·VfjJ #. 

.If we calculate {j (N 2 f F)' we get 
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Hence 

8 (N 2/ F) = + 2NV N·ut/J ,i + N 2(ut/J ,it 

Therefore 

= 2NVN·uVt/J # + N 2[ - uAt/J + Vt/J #.VU] 

= N [2VN.uVt/J # - NuAt/J + NVt/J #·VU], 

D"':¥'F·(D(T~-N) - D(T:¥'F'(D",~.N) 

= (1/N)8(N 2/ F) 

= - (1/N)div(N2/ F)' (16) 

Thus combining Eqs. (12) and (16) and using results of Ref. 1 
for the remaining terms in D:¥'·JoD:¥'*·N, we get 

D:¥'·JoD:¥'*·N 

= - (1/N)div(N2/ F) - (1/N)div(N2/ G)' 

and hence 

(a:¥'lat) 

= - (l/N)div(N 2/ F) - (l/N)div(N2/ G) - Lx:¥', 

or 

(a:¥' I at) + (1/ N )div(N 2/) + Lx:¥' = 0, (el) 

For the evolution equation for /' we write, for vector field 
Y, independent of t, 

!!..-J (Y, /(g,t/J,1T,U) 
dt 

= J (Y,(d Idt )/(g,t/J,1T,U) 

= J (Y ,D/.[(aglat ),(at/J lat),(a1Tlat ),(aulat)]) 

= J (y,D/.JOD<P*{;)) 

= f (D<P.J*oD/*'Y'(~) 
= - J (D<P.JOD/*.T,C')) (J* = -J) 

= J (D<P.(Lyg, Lyt/J, L y1T, Lyu),(N,x) 

= - J Y(dN):¥' - J (Y, Lx/) (cf. Ref, 1). 

Thus we get 

d/ 
- +Lx/ + (dN):¥, = 0. 

dt 
(ell) 

This is the required evolution equation for /. From (el) and 
(ell) we get analogue of Theorem 3.1, Ref. 1. 

We now prove the linearization stability of the 
equations: 

Theorem: A solution ((4)g,i) of the coupled system is 
linearization stable if the following conditions are satisfied: 

(i) tr1T is a constant multiple of the volume element on 
M; 

(ii) One of g, t/J, 1T, U is nontrivial or g is not flat; 
(iii) There are no simultaneuous symmetries of g, t/J, 1T, U 
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onM,i.e.,ifLxg = O,Lxt/J = O,Lx1T = OandLxu = 0, then 
X=O. 

Proof As argued in Ref. 1, it is enough to show that 
D<P * is injective and has injective symbol. Symbol of D<P *: 

.Is(s,V) = (( - s®s + "5 UZgJltg's + (sl1Tli8i + sl1T1j8~ 
-Sk'1'lj)Vk,S®Vt/JJs /lg,(gjk Sj +gjk Sj)V\O). 

Thus if .Is(s, V) = 0, then third component zero gives 
V = 0. Then from the first component, we get S = 0. Thus 
the symbol is injective. 

We now show thatD<P * is injective. LetD<P *(N,x) = 0. 
To show N = ° and X = 0, D<P *(N,x) = ° is equivalent to 
the following four equations: 

- NSg(1T,1T) + (N Eing-Hess N-gAN)#/lg 

+PN(2jJ-gA(t/J)-rgJltg +Lx 1T=O, (17) 

4pN(At/J + m2t/J) - 4(3VN.Vt/J # + Lxu = 0, (18) 

2N(1T' - Mtr1T')g) - Lxg = 0, 

(u'N 14(3) + Lxt/J = 0. 

Taking tr of Eq. (17) we get, 

(N 12):¥, G + [ - 2AN + pN (2t/J,it/J ,j - 3A (t/J )) 

- 3PNrl/lg + trLx1T = 0. 

But 

:¥' T = :¥' G + :¥' F 

= O:=>:¥' G = -:¥' F = 2P (r + A (t/J )Jltg. 

Therefore 

(N 12):¥'G = NP(r +A (t/J )Jltg. 

So the above equation becomes, 

[Npr + NPA (t/J) -2AN +2PN t/J,it/J ,j -3N/3A (t/J ) 

-3NPr ]/lg + trLx1T = 0. 

Using A (t/J) = t/J,it/J ,j + m 2t/J 2, we get 

-2PNr -2Npm2t/J 2 -2(LJN)/lg + trLx1T = 0, 

i.e., 

(19) 

(20) 

(LJN)/lg + f3N (m2t/J 2 + r) - prLx 1T = 0. (21) 

Taking tr of Eq. (I9) gives 

- N tm' +2 8g X = 0, 

or 

divX = -!N tr1T', (22) 

tr(L x1T) = X·d tr1T - 1T·L xg + (divX )(tr1T) 
= -1T·Lxg - !N(tr1T'f, 

from (22) and using tr1T = constant. Hence (21) becomes 

AN + N/3 (r + m 2t/J 2) + !(Lxg)'1T' + !N(tr1T')2 = 0. 

From (19), 

!(Lxg)1T' = !11".2N(11" - !(tr11")g) 

= N(1T"1T' - ~(tr1T'f)· 

Hence 

!(Lxg)1T' + !N(tr11")2 = N(1T"1T' - !(tr11',)2) 

= N(11" - !(tm')g)'(1T' - !(tr1T')g). 
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Thus we get finally 

LlN[I'1T' - i(tf1r')g)'(1T' - i(tr1T')g) + 13(T + m2¢> 2)]N = O. 

Now, since 13 is positive, the coefficient of N is positive defi­
nite and we get N is constant. Then we get N = 0 if one of 1T, 
a, ifJ is nonzero. 

If 1T, a, ifJ are all identically zero, then dY = 0 gives 
R = 0 and (17) gives (since N is constant) 

NR ij - VVgij·R = O=;NR ij = O. 

Then (g is not flat~R li#O)~N = O. 

Thus condition (ii) forces N to be zero. Now, N = 0 
gives using Eqs. (17)-(20), 

Lx1T = 0, Lxo- = 0, Lxg = 0, LxifJ = O. 

Then condition (iii) and above equations imply that X = o .. 
DcP * is thus injective. Linearization stability is thus proved. 

Moncrief's Condition: We now wish to prove the follow­
ing theorem: 

Theorem: (Analogue ofTh. 5.5, Ref. 1): Let (,4'g,i) be a 
solution to the field equations Ein('4'g) = T. Let.Io = io(M) 
be a compact Cauchy hypersurface with induced metric go, 
scalar function ifJo and canonical conjugate quantities 1To, ao. 
ifJo = i0f). Then KerDcP (go, ifJo' 1To, ao)* is isomorphic to the 
space of simultaneous Killing vector fields of' 4 'g and f. 

In fact (Yj , - YII)E KerDcP (go, ifJ()t 1To, ao)* ifft.!Iere ex­
ists a simultaneous Killing vector field (4, Yof ('4'g,¢> ) whose 
normal and tangential components to .Io are Yj and Y11 . 

f is a function on V4 appearing in T,1v ' 

Proof(analogous to that in Ref. 1): Necessary condi­
tion: Let F, be the flow Of(4) Y. For t in a neighbourhood ofO, 
i, = F, 0 io is a well-defined one-parameter family of space­
like embeddings with generator' 4 'Y, = ,4, Y oi,. Let (Yj (t), 
Y11 (t» be the normal and tangential components Of(4'y,. Let 
(g(t ),1T(t ),ifJ (t ),o-(t » be the usual quantities with their conju­
gates induced on.I, by ('4'g,f). For a family of embed dings 
given by i, = F, 0io, this will be the same as metrics, scalar 
functions and their conjugates induced on.Io by F;,,'4'gand 

Fif· 
Since ,4'Yis a Killing vector field of'4'g and f, Fi'4'g 

= ,4 'g and F if = f, so g(t ) = go, 1T(t) = 1To, ¢> (t) = ifJo and 
a(t) = a o, V t. Hence by the adjoint form of the evolution 
equations, 

O=(;~~~) 
aifJfat 

aafat 

= J 0 DcP «(g(t ),1T(t ),¢> (t ),a(t »*( .: ~~;t) ) . 

Evaluating at t = 0, we get (Y1, - Y11)E KerDcP *. Sufficient 
condition: For sufficiency, we require the following ana­
logue of Proposition 4.7, Ref. I, whose proof can be easily 
extended in our case: 

Proposition: Let (4)Ybe a vector field on V4 with flow F, 
and let i, = F, Oio. Let (4)h = L(4h(4lgo and if = L(4h f Letg(t), 
1T(t), ¢> (t), a(/) be the usual quantities on.I, = it (M) 
andlet(h (t ),(tJ(t ),¢(t ),1'(t )) be the infinitesimal deformations of 
(g,1T,ifJ,a) induced on.I t by (4)h and if. 
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Then 

( 

h (t») (tJ(t) 

¢(t) 

r(t) 

( 
Y(t) ) 

=JODcP(g(/),1T(t),¢>(/),a(t»* y. () . 
shIrt t 

Proof of sufficiency: Let (Y1 , - YII)E KerDcP *. We wish 
to extend (Y1 , - Y11 ) to a simultaneous Killing field (4) Y. 
Choose a slicing it and let Nl , Xl be its lapse and shift. To 
define Yj and Y II ' take the peep-perp and perp-parallel pro­
jections of Killing equations L(4), (4lg = 0 and let Y1 and Y

II 
be subjected to the condition 

i.e., 

L (4) ;;: = L J 
Y 1 Z 0/ T,. Y~hift ' 

L(4l, f = O. 

This gives 

(aY1fa,) + Lx Y1 + Ly"N = 0, 

- (aY
11 
fat) - Lx Y11 + N gradYj - Y1 gradN = 0, 

subjected to L(41, f = O. For given N (t,x), X (t,x) and initial 
conditions (Yj , Y II ) together with the additional constraint, 
these equations define a unique Yj , YII on V4 with the given 
initial conditions. Thus we get a vector field (4)y on V4 with 
these normal and tangential components on each hypersur­
face and satisfying L(4hf = 0 = if (say). Let 
(h (t ),(tJ(t ),¢(t ),1'(t), U (t), V(t)) be the induced deformations 

of (g,1T,¢>,o-,N.x). By construction, (4)h, , = 0, (4)h," = O. 

Hence 

U(t) = ~N(t)'4hu (t) = 0, 

and 

Vet) = N(t ),4h jll (t) = O. 

Thus (h (t ),(tJ(t ),¢(t ),r(t» satisfies the linear system 

Hence, by the above proposition, on .Io, 

( 

:~~; ) = J 0 Dc/> *( Y, (0) ) = o. 
¢(O) 111 (0) 
1'(0) 

Thus (h (t ),(tJ(t ),¢(t ),r(t» = (O,O,O,O)Vt. Hence, since 
h (t ) = 0, h 11 (t ) = 0, and h jll (t) = 0, (4) h = 0, and if = 0, by 
construction. Thus' 4, Y is a simultaneous Killing field as 
required. 

It also follows that the dimension ofKerDcP * is equal to 
the number oflinearly independent nontrivial simultaneous 
Killing fields of' 4 'g and f 

Remarks: (1) Since our evolution equations are in the 
adjoint form, we can prove Moncriefs splitting5 as given in 
Ref. 1, Theorem 6.1, in our case also. 
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(2) We hope that the results regarding linearization sta­
bility can be proved in the noncom pact case. The procedure 
to be followed may be similar to that in Ref. 6 due to some 
technical difficulties as explained there. 

'A.E. Fischer and J.E. Marsden, Nuovo Cimento (1978). 
'Y. Moncrief. J. Math. Phys. 16,493 (1975). 
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3M. Francaviglia, "On the symplectic formulation of the Einstein system of 
evolution in presence of a self-gravitating scalar field." Springer Lecture 
notes in Mathematics, No. 570. p. 498. 

'A.E. Fischer and J.E. Marsden, 1. Math. Phys. 13,546 (1972). 
'Y. Moncrief, J. Math. Phys. 16,1556 (1975). 
6y' Choquet-Bruhat, A.E. Fischer, and J.E. Marsden. Nuovo Cimento 
(1978). 
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Statistical mechanics and the gravothermal catastrophe 
P. Cally and J. J. Monaghan 
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Jensen's inequality is applied to the canonical partition function of a self-gravitating system to 
determine the best independent particle potential. The inequality allows the stability to be 
analyzed very easily. We recover the results of Lynden-Bell and Wood for the onset of an 
instability in an isothermal sphere in a heat bath. Our eigenvalue analysis leads to results very 
similar to those of Horwitz and Katz, but we differ in the description of the I = 1 perturbation. 

PACS numbers: 05.20. - y, 04.20. - q 

I. INTRODUCTION 

In a series of papers Horwitz and Katz 1-3 have analyzed 
the statistical mechanics of a self-gravitating system by ap­
proximately evaluating the various partition functions. 
Their procedure involves replacing the Boltzmann factor by 
its representation as a functional integral. They evaluate the 
resulting multiple integral by a saddle point method. The 
necessary condition for the stationary point is that the parti­
cles move independently in the mean field. The requirement 
that the stationary point gives a maximum can be made the 
basis of a stability analysis. In this way they recovered and 
extended the results of Lynden-Bell and Wood.4 

We show, in this paper, that the results found by Hor­
witz and Katz for the canonical partition function can be 
obtained very easily by applying Jensen's inequality5 to the 
configurational integral. 

II. A VARIATIONAL METHOD 

We work with the canonical partition function Z and 
assume that the potential is of such a form that Z exists. A 
discussion of these assumptions is given by Ipser6 and by 
Horwitz and Katz2

• Z is defined for N equal particles by 

Z = _1_ Je -f3E dfl {J = _1_ (1) 
N! ' kT' 

where quantum factors have been omitted because they are 
unimportant for the systems we consider. Performing the 
integration over momenta, and defining dfl s to be the spatial 
part of the phase space volume element, we find 

Z = (21T"mkT)3N 12Q , (2) 

where the mass of each particle is m and Q, the configura­
tional integral, is defined by 

Q = _1_ Je- f3V dfl , (3) 
N! S 

and Vis the potential energy. In practice, Vis usually too 
complicated to allow Q to be evaluated. To estimate Q we 
suppose that we have a reference system of N particles with 
the same mass as before, but with a potential energy U which 
allows the configurational integral to be evaluated. Now 
write Eq. (3) as 

(4) 

and regard Eq. (4) as defining, apart from a constant multi­
plier, the average of exp[ - {J (V - U)] with a probability 
density exp{ - (JU). Since the exponential is a convex func­
tion, Jensen's inequality can be applied, and we find 

Q>I = ~! Je - f3Udfl,exp( - {J (V - U»), (5) 

where ( ) denotes an average using the probability density 
exp( - PU). Denoting the Helmholtz free energy calculated 
using the potential Uby A (U), Eq. (5) is equivalent to 

A(V)<A(U)+ (V- U). 

If we choose the functional form of U with arbitrary 
parameters, these parameters can be chosen by adjusting 
them to make the right hand side ofEq. (5) a maximum7• A 
better procedure is to use Eq. (5) to choose the functional 
form. In particular, if U is a sum of independent particle 
potentials, then the stationary point of the functional I 
should give the best potential provided that I is then a maxi­
mum. Ifit is not a maximum, then in the neighborhood of the 
independent particle potential another potential exists 
which will give a better estimate of Q and a lower free energy. 
The system will then move away from the configuration de­
fined by the stationary point of I. 

The exact Hamiltonian of the system is 

(6) 

where F is a long range pair interaction. In order for Z to be 
well defined we assume, with Horwitz and Katz, that the 
system is enclosed within a sphere and the singularity at 
short range is smoothed out. Because F is long range we 
expect that the time averaged dynamics of a given particle is 
very closely approximated by its motion in a mean field. We 
therefore approximate H by 

N p2 N 

H' = I _1 + I rP (rJ ' (7) 
j~ \ 2m j~ \ 

so that 
N 

U= IrP(rj ). 
(8) 

j~ \ 

To find the stationary value of I we replace U by 
U + [) U and expand to first order. The first order change in I 
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is given by 

(6111)= f3Je- f3U 8U[(V- U> -(V- U)] dfl s ' (9) 

The necessary condition for I to be a maximum is that 81 = 0 
for arbitrary 8 U. It is convenient to set 

N 

8U=L 8tP(rj ), (10) 
j=1 

where DtP is arbitrary. Substituting Eq. (10) into Eq. (9) we 
find that 81 = 0 implies 

je- 1HJ {jtP rdr = 0, (11) 

where dr is the ordinary volume element, 

r= 

N; N - 1 {< V - U> - N {; 1 J exp( -.BtP ')F(jr - r'll dr' 

- (N-
11r- 2

) ffexP[ -.B(tP+tP')]F(jr-r'j)drdr' 

+tP(rl+ (N~l) ftPexP(-f3tPldr'}' 

(12) 

and 

; = J e - M dr, tP =tP (rL and tP '==tP (r') . (13) 

Since DtP is arbitrary, the variational principle requires 
r = o. This equation is satisfied by choosing 

tP(r)= N~l je-/3,p(r')F(jr-r'I)dT" (14) 

Equation (14) for tP (r) is the canonical average of the pair 
interaction at r due to the other (N -I) particles. For a pure 
gravitational interaction Eq. (14) is equivalent to 

V2¢ = 41TGm2(N -I) e- l3tP I;. (15) 

If we anticipate that the number density n(r) is 

n(r)= Ne-fl,pl;, (16) 

we find 

V2tP = 41TG (N -I) m2n(r). 
N 

(17) 

Apart from the factor (N -1)1 N which is very close to 
I for the systems we consider, Eq. (17) shows that 1ft 1m is the 
Emden potential. The variational principle therefore estab­
lishes that the Emden potential is the best independent parti­
cle potential (in the thermodynamic sense) for a self-gravi­
tating system. 

III. STABILITY 

The stability of the system is determined by the second 
order variation of J, which is easily shown to be 

!.B2exp( -.B (V - U»;N[(8U)2 - «8U?> + f3 

X! «8Uf) < V - U) - «DU)2(V - U» l]. (18) 

The multiplying factor is always positive so the sign of the 
second variation is determined by 
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L = ({jU)2 - «8U?) + f3! «{jU)2) (V - U) 

- «{jU?(V - U» I . (19) 

As before we take 8 U = I.f= 18tP (r) and the averages in Eq. 
(19) reduce to integrations over ordinary volume. The result­
ing algebra can be reduced by expressing integrals as deriva­
tives according to 

«{jU)2(V _ U» = a2
2 

(e - aOU (V - U» , (20) 
aa 

and noting that if 

f(a) = (Je-f34>-ab¢ drr 

then 

and 

(21) 

1"(0) = ;N[N ((/>tP )2) + N(N - 1)(8¢ )2J . (22) 

The final expression for Eq. (19) can be written 

(23) 

where ( ) now denotes an average over the ordinary volume 

where ( ) now denotes an average over the ordinary volume 
with probability density ex: exp( - f3tP ) and 

(8lft8tP 'F", )-f fe-fl¢-,WF(jr - r'l) dr dT'I;2 . (24) 

Finally we note that if 

q = 8tP - (81ft) , (25) 

then Eq. (23) can be written 

(LIN) = - (q2) -f3(N - 1)(qq'Frr,), (26) 

using Eq. (14). 
If L < 0, I is a maximum and the system will be stable. If 

L > 0, the system will be unstable. In order to establish the 
point of instability it is convenient to tum to the associated 
eigenvalue problem. 

IV. THE EIGENVALUE PROBLEM FOR SPHERICAL 
VARIATIONS 

The right-hand side of Eq. (26) when written in full for 
gravitational interaction becomes 

1 J -/3¢ [ .B(N - 1)Gm2 f e-fl¢'q(r') dr' J - - e q q- dr. 
; ; Ir-r'l 

(27) 

We now specialize to purely spherical variations so that 
q is a function of r alone. Equation (27) suggests that we 
consider the eigenvalue problem: 

qk(r) -.B(N - I) Gm
2 J e-fl¢'qdr')dT' 

; Ir -r'I -~J e-'Wqdr')dr' - C 
41T Ir-r'l - k, (28) 
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whereA k is an eigenvalue and Ck is a constant which can be 
chosen to allow us to satisfy one of the conditions on q. The 
integral equation (28) is equivalent to 

V2qk + [ 41T/3(N ~1)Gm2 + Ak ]e-fi¢qk = 0, (29) 

which is the differential equation examined by Horwitz and 
Katz l

, and applied by them to the Grand canonical ensemble 
using different boundary conditions. The equation Horwitz 
and Katz2 use to determine the stability of the canonkal 
ensemble is a different, more complicated equation; the 
equation we use is simpler because we work with 
q = fJ¢ - (fJ¢). 

We wish to expand q according to 

q = ! akqk(r) , (30) 
k~l 

but since (q) = 0 we require (qk) = O. From Eq. (29) we 
find 

(31) 

where ro is the outer boundary of the sphere containing the 
particles and 

Ak = 41T/3(N-l)Gm2 + Ak;' (32) 

We therefore require (dqkldr)B = O. In order for Eq. (28) to 
be consistent with this result we require Ck 

= [d (rqk)ldr ln, as may be easily seen by evaluating the 
integrals for, = '0' It is convenient to work in terms of 
X k = rqk so that the eigenvalue equation (29) becomes 

~Xk + (41T/3(N -1)Gm
2 

+ AkJe~fi¢Xk =0, 
dr ; 

(33) 

with boundary conditions 

q k (0) finite ::::>X k (0) = 0 , 
(34) 

(~) = O::::>ro (dXk) - (XdB = O. 
dr B dr B 

The boundary condition on qk at r = rB has the further sig­
nificance that since mass is conserved a spherically symmet­
ric perturbation cannot change the external potential gradi­
ent. Therefore, at the boundary, the gradient of q must 
vanish and this is just the second of Eqs. (34). 

Expanding q as in Eq. (30), substituting into Eq. (27), 
and using Eq. (28), we find Eq. (27) becomes 

1 A II e~fi¢q q'e~{3¢' __ 2:2:ak a, _k k I, dT dT'; (35) 
; k' 41T Ir - r I 

the constant Ck gives no contribution because (q) = O. 
From Eq. (28) and the equivalent integral equation with k 
replaced by I we deduce 

___ ----'-_k_' dTdT' =hfJ
kl

, If 
e~M-f3¢'q q' 

Ir-r'l 
(36) 

which may easily be shown to be equivalent to the orthogon-
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ality condition deduced from Eq. (29). Using Eqs, (32) and 
(35) the expression for L in Sec. III becomes 

!:... = __ 1_ LAJkak . (37) 
N 41T; 

Since Ik and ai are both positive, L > 0 only occurs when an 
eigenvalue becomes negative. Because of the form ofEq. (33) 
the eigenvalues are discrete and they can be ordered. The 
first to change sign is the lowest. Transforming to Emden 
variables we find A 1 changes sign when the density contrast 
between center and boundary is 32.12. This is the now classi­
cal instability associated with a self-gravitating system in a 
heat bath. It is equivalent to C" changing sign through infin­
ity. The second eigenvalue changes sign at a density contrast 
of 5221.5 where C" again changes sign through infinity and 
so on for the other eigenvalues. 

V. THE EIGENVALUE PROBLEM FOR NONSPHERICAL 
VARIATIONS 

When the variation is not spherically symmetric we ex­
pand in eigenfunctions 

qk===qklm = (lIr}fk,(r)Y'm(e, ¢), (38) 

where Y'm is a spherical harmonic. If I> I, then the condition 
(qklm) = 0 is automatically satisfied. The eigenvalue equa­
tion (29) becomes 

~(I" ) _ 1(1 + 1) I" [41T/3(N - 1)Gm
2 

A.] 
dr J kl r J kl + ; + kl 

Xe -PoP fkl = 0. (39) 

The boundary conditions are that qk is bounded at r = 0, and 
matches a solution of Laplaces equation at r = r B which 
vanishes as r.-oo, and has the same angular dependence as 
qk' These conditions are equivalent to 

df Ifkl 
fk,(O) and - = - -- at r=rB , 1>1. (40) 

drB rB 
If 1>2, it can be shown from the solution to the Emden equa­
tion that 

(41) 

Equation (39) can then be written (we omit the subscripts for 
convenience) 

d 2f dr - Wf+A.Pf=O, (42) 

where Wand Pare > o forl> 2. MultiplyingEq. (42)byJ, and 
integrating over r, shows that 

A ~ [f Wl'dr+ f(~:)' dr-flr.1 ::.lj 
L8p f2 dr. (43) 

The boundary condition (40) now allows us to conclude from 
Eq. (43) that 

(44) 

The integral equation from which Eq' (39) has been deduced 
is Eq. (28) with Ck = O. Substitution into Eq. (27) shows that 
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!.:..... = - ~ 2P~/).kllkl , 
N ~ k,1 

(45) 

where 

I II () (') exp( - (3ifJ) d d ' 
kl = qk r qk r r r , 

Ir - r'l 
(46) 

The system is therefore stable to any nonspherical perturba­
tion with 1">2, This result agrees with that found by Horwitz 
and Katz2

, For the case 1 = 1 numerical'solution of the ei­
genvalue problem shows that the system is stable, This result 
may in fact be established directly by observing that, with an 
appropriate coefficient of proportionality, the boundary 
condition at r = 0 and Eq, (39) with), = 0 are satisfied by 

/11 ex r difJ 1 dr , 

The outer boundary condition is never satisfied for a finite 
density ratio and we conclude that there is no solution with 
). = 0, Since for density ratios close to 1 the system is stable, 
it remains stable, This result disagrees with that of Horwitz 
and Katz, because they use a boundary condition which we 
believe to be incorrect and find that the 1 = 1 mode is unsta­
ble, Since this mode is equivalent to the displacement of the 
center of mass, Horwitz and Katz remove the instability by 
fixing the center of mass, Our result shows that this device is 
unnecessary. 

VI. RELATIONSHIP TO THE HELMHOLTZ FREE 
ENERGY 

The canonical partition function is intimately related to 
the Helmholtz free energy because it represents a system of 
fixed volume in a heat bath, For such systems, if fluctuations 
about the temperature To of the heat bath are considered, the 
stability of the system is determined by whether or not the 
activity 

A=U-TrrS, (47) 

is a minimum. In Eq, (47), U is the internal energy and S the 
entropy of the system of interest evaluated at the tempera­
ture T of the system. When T = To the activity is just the 
Helmholtz free energy. The change of A with time for a vis­
cous fluid with coefficient of thermal conductivity K is 

dA d { 1 I ( 1 ( T' )2 (p' )2) 
dt = dt 2 P r -1 T + P dr 

+ ~ I p u2 dr - !:!... II p'(r) p'(r') dr dr'} , (48) 
2 2 Ir - r'l 

where F' denotes the perturbation to the zero order quantity 
F, Pis the pressure,p the density, G is the gravitational con­
stant, r the adiabatic index, u the velocity, and the integra­
tions are over volume. We can therefore identify the qua­
dratic terms in A produced by a perturbation away from 
equilibrium as being 
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Assume now that we make a static perturbation with T con­
stant. In Eq. (49) we set T' = 0 = u. Noting that 

(50) 

so that 

8p' 
- (3 (8ifJ - (8ifJ » , (51) 

P 
we find 

8 2A = -LI2, (52) 

where L is defined by Eq. (26). The stability condition deter­
mined from the variational principle is therefore equivalent 
to requiring that the activity is a minimum. The statistical 
mechanical criteria is therefore identical to the thermody­
namic criteria. If we construct the Lynden-Bell and Wood4 

activity for T = To (so that A ==Helmholtz free energy) and 
perturb it, we find, as expected, that it is equal to - L 12. 

VII. DISCUSSION AND CONCLUSIONS 

A full account of the instabilities in a self-gravitating 
system placed in a heat bath is contained in the analysis of 
Lynden-Bell and Wood4 and Horwitz and Katz. 2 Our re­
sults show that the description of the canonical ensemble 
from the statistical mechanical point of view does not require 
the complicated procedure used by Horwitz and Katz. Their 
analysis resembles ours in that it involves a search for a maxi­
mum of an integral. It differs from ours because they first 
make a transformation to a functional integral which greatly 
complicates the analysis of the canonical ensemble. 

It is not clear why Horwitz and Katz do not use the 
boundary conditions (40) for the nonspherical perturba­
tions. All potential perturbations are obliged to match a so­
lution of the Laplace equation which vanishes at infinity. 
For the modes 1>2 the Horwitz-Katz boundary condition 
does not affect the result. However, for the 1 = 1 mode they 
predict an instability when the density ratio is 32.1, whereas 
we find the system is unconditionally stable for this 
perturbation. 

The advantage of the procedure used by Horwitz and 
Katz is that it is general, and can therefore be used for all the 
common ensembles. Jensen's inequality can only be used 
when the probability density is convex and this excludes its 
use in the physically important microcanonical ensemble. 

'0. Horwitz and J, Katz, Astrophys. J, 211, 226 (1977). 
20. Horwitz and J, Katz, Astrophys. J, 222, 941 (1978). 
3J. Katz and 0, Horwitz, Astrophys, J, Suppl. 33, 251 (1977), 
40, Lynden-Bell and R. Wood, Mon. Not. R, Astron, Soc. 138,495 (1968), 
50,H, Hardy, J.E, Littlewood, and O. Polya, Inequalities, 2nd ed, (Cam­
bridge U. p" Cambridge, England, 1959). 

6J. Ipser, Astrophys, J. 193,463 (1974). 
7J.J, Monaghan, Aust. J, Phys. 31, 95 (1978), 
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We investigate conditions for the existence of a decomposition of a Hermitian projector p into two 
Hermitian and time-reversal invariant operators Po and X under the form P = e 't' Po e- 't'. 
Sufficient conditions are given and an explicit construction of a decomposition is performed when 
they are fulfilled. A stronger theorem of existence and uniqueness is studied. 

PACS numbers: 05.30.Ch, 02.30.Tb 

INTRODUCTION 

The purpose of this paper is to study the following prob­
lem: Given a Hermitian projector p defined on a Hilbert 
space of quantal states, under which conditions (necessary or 
sufficient) there do exist two Hermitian and time-reversal 
invariant operators Po and X such that 

p = e'x Po e - iX • (1 ) 

Such a decomposition was first introduced by Baranger 
and Veneroni' and in the formulation of these authors it 
constitutes the starting point of the "adiabatic time-depen­
dent Hartree-Fock approximation" (ATDHF). In the 
framework of this formalism, the projector p is the reduced 
single-particle density operator of a system of independent 
spn-II2 particles. In the adiabatic limit, the decomposition 
(1) seems to be crucial to provide a relation between the time­
dependent Hartree-Fock approximation and phenomeno­
logical descriptions of collective motion such as the Copen­
hagen model. 2 

To our knowledge, the decomposition (1) has been used 
up to now only for single-particle density operators of nu­
clei. 3

•
4 The first studies of its validity5.6 have also been re­

stricted to this particular case. The proof of existence given 
here is valid for p-body reduced density matrices of a quan­
tum system, provided they are projectors and they satisfy 
some conditions specified in Sec. 2. Conditions for the exis­
tence of the decomposition (1) are investigated in some de­
tails: Their study has been partly neglected in the preceding 
works. Indeed, they were focused on the ATDHF approxi­
mation, where the assumed smallness of X makes the discus­
sion much simpler. 

For the sake of simplicity, the proofs given below are 
limited to a finite N-dimensional Hermitian space K. How­
ever, most of the results can be extended to infinite-dimen­
sional Hilbert spaces in the case wherep has a finite trace. All 
the operators involved are linear operators defined on $", 
except the antilinear time-reversal operator T. 

Section 1 is devoted to the study of some results con­
cerning quantum time-reversal which are used in Sees. 2 and 
3. Section 2 is the central part of this work. There the decom­
position theorem is demonstrated for the most general densi­
ty projection operator satisfying some sufficient conditions. 

"Laboratoire assode au C.N.R.S. 

Finally, we investigate in Sec. 3 some special conditions for 
the existence of the decomposition (1) for the reduced single­
particle density operator of a system of fermions. 

1. SOME USEFUL PROPERTIES OF QUANTUM TIME­
REVERSAL 

In this preliminary section we present some theorems 
which are essential for the demonstration of the existence 
theorem of Sec. 2. These results can be easily obtained from 
elementary properties of the time-reversal operator T(see, 
e.g., Ref. 7). 

In the following, the time-reversed of any linear opera­
tor A will be denoted by AT : AT = T + A T, and the time­
reversed of any vector lu) by 117) : 117) = Tlu). 

As is well known, the operator Tis antiunitary (i.e., Tis 
antilinear, and T + T = TT + = 1) and satisfies: 

T2 = ± 1. 

In the latter equation, the plus sign applies to any system of 
bosons, or to systems containing an even number of fer­
mions, the minus sign applies to an odd system offermions. 

The first results, stated in Theorems la and 1 b, provide 
criteria to identify a time-even Hermitian operator by its 
spectral representation, respectively in the cases T2 = 1 and 
T2 = - 1. 

Theorem 1: (a) (T2 = 1) A Hermitian operator is time­
even iff it is diagonalizable in a real orthogonal basis. 

(b) (T2 = - 1) A Hermitian operator A is time-even iff it 
is diagonalizable in an orthogonal basis of the type! lei)' 
lei); i = 1, ... ,N /2 J with the same eigenvalue associated to 
lei) and Ie,): 

NI2 
A = f A,(le,) (ei I + Ie,) (ei IJ, Ai E lR . (2) 

i= 1 

Notice from Eq. (2) that the multiplicity of any eigen­
value of a time-even Hermitian operator A is an even number 
when Tsatisfies T2 = - 1. When A is the Hamiltonian of an 
odd system of fermions, this property is known as Kramers 
degeneracy. If A is a projector, Eq. (2) implies that its trace is 
an even number. 

From Theorem 1, one gets readily the following proper­
ties of commuting Hermitian time-even operators: 

Theorem 2: (a) (T 2 = 1) Two Hermitian time-even oper­
ators which commute have a common complete orthogonal 
set of real eigenvectors. 
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(b) (T2 = - I) Two Hermitian time-even operators A 
and B which commute can be simultaneously diagonalized 
in an orthogonal basis of the type Ilei ),llei ) ;i = 1, ... ,N /2 J, 
such that 

i= 1 

j=l 

Theorems 2(a) and 2(b) permit us to obtain the following 
result, valid in both cases T 2 = 1 and T 2 = - 1: 

Theorem 3: (T2 = ± I) Let Ube a unitary operator. 
(i) A necessary and sufficient condition for the existence 

of a time-even operator A satisfying 

(3) 

is that 

Ur = U+ . 

(ii) There exists a unique operator A satisfying Eq. (3) 
and having its eigenvalues Ai lying in a given interval: 

Ai E [a,a + 217'[ . 

2. THE DECOMPOSITION THEOREM 

In the first part of this section we demonstrate the exis­
tence of two Hermitian and time-even operators Po and X 
satisfying Eq. (1), provided some conditions are fulfilled. The 
proof of the existence theorem is performed by exhibiting a 
particular solution (Po,X ), whose properties are studied in 
part B. Results of part B enable us to obtain, in Sec. (2 q, a 
new result, the decomposition theorem, which is stronger 
than the existence theorem proved in Sec. (2 A). 

A. The existence theorem 

Before stating the existence theorem, it is useful to men­
tion a preliminary result which permits us to formulate the 
conditions for the existence of the decomposition (1) in sever­
al equivalent ways. 

Preliminary result: Let P and P' be two Hermitian 
projections. 

The following assumptions are equivalent: 

(PIlIIP - p'll < 1.8 

(P2) The operator (1 - R) is regular, where 

R =(p -p'f, 
(p)) The unitary operator 

rr' = (2p - 1)(2p' - I) 

does not admit the eigenvalue v = - I. 

(P4 ) The projectorsp andp' do not have any common 
eigenvector corresponding to different eigenvalues of p and 
p'. 

The proof of these equivalences, being lengthy but rath­
er straightforward, is left to the reader. 

Existence theorem: Letp be a Hermitian projector andpr its 
time-reversed. If P and Pr satisfy the equivalent hypotheses 

353 J. Math. Phys., Vol. 22, No.2, February 1981 

two operators Po and X such that 

p = e ix Po e - iX , 

Po = Pot = (Po)r, 

X=xt =Xr' 

(1) 

(4) 

(5) 

Lemma: Let p be a Hermitian projector and Pr its time­
reversed. Ifp andpr satisfy the hypotheses (P;), there exists a 
time-even Hermitian operator X such that 

Pr = e - 2iX P e 2ix • (6) 

Proof The proof given here is suggested by results concern­
ing pairs of projectors which can be found in Refs. 9, to. 

Consider the Hermitian and time-even operator: 

1-R=I-(P-Prf, 

which has the obvious property: 

[l-R,p] = [1-R,Pr] =0. (7) 

Since p and Pr satisfy (Pi)' this operator is strictly positive, 
and one can define a Hermitian inverse square root 
(1 - R )-1/2. 

Let us define: 

U = [PPr + (1 -p)(1 -Pr)](1 - R )-1/2 

= (1- R )-1/2[PPr + (1 -p)(1 -Pr)]' (8) 

One can easily show that 

(i) U is unitary, 
(ii) Ur =ut, 
(iii) Pr = U t pU. (9) 

According to Theorem 3, one can find an operator X fulfill­
ing Eqs. (5) and (6), and such that 

(10) 

which proves the Lemma. 
To achieve the proof of the theorem, it remains to verify 

that the Hermitian projector Po defined by 

Po = e - iX P eix (11) 

is time-even, which is a direct consequence of the time-rever­
sal in variance of X. 

Before proceeding further, it is worth stressing the fol­
lowing point: We have shown the existence of a time-even 
Hermitian operator X satisfying (6) by referring to Theorem 
3. However, such an operator X is not yet univocally defined, 
since: (i) the operator (1 - R )-1/2 used in the construction of 
U can be defined in several different ways; (ii) it remains to 
specify the interval of definition of the eigenvalues of X. In 
order to remove all these ambiguities, we first note that the 
operator U used to define X by Eq. (10) has the property 

(12) 
with r = (2p - 1). Equation (12) can be obtained from the 
definition (8) of U, by use ofEq. (7) and of the involutive 
character of rand r r' According to Theorem 3, there is a 
unique operator X satisfying (12) and having all its eigenval­
ues in some given interval [a,a + 17'/2[. We define X by 
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choosing a = - 1T/4. Since the condition (P3 ) excludes the 
eigenvalue Vu = - 1 for the operator e 4iX, the eigenvalues 
Au of X all belong to the open interval: 

Au E ] - 1T/ /4, 1T/4[. (13) 

Incidentally, we emphasize that the operator X just de­
fined is identical to that defined by Baranger and Veneroni. I 
This was not apparent up to now, but is clearly illustrated by 
Eqs. (12) and (13). Following the terminology of Ref. 1, we 
will call the decomposition defined by such an operator X, 
and the operator Po constructed from X by Eq. (11), the "nat­
ural" decomposition. II 

Notice that in the above definition of X, the condition 
(P3 ) is dissimulated in Eq. (13), whereas the equivalent hy­
pothesis (P 2) was needed at the very first to define U through 
Eq. (8). These conditions (Pi) were not mentioned in Ref. 1, 
whose authors were interested in the decomposition theorem 
for operators X small compared to unity (Au « 1): this as­
sumption guarantees the fulfilment of (Pi ), and therefore en­
sures the existence of the decomposition (1) submitted to (4) 
and (5). 

B. Further properties of the natural decomposition 

Let us now investigate characteristic properties of the 
natural decomposition constructed in Sec. (2 A). 

From the definition (12), (13) of X, it is clear that for any 
eigenvector lu) of the diagonalizable operator rTT (rTT is 
unitary): 

rTTlu) = Vu lu) , (14) 

one has: 

xlu) = Au lu) , (15) 

with Au defined by Eq. (13) and by 

(16) 

One can also easily show that 

1"1"Arlu») = ~(1"Iu») (17) 

for any lu) solution ofEq. (14), which leads to 

(18) 

As a consequence ofEqs. (15) and (18), the operator X of the 
natural decomposition satisfies 

X1"+ 1"X=0, (19) 

which can be written equivalently as 

XP +PX = XPo +PoX = X (20) 

or as 

PXP = (l-p)X(1-p) = O. (21) 

If P is the one-body reduced density operator of a spin-l/2 
particle system, Eq. (21) means that the operator X has only 
particle-hole and hole-particle matrix elements. 

To further study the natural decomposition, one can 
state the fOllowing lemma (whose proof is straightforward): 

Lemma: Let X be a Hermitian operator such that 
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X1"+1"X=0. 

Then X satisfies e 4iy = 1"1" T' As an immediate conse­
quence, the natural decomposition is the only one fulfilling 
(13) and having the property (19) (see Theorem 3). 

C. Decomposition theorem 

The main results established up to now can be summa­
rized as follows: 

(a) Assuming the conditions (Pi) satisfied by P and PT' 
we have constructed a Hermitian operator X solution ofEq. 
(6). This operator X is shown to be time-even. 

(b) We have seen that Eq. (19) [added to the condition 
(13)] is a characteristic property of this particular solution. 

(c) The Hermitian operator Po, constructed from X and 
P by Eq. (11), is time-even. 

These results can be collected into the following 
statement. 

Decomposition theorem: Letp be a Hermitian projection, and 
T the time-reversal antiunitary operator satisfying 
T2 = ± 1. 

The equivalent assumptions (Pi) for P andpT are neces­
sary and sufficient conditions for the existence of a unqiue 
set of Hermitian operators Po and X such that 

(i) XPo + PoX = X, (20) 
(ii) all the eigenvalues of X lie within the interval 
] - 1T/4, 1T/4[, (13) 
(iii) P = e'l: Po e - iy • (1) 

The two operators Po and X are time-even. 
N.B.: (1) By rearranging the results (a)-(c) in different 

ways, one can obtain several other formulations (not com­
pletely equivalent) of the decomposition theorem (see, e.g., 
Ref. 12). 

(2) In the statement given above, the conditions (Pi) 
appear as necessary. This is obvious, since the violation of 
(Pi) would lead to the occurrence of at least one eigenvalue 
Au = ± 1T/4 for X, which would be in contradiction with the 
requirement (ii). We would like to point out that a stronger 
result is available, by replacing the open interval in (ii) by a 
semiopen interval. The proof would go as follows: One 
shows that Eqs. (12) and (20) cannot be simultaneously ful­
filled by an operator X having an eigenvalue Au = ± 1T/4. 

3. SOME IMPLICATIONS FOR SYSTEMS OF SPIN-1/2 
PARTICLES 

Let us turn back to the existence theorem, studied in 
Sec. (2 A). This theorem has been proved under some suffi­
cient conditions (P i)' expressed up to now in a mathematical 
language. By looking at systems of spin-l/2 particles, we will 
now investigate necessary conditions of existence, and also 
get some light about their physical content. 

From now onp will be a one-body reduced density oper­
ator describing a system of spin-l /2 particles. If the decom­
position (1) exists, the trace of the time-even Hermitian pro­
jection Po is an even number (see Sec. 1). Since p is deduced 
from Po by a unitary transformation, we conclude that 
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Trp = 2p, pEN. (22) 

As a necessary condition for existence, Eq. (22) implies that 
no decomposition (1) fulfilling Eqs. (4) and (5) can be found 
for the reduced one-body density operator of an odd system 
offermions. Property (22), which did not appear in the proof 
given in Sec. (2 A), has just been shown "a posteriori" to be a 
consequence of the sufficient conditions (PJ. We directly 
show in the Appendix that (Pi) implies (22). 

We now consider the case where the single-particle 
states are normalized eigenstates 1 ± > of the spin operator 
Sz: 

p = p" ® 1 + ) (+ 1 + pd ® 1 - ) ( - 1 . (23) 

It might be of interest to ask under which conditions on 
the spatial parts p " and p d of p there exists a decomposition 
(1) satisfying (4) and (5), such that the spin states 1 ± > are 
eigenvectors of X. Added to the requirements for X to be 
Hermitian and time-even, this condition constrains X to be of 
the form: 

X = X" ® 1 + > ( + 1 + X~ ® 1- > ( - 1 , (24) 

with 

X" = (xT· (25) 

We will now show that the property 

(26) 

with n" = Trp " and nd = Trp d, is a necessary condition 13 for 
the existence of a decomposition (1) satisfying the require­
ments (4), (5), (23), and (24). This is easily seen by computing 
the operator e2iXpT e - 2,1' , which must be equal to p when a 
decomposition (6) submitted to (24) and (25) exists. One gets 

p" = exp(2ix") p~ exp( - 2iX") . 

Since X " is Hermitian, this implies 

Trp" = Trp~ = Trpd , 

which shows (26). 

To end up this section, let us see how the condition (26) 
is contained in the assumptions (Pi) for p and PT' We first 
note that the conditions (Pi) are satisfied by p and PT if, and 
only if they are satisfied by p " and p~. (The proof of this 
result is elementary.) In particular, the fulfilment of (Pi ) by P 
and PT requires that 

(27) 

As shown by Sz.-Nagy,9 this property implies (26) (see also 
Ref. 14 ). We will not demonstrate this well known result, but 
simply mention that it can be derived by exactly the same 
procedure as used in the proof of the existence theorem: 
Equation (27) allows to define 

V= lP"p~ + (l-p")(l -p~)][l - (pu _p~f]-1(2. 

The unitary operator Vis easily shown to transformp" into 

P
d. 
T' 

which leads to (26). 
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SUMMARY AND COMMENTS 

The essential results obtained in the present work are 
the existence and the decomposition theorems given in Sec. 
2. 

The first theorem states the existence of a decomposi­
tion fulfilling Eqs. (1), (4), and (5) for any projection operator 
p which, together with its time-reversedpT, satisfies the con­
ditions (Pi)' Since this result has been demonstrated by the 
explicit construction of a particular solution (the so-called 
natural decomposition), the conditions (Pi) appear as suffi­
cient, but not a priori necessary. Investigation of necessary 
conditions for the existence has been made in Sec. 3 for the 
reduced one-body density operator of a system of spin-lI2 
particles. We did not discuss the possible uniqueness of (1) 
submitted to (4), (5), and to the condition (13) for the eigen­
values of X. Actually, it can be shown in some specific phys­
ical situations that such uniqueness is not true. A counter­
example is given by the density operator obtained from a 
solution of the static Hartree-Fock equation by a Galilean 
transformation. 1.5 

In order to get an existence-plus-uniqueness theorem, 
we have investigated characteristic properties of the natural 
decomposition. These properties are the reduction (13) of 
the interval of definition for the eigenvalues of X and the 
relation (20). Added as supplementary conditions to Eqs. (4) 
and (5), they ensure uniqueness and lead to the decomposi­
tion theorem. 

To end up this summary of our mathematical study, we 
point out that the choice of a finite N-dimensional space, 
made here for the sake of simplicity, is not a real restriction, 
at least as far as the existence theorem for projection opera­
tors of finite trace is concerned. Indeed, as shown in the 
Appendix, the significant space to consider in this case is the 
linear sum (.9? + .9? T)' which is a Hermitian finite space. 

Coming back to physics, one can ask about the conse­
quences of the nonuniqueness of(1) submitted to the condi­
tions (4), (5), and (13). Does it induce ambiguities in the 
physical results? An answer to this question is known when 
the decomposition (1) is used in the framework of the 
A TDHF approximation. Indeed, it has been shown in Ref. I 
that all the possible sets of operators (Po,X ) fulfilling (1), (4), 
and (5) lead to equivalent dynamics; thus condition (20) does 
not appear a posteriori as a physical limitation, and can be 
legitimately imposed in practical calculations, as done in 
Refs. 5,15. 

The proofs given above are not restricted to reduced 
one-body densities, although up to now all the applications 
concern the time-dependent Hartree-Fock approximation. 
It might be of some interest that these proofs apply to any 
finite-dimensional projections satisfying conditions (Pi ), and 
therefore to a larger class of n-body operators. 
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APPENDIX 

We restrict ourselves to a space JY' generated by the p­
body states of a system of fermions and such that the time-
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reversal operator has the property T2 = -I (i.e.,p is an odd 
number). If JY is a single-particle space, what follows con­
cerns the reduced single-particle density operator used for 
instance in the Hartree-Fock approximation. 

We will show directly (another proof is given in Sec. 3) 
that the fulfilment of conditions (P i) for P and its time-re­
versed PT requires: 

Trp = 2p, pEN. 

Let !!It and !?it r be the subspaces on to which P and P r 
project: 

&? = p(K), &? T = PTe K). 

From its definition, it is clear that the operator 

71"] -1 =4pPT -2(p + PT) 

transforms each vector of JY into a vector of the linear sum 
(!!It + !!ItT): 

(rr T -1)lu) = IUt) + IU2) , 

with lu I) E !?it, \uz) E !?it T' Hence, (&? + :J( T) is an invar­
iant subspace of (rr T -1), and we can define the restriction 
fl of the operator (rr T -1) to the subspace (!?it + :J( r). 

then 

and 

To study the spectrum of fl, we note that if 

fllu) = (/iA" -1)lu) , 

fl(r\u» = (e- 4;A"_I}r\u) , 

fllu) = (/IA" -1)1 u) , 

fl (T T I u) ) = (e -4; A" -I) T T IU) . 

All the vectors lu), riu), iu), TTlii} belong clearly to 
(!?it + :J( r)' The dimensionality of the subspace Y u generat­
ed by these four vectors (all generated from a given I u») can 
be different in the case where e4iA

" is real and in the opposite 
case. 

(i) If /iA,,=/= ± I, these four vectors span a four-dimen­
sional space Y,,' since the two sets (\ u), I ii) ) and 
(Tiu),Tr Iii») correspond to different eigenvalues of fl, and 
the two vectors of each set are linearly independent [see Refs. 
7]. 

(ii) The case /')." = - 1 cannot occur if the condition 
(P 3) is required. 

(iii) If /i)." = 1, the four eigenvectors are associated with 
the same eigenvalue zero of fl. To study the dimensionality 
of Y u , we shall use the following property. 

Lemma: Letp andp' be two Hermitian projectors. Each 
vector I u) satisfying 

plu) =p'\u) 

is a common eigenvector of P and p': 

plu) =p'lu) =/Llu) . 

Let us consider the eigenvector I u) of fl associated with 
the eigenvalue (e 4;A" - I) = O. It is easily seen that such vec­
tors satisfy 
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plu) =Prlu), 

and the Lemma ensures that 

plu) =Prl u ) = lu). (AI) 

Therefore, the subspace Y u in the case e 4;A" = I is just: 

Yu=&?n&?r. 

This space is of dimensionality 2 or 4, since Eq. (A I) implies 

PT Iii) = plu) = lu) , 

with (ulU) = o. 
To summarize, we have obtained the results 

dim(gp n :J( T) = 2n, n EN, 

dim(gp + &? T) = 2n +4k, kEN. 

As is well known, 

(A2) 

(A3) 

dime gp + :J( T) + dim(.9i' n :J( T) = dim:J( + dim.9i' 1 

Since 

dim8i? = dim:J( r , (A4) 

one gets from (A2)-(A4) the final result 

Trp = dimSf = 2(k + n) = 2p, pEN. 
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In this work, we develop the quantum field theory formalism in the curved space-time for the case 
of massive vector field, using the Quantum Equivalence Principle previously introduced. With 
this principle and for a particular model for expanding universe-spatially flat Robertson­
Walker metric-an adequate particle model is obtained. The mean density of created particles for 
the corresponding Bogolyubov transformation is finite. 

PACS numbers: 11.10. - z, 04.60. + n 

1. INTRODUCTION 

The Quantum Equivalence Principle (QEP) has been 
introduced in previous works (cf. Refs. 1 and 2). In the case of 
a scalar material field the QEP enabled us to find an ade­
quate particle model in the curved space-time. With this 
model we obtained a Bogolyubov transformation, which led 
to the creation of a finite number of particles. Dealing in this 
way with the problem of generalizing the flat space-time 
field theory into the curved space-time field theory, essen­
cially consists in treating the material field as a quantized 
one, and to introduce through the metric used, the gravita­
tional field as an unquantized classical external one. 

Lichnerowicz developed the mathematical formalism 
of the fields' theory in a curved space-time for the fundamen­
tal fields (cf. Refs. 3,4, and 5). Afterwards the problem of a 
real scalar field has been treated in various works.~JO The 
existence of ambiguities derived from the developing of a 
particle model in the curved space-time followed. These am­
biguities lead to a possible existence of a mechanism of creat­
ing particles which is called the Bogolyubov transformation. 
Unfortunatly the Bogolyubov transformation for certain 
particle models produces an infinite number of particles. 

As was shown in Refs. I and 2 for a real scalar field, one 
of the fundamental problems is that the so-called Lich­
nerowicz conditions do not determine in a unique way the 
biscalar kernel Gt(x,x') of the curved space-time that is the 
generalization of the kernel..::1 t (x - x') of the flat space-time. 
One way to solve this problem is to suppose the existence of a 
different decomposition for the solutions of positive frequen­
cies (and negative ones) for each normal Cauchy hypersur­
face ~ of the curved space-time. This curved space-time is 
supposed globaly hyperbolic and endowed with normal 
Cauchy hypersurface (cf. Ref. 2). This fact led us to suppose 
that there is a different kernel G I~ I(X,X') for each normal 
Cauchy hypersurface~. In each normal Cauchy hypersur­
face ~ a proper kernel G IIII(X,x') will be determined, when 
their Cauchy data on each hypersurface ~ are given. 

The QEP, which enabled us to solve this problem satis-

"Pellow ofConsejo Nacional de Investigaciones Cientificas y Tecnicas, 
Argentina. 

factorily, essencially consists in choosing the Cauchy data in 
such a way so as to make the kernel G~I(x,x') of the curved 
space-time as similar as possible to the kernel..::1 t (x - x') of 
the flat space-time, on the normal Cauchy Hypersurface ~. 

In the present work we are going to use this proposition 
for a real massive vector field with the spatially flat Robert­
son-Walker metric. 

In Sec. 2, we are going to develop briefly, the Lagran­
gian formalism for a real massive vector field in the curved 
space-time. 

In Sec. 3, we deal with the Cauchy problem for a vector 
field, and we show, generalizing a Lichnerowicz theorem (cf. 
Ref. 3), the existence of a bitensorial kernel X"'/(x,x') (1-
tensor in x, I-tensor in x') that in a unique way solves the 
Cauchy problem. 

In Sec. 4, we study, for the particle model proposed in 
the curved space-time, the decomposition into positive and 
negative frequencies. 

In Sec. 5, we outline the Bogolyubov transformation for 
the vector field. 

In Sec. 6, we find the solution of the field equations for 
the particular case of the spatially flat Robertson-Walker 
metric. 

In Sec. 7, making use of the QEP, we find an adequate 
bitensorial kernel XiII,,, (x,x') for each normal Cauchy hy­
persurface ~. 

In Sec. 8, we find the initial conditions for the solutions 
of positive and negative frequencies which result from re­
quiring the diagonalization of the Hamiltonian operator. 

Finally, in Sec. 9 it is shown that the initial conditions 
for the solutions of positive and negative frequencies, result­
ing from the QEP, are those which originate a Bogolyubov 
transformation for which the density of created particles is 
finite. The initial condition obtained from the diagonaliza­
tion of the Hamiltonian operator led to an infinite density of 
created particles; consequently they cannot be used. 

2. LAGRANGIAN FORMALISM 

With the aim of constructing a model of massive spin-l 
particles in a curved space-time, we start from the following 
action integral II : 
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s= f ~j;!{ -~gVq(qJV;IL -qJl';v)(qJq;p -qJp;u) 

+ ~m2g1'l'qJl'qJl' J d 4x. (2.1) 

The variation of the action integral (2.1) leads us to the 
following equation for the field qJl': 

-g"PqJ ':a;p + R ~qJ a + qJ~: - m2cp {3 = O. (2.2) 

Equation (2.2) involves the following two equations: 

(..1 - m 2 jcp{3 = 0, (2.3) 

(2.4) 

where..1~ = - g"Pcp':a;p + R ~qJ a is the Rham Laplacian 
(cf. Ref. 3) for a vector field. 

The energy-momentum tensor of the massive vector 
field, as obtained from (2.1) is 

2 8S 
T{3=----

a ~j;! 8g"{3 

= ~ [ga{3g1'PgVo- - gVo-(8'~ 8p + 8plY:, ) 

- gl'P(8~ 8p + 8p8~ ) ] fl'l' 1;,0-

- ~m2ga{3g1'vcpl' qJl' + ~m2(qJaqJ{3 + CP{3qJa)' 

where./;,v = aILCPl' - avqJw 

(2.5) 

The energy-momentum tensor (2.5) satisfies the follow-
ing two conditions: 

Ta{3 = T{3a' (2.6) 

r'{3;a = O. (2.7) 

From (2.5), and for the particular case of the Robert-
son-Walker metric, which is 

ds2 = dt 2 _ a2(t )[dx2 + dy2 + dz2], (2.8) 

and which is going to be studied later on; the following ex­
pressions are obtained for the components Too and To; of the 
energy-momentum tensor: 

Too = (l/2a2
) "ilo) fo) + (l/2a4

) "i/;AqJ) 
J ij 

To; = (l/2a2
) "iIoAqJ)· 

) 

Equation (2.7) for {3 = i and for the metric (2.8) is 

(2.9) 

(2.10) 

- a -
Tf;a = (l/~Igl) axu (~Igl Tf)=O. (2.11) 

The integration of Eqs. (2.11) in the four-dimensional 
space leads to the conservation of the quantity 

E: = a3(t) ( TO; d 3x. 
Jr = const. 

(2.12) 

To obtain the spin operator we use the infinitesimal 
transformation of rotation. The total variation of action (2.1) 
is 

8S= i d 4 x8(2" ~j;!) + 1 ~j;! 2"<5(d 4x), (2.13) 

where R is a finite region of V4 • 
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We make the following infinitesimal transformations of 
coordinates 

x'!' = xl' + 8XIL = xl' + SIL(X). (2.14) 

If the transfo~ation is such that ~ga{3 = - ( S{3;a 
+ S a;(3) = 0, where <5ga{3 indicates only the variation in the 

form of the function ga{3' Eq. (2.13) results: 

8S= ( ~ [a(2" Jlgl) 8 
JR axl' a (aqJl'lax l') qJl' 

+ 2" ~j;! sv] d 4x, (2.15) 

where gqJl' indicates only the variation in the form of the 
function qJl" Let us consider an infinitesimal transformation 

of rotation, with S I' = uf' "xv, where uf'l' are the infinitesimal 
constant parameters of rotation and, moreover, uf'l' 
= - W

V11 (uf'v not constant). Using (2.15), it is possible to 
define, as is usual, the zero component of the spin angular 
momentum tensor density Y['a,{3 1 in the following way: 

yo T = _ a (2" ~Igl) (g ...I3 T
tn _8Ttn ) (2.16) 

a a(aqJl'laxO) l'aS T{3 I' Ta . 

In particular we are interested in the component Y~ 2 

which, for the metric (2.8), results in 

(2.17) 

Therefore the spatial density of the third component of 
the spin vector S will be: 

S3 = f Y~ 2d 3X = a f d 3X (f02qJj - fOjqJ2)' (2.18) 

3. THE CAUCHY PROBLEM FOR MASSIVE VECTOR 
FIELDS 

We are now going to obtain the solution for the 
equation 

(..1 - m2)qJv(x) = 0 (3.1) 

that satisfies the following boundary conditions on an spatial 
hypersurface ~: 

qJl'(y)=qJ~l, nPVpqJv(y)=¢~I, (3.2) 

where yu and nP is the unitary normal vector in each point 
of ~ (Cauchy problem). We are also going to show now, 
generalizing a Lichnerowicz theorem (cf. Ref. 3), the exis­
tence of a bitensorial distribution Gl'l" (x,x') (l-tensorin x, 1-
tensor in x') that will enable us to solve the Cauchy problem. 
To do so, we write the solution in the following way: 

qJJi(x) = L [Gl'v,(x,x')Vp'qJ~'1 
,,' V G ( ')] P'd ' - cP Ix') p' ILl" x,x n a , (3.3) 

withx'u. 
In Ref. 3, it is shown that if U and V are two vector 

fields, they satisfy 

[(..1 - m2)VL, UJi - ~L [(..1 - m2)U)I' 

- Vp[U"Vp Va - vavp U,,]. (3.4) 
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It is known that there are two elementary kernels 
E "'~ (x,x') and E "'-;" (X,x/), whose support are respectively 
in the future and in the past of x'. These kernels are deter­
mined, in a unique way, by the following properties: 

E fl~' (x,x') = E I:' (x' ,x), 
(3.5) 

(.1 x - m2 lE fl~' (x,x') = t5flv' (x,x'), 

where 0flV ' (x,x') = :Tflv' (X,x')O(X,X') and Y fll', (x, x' = x) 
=gflV(X). 

Ifwe define 

{A - (cp )} pl" = E A-;" (x,x')V pcp~) - cp 1Xl V pE A-;" (x,x'), 
(3.6) 

and in (3.4) we let VA~ A and UA _E A-;" it follows that 

- VP{A - (ip II pv' = [(.1 x - m2 )<p (x)fE A-;" (x,x') 

- ip A (x) [(.1 x - m2)E - (x,x'llu (3.7) 

= [(.1 x - m2 )ip (xWE h'(X,x') 

- ip A (x)o..tv' (x,x'). 

We consider in the four-dimensional space two regions, n' 
and n " separated by a spatial hypersurface..E. The if vector 
is orientated from n " toll I. Ifipvis the solution oftheequa­
tion (.1 - m2

) ip" = 0, Eq. (3.7) involves 

VP{A - (ip )jpl" = ip A (x)t5Av' (x,x'). (3.8) 

Using Stokes thorem we write 

r VP{A - (ip ))pv,d 4x = FluxIA - (ip). (3.9) 
Jw 
Taking into account (3.8) and (3.9) it follows that 

FluxIA - (ip ) = ipl" (X')E'(X'), (3.10) 

where 

{
I 'f x'Efl" 

E'(X') = 0 ~f x'Efl" 

Ifwe define 

{A + (ip )jpv' =E A~'(X,x')VpipA(X) - ipA(x)VpEA~'(X,x') 

we obtain 

FluxIA + (ip ) = - ipl" (X')E" (x'), 

where 

{
I if x'Efl' 

E"(X') = ° if x'Efl II' 

(3.11) 

Subtracting expression (3.10) from (3.11), there results 

- Flux(A + (ip ) - A - (ip )) = ipv' (x'), 

and taking into account the definitions of A + and A - we 
see that Eq. (3.3) holds, baving as a result 

Gflv' (x,x') = E fl~' (x,x') - E';V' (x,x'). 

It is easy to show that if the kernel Gfll', (x,x') satisfies 
(3.3), it must have the following properties: 

Gfll',(x,x') = 0, 

nPVPG!"l"(x,x') = :Tflv'o(x,x'), 
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nPno'Vp V o'Gpv' (x,x') = 0, 

for x,x'e.I. 
We are going to deal now with the solution of the fol­

lowing system of equations: 

(.1 - m 2)<Pv = 0, (3.12) 

V vip" = 0. (3.13) 

It will be shown that if the following conditions are imposed: 

Vfl~(Y) = 0, npap(v!1ip!1)(y) = 0, ye.I (3.14) 

on a ip!1 (x) field that satisfies (3.12), then the field has covar­
iant divergence equal to zero in all the points of the space­
time. 

Taking into account that 

V", ((.1 - m2 )<p]'" = (.1 - m2 )(Vflcp!1) 

and as ¢(x) satisfies (3.12) it results that 

(.1 - m2)(V flip"') = 0. (3.15) 

The covariant divergence V fl ¢ satisfies (3. t 5) and the 
boundary conditions (3.14). Using the Cauchy problem solu­
tion for a scalar field it follows that V Il- ¢ = ° holds for all 
the points of the curved space-time. In this way we have 
shown that the system of equations (3.12) and (3.13) is equiv­
alent to Eq. (3.12) with the boundary conditions (3.14) on the 
hypersurface..E. The kernel G flV' (x,x'), defined above, satis­
fies Eq. (3.12) but has no covariant divergence equal to zero. 
It is easily shown that, in the case of a vector field with covar­
iant divergence equal to zero, the kernel GflV' (x,x') in (3.3) is 
replaced by: 

V V, 
XflV' (x,x') = Gil-v' (x,x'l - ~G (x,x'l, (3.16) 

m 
where G (x,x') is the kernel of the solution of the Cauchy 
problem for a scalar field. 

Therefore we have the result 

ipfl(X) = L [XflA ,(x,x'IVp'ip A '(x') 

- ip A '(x'IVp'Xfl.l' (x,x') ]nP ' du'. (3.17) 

Moreover, as XflV' (x,x') satisfies the equations 

(.1 x - m2)XflV'(x,x') = gPI"VPXflV'(X,X') = 0, 

this kernel has the proper properties to be considered the 
commutators of the massive vector field 

[ipfl (x);ipv' (x')] = iXflv' (x,x'). 

4. BASE OF SOLUTIONS AND DECOMPOSITION IN 
POSITIVE AND NEGATIVE FREQUENCIES 

In order to establish orthogonal conditions on the solu­
tions of the field equations, it is necessary to define an inner 
product . .I being a Cauchy hypersurface and uP and uP two 
vector fields, we define: 

(u'\VA,) I = i L [( Vp~.l )VA - ~.l(VPVA) )np du 

= i L 8p n P du. (4.1) 

Ifu P and VV are solutions ofEq. (3.1) it is easy to show 
that the inner product, defined in this way, does not depend 
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upon the hypersurface~. It is also shown that 

(u'''v,,) = (v-',u,,)*, 

so that the product is Hermitian, and therefore (u",u,,) is 
real. It is important to emphasize that (u",u,,) is not a posi­
tive definite number. It can be shown using (4.1), that if 

We stress that ()p in (4.1), with uP = if is the usual four­
vector current when the field is complex. 

Using (4.1), the Cauchy problem solution (3.17) is 

ipu(x)=i(Xliv'(x,x');ip(~,}), x/~. (4.2) 

* Let [ I/J fa) J u [ I/J fal J be a basis of the space of complex 

solutions of Eqs. (3.12) and (3.13), where (a) is a pair of indi­
ces, one, ~, continuous and the other s discrete (to denote 
momentum and spin, respectively, as we are going to see 
later on). This basis will be called orthonormal if it satisfies 

(I/J ~s ;1/J1''i's' > = - 8(~ - ~ ')8ss" 

(¢ ~s;¢ I'~'s') = 8(~ - ~ /)Oss' , (4.3) 

(1/J1~s;¢ I''i's') =0. 

Any solution of the system of Eqs. (3.12) and (3.13) will 
be expanded in this basis in the following way: 

~(x) = Id3~(a'isl/J~s(XI +;) 
s 

where the coefficients of the expansion satisfy 

a"s = - (I/Jt(x');ipp'(x'), 
(4.5) 

* In the quantization process the coefficients a,,-s and a,,-s 

become the operators that satisfy the following relations of 
commutation: 

[a,,-,;a0s'] = 8(~ - ~ ')8ss'· 

Replacing the expressions (4.5) in (4.4) results in 

ipfxl = (f d3~~ {1/J~s(XI¢ ~~(x') 

- J~s (X)I/J~~(X')} ;ipP'(X')). (4.6) 

Comparing (4.6) with (4.2) we see that we have obtained the 
development of the kernel X I'P' (x,x') in the basis 

* ! I/J ts J u! I/J ts I 

XI'P'(x,x')=i f d3~~ {I/Jts(x)¢ ts(x/)-;~s(X)I/J~,:(X')}. 
(4.7) 

With the aim of performing the quantization in the 
curved space-time, it is necessary to generalize, in some way, 
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the decomposition into positive and negative frequencies of 
the fields' theory of the fiat space-time. Taking into account 
(4.6), the ~(x) field can be decomposed in the following way: 

'" e 
ip I'(x) = ip I'(x) + ip I'(x), 

where 

(4.8) 

Considering the orthogonality conditions (4.3) it is pos­
sible to find that 

(~(X), ;I'(X)) >0, 

(~(X), ;I'(X)) <0, 

.. e 
therefore we shall assign ip and ip to the parts of positive and 

negative frequencies, respectively. 
Now defining 

;I'P'(x, x') = i f d3~~l/Jts(X);;(X')' 
;I'P'(x, x') = - i f d 3~~;t(X)I/J~~(X')' 

it is possible to write 

;1i(X) = {i'I'P'(x, x'); ipp'(X')), 

;I'(x) = i(XI'P'(X, x'); ipp'(x/)). 

.. 
We have to notice that the kernels XI'P'(x, x') and 

e 
XI'P'(x, x') of the curved space-time, playa role similar to 

that of the kernels.d ., I'P(x - x') and .d el'P(x - x') of the 
field theory of the fiat space-time. 

It is possible to generalize the .d ~P(x - x') kernel, 
defining 

X~P'(x, x') = {XI'P' - XI'P)tx, x') 

= f d3~~{¢ts(X)I/J~~(X') + ¢~~ (x/) I/Jts(X)} . 

(4.9) 

There is an important difference between the properties 
oftheXI'P'(x, x') and X~P'(x, x') kernels. While the kernel 
X I'P/ (x, x') is unique, and therefore, when it is written in the 
form (4.7) results in being independent ofthe selected basis 
II/J~s Juli/J t: I, the kernel X~P'(x, x') is not independent of 
the basis. this is due to the fact that the vector sets of positive 
and negative norm do not constitute a vectorial subspace. 

In Refs. 1 and 2, the impossibility of determining a 
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unique kernel G l(X, x') for the case of the scalar field has been 
largely discussed. To solve the problem we suppose that a 
kernel G \l:I(X, x') exists for each Cauchy hypersurface l:. In a 
similar way we can solve the problem in the case of a vector 
field. We suppose that there is a different decomposition of 
solutions of positive (and negative) frequencies, for each 
Cauchy hypersurface l: of the curve space-time. Conse­
quently, there is going to be a kernel X\l:IJLP'(x, x'), different 
for each Cauchy hypersurface l:. This fact of nonuniqueness 
of the kernel X\l:IJLP'(x, x') is also shown when the Bogolyu­
bov tran!'formation is performed. While the kernel X JLP' (x, x') 
is invariant under a transformation of this type, X fP' (x, x') is 
not (cf., e.g., Ref. 9). As was said in the introduction, we are 
going to consider the Bogolyubov transformation as a possi­
ble mechanism for particle creation. In the next section we 
shall analyze, for the case of a vector field, this 
transformation. 

5. BOGOl YUBOV TRANSFORMATION 

Let [1,6 ~~-IJL j u[ 1,6 fslJL*j be a basis of the space of solu­
tions of the equations-(3.12) and (3.13) that satisfy the initial 
conditions in the time t = Y; and [1,6 \;;,IJLjU[<P tiY'IJLj the 
basis of the space of solutions that satfsfy the initial condi­
tions in the time t = Y' (cf. Ref. 12). As both sets offunc­
tions are basis solutions of the space of complex solutions of 
the same differential equations, there will have to be such 
adequate complex coefficients aks,k 's' and /3ks,k 's' as will en­
able us to write a set of solutions-of one function in terms of 
another, in the following way: 

(5.1) 

This means that a classical solution, which is a solution 
of positive (or negative) frequencies in the "out" region, is a 
mixture of solutions of positive and negative frequencies in 
the "in" region and vice versa. As we shall see in Sec. 6, for 
the type of metric used, we are going to take as the basis of 
solutions those with well defined linear momentum k. Equa-
tion (5.1) is then reduced to: -

I~\(X) = I{a~s/;I)~S/(X) +/3_~ss,I'/i/*JL_~S/(X)}' (5.2) 
51 

and therefore 

Ifl* (* I·T,I* * I,T'I ) 
1,6 ~s(x) = ~ a~ss' 1,6 ~S/ (x) + /3 _ ~ss' 1,6 JL_ '?, (x) . (5.3) 

From Eqs. (5.2), (5.3), and (4.4) the following Bogolyu­
bov transformation on the a,? and a + ~s operators results: 

(5.4) 
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; I·Y'I_ I{a· a+ IYI +/3 aIYI } ks, - kss' ks kss' - ks . - - - - -
s 

(5.5) 

Using the orthogonality conditions (4.3) in Y and in 
Y' and taking into account (5.2) and (5.3) we arrive to the 
following equations for the akss' and /3kss' coefficients: 

- -

I(a~s'~~sos' -/3-~ss'P _~os') =osso, 
s 

(5.6) 

,,+(p _ ~,~ _ ~sOs' - ~~s'P ~s"s') = O. (5.7) 

On the other hand, if we suppose that in the time t = Y 
the universe is in the 10) ,<y- vacuum-state, we have the result 

N I,YIIO) - - a + IYlaIYIIO) - 0 
~ y-~ ~ y-, 

where N \;;1 is the operator number of particles in the k mode 
and s spin component. Making use of Eqs. (5.4) and [5.5) it 
follows that the mean number of particles present, in the k 
mode, and with s spin components, in a (La(t ))3 volume and 
in a time Y' > Y is, 

Therefore the mean density of particles present in the 
timeY'>Yis 

NP'-'I = lim 1 "(0INI5TI)I0)c . 
L~oo [La(t IF fsY ~r, 

replacing l:~_(L 1211')3 fd 3~ leads to 

NI,T'I = 1 Jd 3k II/3ks'S 12. 
[21Ta(t IF - ss' -

(5.8) 

The necessary and sufficient condition to obtain finite 
mean density of particles must be 

(5.9) 

6. SOLUTION OF THE FIELD EQUATIONS 

We are going to realize our study of the massive vector 
field for the metric (2.8). The only nonvanishing components 
of the Christoffel symbols are 

r o ().() r; r; a(t) ii=atat, 0;= .u=--' 
a(t) 

In the previous expressions we do not have to sum on 
the repeated latin indices. 

The components of the contracted curvature tensor 
RJLvpP are 

R = - 3 ii(t) 
DO a(t)' 

R;; = 2tf(t) + a(t )ii(t), 

RJLv = 0 if p,#v. 

With the Christoffel symbols and the contracted curva­
ture it is possible to develop Eq. (2.3) and (2.4). From Eq. (2.3) 
there results 

a2 1 a -:;-;;<p 0 ___ V2qJ 0 + 5H (t )-;;-<p 0 

at 2 a2(t) at 
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where H (t) = tilt )1 a(t) is the Hubble coefficient and 
R (t ) = R ~ (t ) = - 6(ii(t )I a(t ) + H 2(t )) is the scalar curvature. 

Equation (2.4) is written 

a 3 a 
-a lPo + I -.lP

j + 3H(t)lPO = O. 
t j~ 1 ax} 

(6.3) 

A basis of solutions of the system (6.1), (6.2), and (6.3) 
may be obtained through the method of separation of varia­
bles. In this manner we obtain the solutions in the form 

lP ~(t, i) = I~(t)e - i~:x (6.4) 
- -

The functions/~(t) must satisfy the following system of 
ordinary differential equations: 

Jg(t) + 5H(tlfg(t) + (a>2 _ R ~t))Jg(t) = 0, 

illY) + 5H(t lf~(t) + (a>2 - R it) + 2H2(t ))r~(t) 

= 2ihjH(t)f~(t), 

• 3 

Ig(t) - i I h,.,/~(t) + 3H(t)fg(t) = 0, 
m= 1 

where W = (m 2 + h 2Ia2)1/2. 

(6.5) 

(6.6) 

(6.7) 

As we have demonstrated, Eq. (6.3) can be replaced by 
the conditions (3.14) on the Cauchy hypersurface.2'. Replac­
ing (6.4) in the conditions (3.14) and using Eq. (6.5) we obtain 
. 3 

Ig(y) - i Ih/~(Y) + 3H(Y)/g(y) = 0, 
j~ 1 

(6.8) 

2H(Ylf~(Y) + [W2(y) + 6H2(y)v~(y) 
- -

3 . 

+ i I h,.,/~(Y) = O. 
m= 1 

From here onwards the differential equation (6.7) will 
be replaced by the initial conditions (6.8). The system of 
equations of second order, (6.5) and (6.6), allow eight linearly 
independent solutions. Taking into account the condition of 
zero divergence or the equivalent initial conditions (6.8), the 
linearly independent solutions are reduced to six. Neverthe­
less, we only need to know three solutions, which we are 
going to call1~s(t), with s = 1,2, 3. We are also going to 
indicatelP ~s(t,.i) = I~s (t)e - i~.X. First it is shown that, if/~s(t) 
satisfies (6.-5), (6.6), and (6.8),fft_~\s (t) also satisfies them~ If 
the lP ~s(t, i) functions satisfy the-orthogonality conditions 
(4.3), it is easily demonstrated that the six functions/~s (t ) and 
1ft! lis (t ) are linearly independent. Any real solution-of the 
system of equations 

(.J - m 2)lP v = 0, VftlPft = 0, 
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can be written as a linear combination of the functions lP ~s 
(x) and lP~:(x), that is to say, 

We have justified in this way the assumed development 
in (4.4). 

We have to emphasize that the orthogonality condi­
tions (4.3) in t = Y together with those of zero divergence 
(6.8) are not sufficient to determine the 24 initial conditions 

(6.9) 

which are necessary to determine in a unique way a basis for 
the solutions of the problem. Additional conditions, such as 
the QEP (Sec. 7) or the diagonalization of the Hamiltonian 
operator (Sec. 8), are necessary to define the basis of solutions 
in each time Y. 

7. QUANTUM EQUIVALENCE PRINCIPLE 

To define a bitensorial kernel X(I)~w(X, x') for each 
Cauchy hypersurface .2', the following Cauchy data are 
necessary 

(I) (I) 

X ~v'(x,x'); npapx ~v'(x,x'); 

x, x'E..!'. (7.1) 

We recall that in the flat space-time, and in Cartesian 
coordinates, the kernel.J ~v'(x - x') is written 

where (cf e.g. Ref. 13): 

A ( ') _ I f COSWk (t - t ') - ii<Y' - Xld 3k "-IIX-X --- e 
(2tr)3 W k -

= _ m2 Im(H\IJ[m((x'ft -xft)(x'" _X'l))1/2]). 

4tr m((x'" - x,t!(X"l - X,lW /2 

(7.3) 

If we write the expression (7.2) in the flat space-time, 
but in curvilinear coordinates, we obtain 

A ftV'( ') _ [ft,,,( ') I nfla 
"-11 x, X - t x, x - ~ .s(x) 

x ~ v'fi'(X') ~].J (s) aXa g aX f3 ' 1 , 
(7.4) 

where S is the geodesic arc that joins the x and x' points, and 
tftV'(x, x') is the transport bitensor (cf. e.g., Ref. 3). 

As a generalization of the Quantum Equivalence Prin­
ciple used in Ref. 2 for the case of the scalar field, we are 
going to state for the case of the vector field the following 

QEP: (I) 

"The X 'i' '(x, x') kernel has on the normal Cauchy 
hypersurface .2' the following Cauchy data: 

(); ) 

X ~V'(x, x') =.J 'r'(x, x'), (7.5) 
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II) 

nP'ap'x ~V'(X, X') = nP'ap,il ~V'(X, X'), 

x,x'~, (7.6) 

where in (7.5) and (7.6) the kernel il ~Vf(X, x') is the transcrip­
tion of the expression (7.4) at the curve space-time." 

Now, we shall make an evaluation of the Cauchy data 
for the metric (2.8). For simplicity we suppose that the nor­
mal hypersurface.I is the hyperplane t = Y. To calculate 
explicitly ill(S) and tPV'(x, x') and to obtain with them 
il ~V'(x, x') (cf. Ref. 2) we are going to make use of Rieman­
nian normal coordinates (cf. e.g., Ref. 14). The use of such 
coordinates, as was largely discussed in Ref. 2, makes clear 
the global nature of the problem. The kernels X \I )pv, (x, x') 

andil ~V'(x, x') are equal on the whole normal Cauchy hyper­
surface. Then we can carry out the calculus to all orders of H 
when we write the Cauchy data (7.5) and (7.6) using normal 
coordinates. 

Let a point 0 with coordinates x IO) = (Y, xo) and an­
other point P with coordinates x' = (t " x'), and S = the 
length ofthe geodesic arc that joins 0 with p, We are going to 
give the name if to the components of the unitary tangent 
vector to the geodesic arc at the point 0, expressed in an 
orthonormal tetrad with its temporal axis normally orientat­
ed to the hypersurface.I at the point O. We shall call normal 
coordinates of the point P, with an origin at the point 0, 
those obtained with the following coordinates 
transformation: 

IN) 

x P' = ~'vfo)S. (7.7) 

We have to notice that, in the system of reference, the 
geodesics passing through the point 0 are straight, and also 
they become: 

IN) IN) 

S 2 - ( ) P' p' - gp'P' x IO) X X • (7,8) 

The transformation (7.7), for the metric (2,8), is written 

IN) 

t' = ilt + !a2H(ilX)2 + jli(-hR + H2) 

X (ilX)2ilt + 0(H 3
, ilx4), 

(7.9) 
IN) 

X' = ilx + Hiltilx + J,a2H2(ilX\2ilx 

where.:it = t' - Y and.:ix = x' - xIO)' If the deceleration 
parameter q ~ 1, the scalar curvature R is of the same order 
of magnitude asH 2.0 (H \ilx4)andO(H 3,ilx4 )aretermsthat 
tend to zero like H 3 when H-o, and like ilX4 when ilx-o. 

Taking into account (7.8) and (7.3), and the metric (2.8), 
we can write 
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If in the previous expression we replace t 'IN) and x'IN) 

[Eq. (7.9)], we retain the terms up to the H order, and we 
make the variable change':.. = a(Y)~, we obtain 

.:i1(S)~ 1 f cosw(ilt + ~a2(Y)H(Y).Jx2) 
(21Ta(YW . w 
X e - ih·1 dx + H IcF)dl dX)d 3 ':..' (7.10) 

where w = (m 2 + h 2/a2(YW/2. 
Now, we are going to obtain explicitly the transport 

bitensor t PV'(x, x'). Let 0 and P be two points of the curved 
space-time andSthe geodesic arc that joins them. Also let U U 

be a vector at point 0 of coordinates x, and ua' the vector at 
point P of coordinates x' obtained by parallel transport of ua 

vector on the S geodesic arc. From its definition the trans­
port bitensor satisfies the equation 

(7.11) 

and also has the property 

t~'(x, x' = x) = 8~'. (7,12) 

According to (7,11) t ~'(x,x') is a covariant I-tensor atx, 

x, and a contravariant I-tensor atx'. The ua' vector at point P 
can be also written 

UU'(x') = 8~'ua(x) - 8~' 

X J: r~y(y )ui3 ly) dyY, (7.13) 

where the integral of the second member has to be made on 
the S geodesic arc that joins 0 with P. 

The covariant and contravariant components of the 
metric tensor, in normal coordinates, neglecting order H 3 
terms are: 

IN) 1\1 IN) 

g 0'0' (x') = 1 - Jp2(!R - H2)X'2, 

IN) IN) IN) IN) 

g 0'/ (x') = Jp2(!R - H 2)81;, X k' t ' , 

IN) IN) ( IN) ] 
g i'/(x') = - a28;: 1 + H!R - H2) t '2 

+ klH2 X '28 i, _ x k' X h'8i ' 8i.' 
[

IN) IN) IN) ] 

3 ]I k' hI , 

IN) IN) IN) 

g a'O'(x') = 1 + Jp2(!R _ H2)X '2, 

IN) IN) IN) IN) 

g o'/(X') = !(!R - H2)X/t', 

(7.14) 

From (7,14), and with the same approximation, the fol­
lowing components of the affine connection are obtained: 

IN) IN) 

r
J
i
:k , (x') = - Ja2 H 2 (8i' 15k

' + 8 i ' 8i,' 3 I m' k' m' 
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~). ~) ~) 

r ~/k' (x') = !UR - H2) t '~~/' 

(N). (NI (N) 

r~,O'(X') = -1(!R _H2)X i', 

(NI (NI 

r g:O, (x') = 0, (7.15) 

In (7.14) and (7.15) a, H, R, are evaluated in t = Y. 
In Eq. (7.13) we can replace uP(y) by ufJ(y = x) if we re­

tain only the terms in H2. Then, in the normal system we 
have the result: 
(N) , (N) (N) (PIN) (N) 

U a (X')9!f~~' U a(X) - ~~' u P(X)Jo r py(y) d y y. (7.16) 

Comparing (7.16) to (7.11) we find that the transport 
bitensor is: 

(N) (l'(N) (N) 

t ~' = ~~' - ~~/~~ Jo r~ydy v + o (H 4
). (7.17) 

Replacing (7.15) in (7.17) and integrating we obtain: 
(N) (N) 

t g' = 1 + !aZ(!R - H 2)x'Z, 

~) ~)~) 

t ~' = - f,a2(!R - H2) t ' X k', 

(N) (N) 

t ~ = ~~ - !(!R - H 2~n t '2 (7.18) 

a2H2 {(N) (N) (N) } 
+-3- ~~F'2_!Xi'Xk' , 

(N) (NI (N) 

t ~ =M!R _H2)xt t'. 

Using the inverse transformation of (7.9) we write the 
transport bitensor in the coordinates where the metric takes 
the form (2.8): 

too,(x, x') = 1 + !a2H2(.o:1xf, 

t Oi'(x, x') = - [ H + !UR - 3H 2).dt ].o:1xi, 

tiO'(x, x') = [H + !(!R - H2}ijt ].o:1xi, (7.19) 

t if(x, x') = - (I/a2(Y))[ [ 1 - H.o:1t - MkR - H2).dt 21 

x~j + !a2(Y)H2.o:1xi.o:1xi}. 

In order to simplify the calculus, we are only going to 
retain linear terms in H. For computing 

.0:1 ~VI(X, x') \' =,' =.5" 

_ ( /Jo'" l"p.a Y,P, a a ~ ( ) I - t (.x,XI) - -Z 5(x)g(X/I -a a a P' IS 
m x X ,=,'=.5" 

(7.20) 

we use the expressions (7.10) and (7.19), and we take into 
account that in the sense of distribution it is verified that 

f d 3~g(~ )(.o:1xire - ilJ..',j,X 
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= (-i)nfd3he-ilJ.,,j,x~h). 
- ah 7 -

The components of the kemel.o:1 fY' (x, x') on the 
Cauchy hypersurface t = Yare: 

.o:1jil I _ = - -1-fd 3h e-ilJ..·,j,x 
I ,j" - 0 (21Taf -

x(~i __ l __ + hi~) 
J a2w a4m2w' 

Hh, ( I I ) X-;;z- 2w3 - m2w' 

A 10' \ - i fd 3h e - ih.·,j,x ..a I ,j" = 0 - -- -
(217'0)3 -

Hh, ( 1 1 ) 
X7 2w3 - m2w ' 

.o:1~'I,j,,=o = -1-fd3he-ii}:~~ - ~). 
(21TOf - \w m2 

(7.21) 

(7.22) 

In order to determine all the Cauchy data on the hyper­
plane t = Y, it is also necessary to know a lat.o:1 ~VI (x, x'). 
Deriving the equation (7.20) results in: 

~.0:1 fV/(X, X')I = {[~ t/JoY'(x, x') 
at ,j,,=o at 

- ~2 gl'a(xl(~, gY'P'(X')) a~a a~' ].0:1 I(S) 

+ (t/Jov'(X' x') - ~2 gl'a(x) 

xgY'P'(x,) ~ ~)~.0:1 I(S)} . ax axP at ,j,,=o 

Using in this equation the expressions (7.19) and (7.10) 
and working similarly we obtain 

(7.23) 
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We have seen that Eq. (4.9) gives us the kernel 
XrW(x, x') in functions of the basis of solutions. In our case 
this basis of solutions is: 

tP~s(x) =f~(t)e-ill.'X. (7.24) 

Replacing (7.24) in (4.9) we obtain: 

XfP'(x, x') = f d 3,! stl {i~(Y}f~;(t ') 

+ pl_II.S(5lfP~ '!.s(t I)}e -ill.(X' -xIO». (7.25) 

Equation (7.25) involves: 

X~LP'(X. x') Ir'~Y = f d 3,! stl {j~s(Ylf~~(y) 

+ p'-!!s (.rVp~ '!.s (Y)}e - i~.!X' - XIO», 

(7.26) 

~ X?'(x, x') I at ,'=:7 

= f d 3,! stl [i~s(Yif C;(Y) + r- !!s(Ylf !P~(Y) 
Xe - i!!(X' - xIO»). (7.27) 

Introducing in (7.5) Eqs. (7.22) and (7.26) results in: 

i {ii- !!s(Ylr- !!s(Y) + .hs(Y}f~s(Y)} 
s~ I 

1 [8j + hihj 
] (7.28) 

= - (21Ta)3 a2w a4wm 2 ' 

i H [ 1 1 ] 
= (21Taf a2 hj 2w3 - m2w ' 

± {io- !!s(3'lr-lI.s(Y) + .hs(Y}f~s(Y)} 
s= 1 

1 [1 w ] 
= (21Ta)3 -; - m2 • 

Similarly, introducing in (7.6) Eqs. (7.23) and (7.27) we 
obtain 

± {ji_!!s(3'lr_lI.s(Y) + j~(Yif~s(.7)} 
s=1 

i wh; 
= - (21Ta)3 a2m2 ' 

± {io~!!'(Ylfi_!!s(Y) + j~s(~.(.7)} 
s= 1 

i wh; 
= - (21Ta)3 a2m2 ' 

365 J. Math. Phys., Vol. 22. No.2. February 1981 

± {ii! !!s (Ylfj -1:.{.7) + j~s (3lf~,(.7)} 
s 

(7.29) 

± r~ !!s(Ylr-l:s(.7) + ~~(~s(.7)} 
s~ I 

1 [2W 3 m
2 J 

= (21Ta)3 H m2 - 2w - 2w3 • 

The orthogonality conditions (4.3) imply the following 

equations onf~s(t) andi~s(t), in t = Y: 

± {i~'(5lf~SI (.7) - i:;(Y}f~SI (.7)} 
J= I 

1 { i8~, (.. .• 0 )} 
= a2 (21Taf + ~s (Y~" (Y) - f!!s (~s, (Y) , 

(7.30) 

± {t~~(Ylfj! !!s, (.7)- f~~(5lfj'!.II.SI (Y)} 
j=l 

The system of equations (7.28)-(7.30) and (6.8) forfts(Y) 
andi~s(Y) has the following solution: -

(7.31) 

. a [tf. hjhs ] 
!{s(Y) = - 2'+ 4 ' 

- (21Ta)3/2 ~2w a a m(m + w) 

dfi (<7T) a {(2H Hm 2 
.) - hs,J = + --2 - lW 

dt - (21Ta)3/2~2w 2w 

(tf. hjhs ) H hjhs } X-+ +--
a2 a4m(m + w) mw a4 

• 

We have to remember that in the initial conditions 
(7.31) the terms in H 2 had been ignored. 

We are going to see later on (Sec. 9) that with the initial 
conditions (7.31) obtained from the QEP, the mean density 
of created particles for the Bogolyubov transformation (5.2) 
is finite. 

8. HAMILTONIAN DIAGONALJZATJON 

The metric (2.8) is independent of the spatial coordi­
nates (X), therefore the P j linear momentum becomes a con­
stant of motion. Ifwe develop the field in a basis {tP (T)~s(X) I 
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u! tP ('/if.lt 1 that satisfies the ortho~onality conditions (4.3), 
it is easy -to demonstrate that the Pj operator is diagonal, 

P;(Y) = a3(Y)J d 3x:T?: 

(8.1) 

A basis that in t = Y satisfies the orthogonality condi­
tions (4.3) or (7.30), is orthogonal for all other times since the 
defined inner product (Sec. 4) is independent of the Cau~hy 
hypersurface. For this reason Eq. (8.1) for the operator Pj is 
valid for any time Y, independently of any other additional 
conditions imposed on the chosen basis. On the other hand, 
as the metric (2.8) depends on the time (t) the energy of the 
massive vector field is not conserved, and if the operator 

(8.2) 

is developed in an orthogonal basis the result is not generally 
diagonal. 

The QEP is not the only way to complete the initial 
conditionsf~s(Y) andhs(Y) to determine the basis ofsolu­
tions of positive and negative frequencies, on the hypersur­
face t = Y. We can also obtain the additional conditions, if 
instead of using the QEP, we require that the Hamiltonian 
operator be diagonal in t = Y, that is to say, 

PolY) = J d 3~W(Y)stl ail~ (Y)ails(.'T)· (8.3) 

For this purpose we use the following development of 
the field operator 4Y"(x) in an orthogonal basis: 

¢I'(x) = f d 3~ stl {ails(y)i¢l~s(X) + a+ il,(y)i¢ I~;,,(X)}. (8.4) 

Ifwe replace (2.9) in (8.2), and then use (8.4) we obtain for 
PolY) an expression of the form 

Po(.'T) = f d3~ "~ Ik,(:T,~)a; (Y)a ~ hs, (.'T) 

+ c*" (.'T,h )ahs(Y)a _ hs' (Y) 

+ D,s' (y,i;Jail~ (Y)a lo,· (Y)}. (8.5) 

To diagonalize Po(Y) we must have C". (y,~) = O. Then it 
follows that: 

I{w2(Y)fh,(Y)fj- IJ" (.'T) + ij&,(Y)jj- il" (3F
)} 

j 

= - a2(Y)([w2(Y) + 9H2(Y)V~lJs(Y)f~_IJ" (.'T) 

+ i~h' (Y)j~ _ hH (Y) + 3H (Y)V6'IJS (.7) 

Xi6' ~ IJ" (Y) +-i6'ils(Y)f6' _ IJH (Y)}). (8.6) 

Equation (8.6), the orthogonality conditions (7.30), and 
the conditiori (6.8) of zero divergence determine, in a unique 
way, the following initial conditions: 
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(8.7) 

hs 
f~s (Y) = - ---:-:----:-,:7, 

ma(21ra)3/2(2w)1 2 

hs ) 
-a-(2-~-a-)3""'/2-m-(-2w---:') 1='2 (3H - iw . 

The conditionsf~s (Y) andit (5') are the same as those 
obtained in the quantization of the massive vector field in the 
fiat space-time (cf. e.g: ref. 13). 

It is important to emphasize that, in order to obtain Eq. 
(8.6) we have not supposed H,j,x<. 1, and therefore the solu­
tions (8.7) are exact. 

Obviously the basis compatible ~ith the initial condi­
tions (8.7), diagonalize the operator Po only in t = Y. 

Weare going to see later on (Sec. 9) that with the initial 
conditions (8.7), the corresponding Bogolyubov transforma­
tion leads us to an infinite density of created particles. 

9. PARTICLE CREATION 

Finally, we want to analyze the particle creation when 
we use the theories based either on the QEP or on the diagon­
alization of the Hamiltonian. To do so, we are going to use 
the results obtained by Olver on the valuation of error in the 
approximation WKB. 15 

The first derivatives in the differential equations (6.5) 
and (6.6) can be eliminated, making the following change of 
variables: 

rJ= S>-l(t')dt', gf,li = a2(t(17))JI'(t(rJ)). (9.1) 

Then, Eqs. (6.5) and (6.6) are: 

~gO(rJ) + a2
1 w2 

- iR - 2H 2\ gO(rJ) = 0, (9.2) 
drJ2 

~ gi(rJ) + a2w2gi(17) = - 2iHhj gO(rJ). (9.3) 
drJ2 

Defining: 

PT(~' rJ) = (a2/h 2)(W2 
- 2H2 - iR), 

Eq. (9.2) can be written so as to use the Olver results (Ref. 15 
Theorem 4, p. 8(0), 

~ gO(17) + h 2PT(h, rJ)gO(rJ) = O. (9.4) 
drJ2 --

There is a solution ofEq. (9.4) that is written: 

gT(1J) = (2h )-1/2p i 1/4 

X [exp( - ih Lip ~/2 d17) + ET('!, rJ)], (9.5) 

which has the following derivative: 

:1J gT(1J)= _{~)'I2PV4{[1_ :hPi312 :1J PT ] 

X exp( - ih ('Ip V2 drJ') - -'-' Pi 312 ~ PTET(~' 17) Jo 4h d1J 

+ i8T(~' 1J)}. 19.6) 
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According to Olver it is easy to show that 

I€T(~h, 1]li, 'loT(~h, 1]) I, 

(h -tP i 3l21 ~ PTI)SO(h -3), 

€T(~' 0) = OT(~ 0) = O. 

The general solution of(9.2) or (9.4) can be written 

where A ° and B ° are two arbitrary constants. 
The solutions gT(1]) and gP(1]) of (9.4) satisfy 

(9.7) 

(9.8) 

W(gT, gP)(1]) = gT ~ gP - gP ~gT = i. (9.9) 
d1] d1] 

Now weare going to solveEq. (9.3). We can consider, in 
this equation, the second member as a inhomogeneity. The 
homogeneous equation associated to (9.3) is 

d 2
. 2 . 

d1]2 g(1]) + h PE(h, 1])g'(1]) = 0, (9.10) 

with Pd~, 1]) = a2w2/h 2. 
Using the Olver approximation a solution gE(1]) can be 

obtained from (9.10). These gE(1]) have properties similar to 
thoseofEqs. (9.5)-(9.7), and (9.9), when we replaced in them, 
Tfor E. 

In this way, we find that the general solution of(9.1O) is: 

8'i,omog(1]) = A jgE(1]) + BjgE(1]). 

A particular solution of(9.3) can be obtained by the 
method of variation of the constants: 

gPART (1]) = gE (1])2hj [A °Ftth, 1]) + B °F2(h, 1])] . 
- gE(1])2hj [A °FT(h, 1]) + B °Ff(h, 1])], (9.11) 

Ft(h, 1]) = fH (1]'~(1]')gT(1]') d1]', 

F2(h, 1]) = f'H(1]')~(1]'~T(1]') d1]'. 

Then the general solution of (9.3) is 

(9.12) 

(9.13) 

Among the general solutions (9.8) and (9.14). the useful 
ones will be those which satisfy certain intitial conditions. In 
t = :T (1] = 0) they are named g~;I'(1]) and in t = :T'(1] = S) 
they are named gf/,!,,,). -

We write these conditions in the form 

10) d 10) " 

g~s(1] = 0) = G~s(O), d1] g~s(1] = 0) = G~s(O), (9.15) 

dis) " 
gS)~s(1] = t) = G~s(t), -d g~s(1] = t) = Gts(t)· (9.16) 1] - -

Later on, it will be useful to suppose that the initial 
conditions (9.15) and (9.16) are 

Go - GOh G ,,0 G "oh 
~s - '! s' J:..s = h s' (9.17) 
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Gj· ""~ "hh hs = YhO'. + Ilhhjhs' G hi = Yh ifs + Ilh j s· 
- - (9.18) 

We can determine in (9.8) and (9.14) the values of the 
constants A o,B o,A j, andBjin such a way thattheconditions 
(9.16) are satisfied. These values are: 

i';) { d • .} 
A ° =A ~s = - ihs G~(t) d1] gT(S) - G;;o(S)gT(t) , 

(9. 19a) 

B ° = ~)~s = ihs {G~(t) :1] gT(t) - G ;;0(t )gT(S)}' (9.19b) 

. 15) { d • 
AJ=A~s = -i d1] gE(S)[rh(S)~ +llh(S)hjhs] 

- [y;;(t)8, + 1l;;(S )hjhs ]~(t)} 

+ 2ihj hs {Ft(h, S)[ G~(t) d~ ;T(S) 

- G ;;O(t~T(t)] + F2(h, S) 

X [ - G~(t) ~ gT(t) + G;;o(S)gT(S)]}, (9.20a) 

.~) {. d 
BJ = BJ,!s = i [Yh(SlO'. + Ilh(S )hjhs] ~(S) 

- [r;;(t)~ + 1l;;(S )hjhs ]gE (S)} 

- i2hj hs {E2(h, S)[ G~(S) d~ ;T(S) 

-G;;o(t~T(S)] +Et(h,s) 

X [ - G~(S) d~ gT(S) + G;;o(t)gT(S))}' (9.20b) 

With these constants we can write 
Is) Is) I';) • 

g~s(1]) = A ~sgT(1]) + B~sgT(1]), (9.21) 

Is) Is) . Is)· I'; ) 

gJ~s(1]) = A ~SgE(1]) + B~sgE(1]) + g~ART(1])· (9.22) 

If in (9.19)-(9.22) we set 5 = 0, we obtain the solutions that 
satisfy (9.15) and which we will to callghojl'(1]). 

The initial conditions are selected in-such a way that the 
orthogonality and zero divergence are obtained, and there­
fore, the six functionsg~o;(1]), g~l~(1])(s, s' = 1,2,3) are linear-
ly independent. - -

Then any solution of the system (9.2) and (9.3) with 
zero divergence can be written as a linear combination of 
those functions. In particular, 
I';) 10) 10) 

g~5(1]) = La~ss' g~SI (1]) + fJ - ~ss' gP-*~SI (1]). (9.23) 
s' 

If we remember (9.1) and (6.4) we see that (9.23) implies 
I·j<-) 

J.IJ,)p( ) - ~ J. p ( ) +fJ J.IJ)p*() 
V' '!..s x - ~a'!..ss' 0/ '!sr x _ '!..ss''f' _ '!sr X, 

5' 

which is the Bogolyubov transformation (5.2). 
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We now have to see if with the initial conditions (7.31) 
or with the initial conditions (8.7) the result is 

(9.24) 

We can suppose that a hss' and Phss' can be written as 
follows: --

(9.25) 

Phss' = E 8:, + Jhshs" 

where C, D, E, and J depend on the modulus of h and, of 
course, of Y and Y'. -

Replacing (9.25) in (9.24) we obtain 

i oo 

dh h 2{21E 12 + IE + Jh 212} < 00. (9.26) 

Ifwe can show that (21E 12 + IE + Jh 212) behaves like 
o (h - 13 + EI) with E > 0 when h_ 00, we will have proved that 
the mean density of created particles is finite. Then we must 
try to find equations that let us determine the behavior of E 
and of E + Jh 2 when h-oo. 

Ifwe replace (9.21), and (9.21) with S = 0, in the zero 
component of (9 .23), and then we take into account the linear 
independence of gT(1]) and gT"(1]), we obtain 

(5 I {IO) (0)} 
A ~s = L ai!ss,A ~Sl + P _ i!ss,B a!' i!SI , 

Sl 

(9.27) 

Ifwe now use in these equations the expressions (9.25), 
(9.19) and (9.19) with S = 0, we obtain a system of two equa­
tions with the two unknown quantities (C + Dh 2) and 
(E + Jh 2). For the latter we obtain 

E+Jh2={[G~ ~gT"_GT~gT] 
d1] Is) 

X [G T~gT _ G~ ~gT] 
d1] (0) 

_ [G~ ~;T _ GT~;T] 
d1] 10) 

X[G:OgT_G~~gT] } 
d1] (5) 

1 [G a G' TO G' a G"T] -I Xi h h - h h (0)' (9.28) 

We can now replace (9.22) and (9.22) with S = 0 in the 
spatial components (p. = j) of(9.23). Using (9.27) and consid­
ering that g E(1]) and~'(1]) are linearly independent, we 
find: 

(9.29) 

Is) {IO) (0)} 
B~hs = L ai!",B~Sl + P -itss,A j*- i!SI • 

SI 

(9.30) 

We now replace Eqs. (9.25), (9.20a), and (9.20a) with 
S = 0, and (9.20b) with S = 0 in Eq. (9.29). Ifwe consider 
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likewise that 8 ~ and hj hs are two tensors independent linear­
ly, we obtain from the part ofthe equation that is proportion­
al to tY" the relation 

{
d' • } 

rh-
d 
~-r:~ 

1] Is) 

=C rh -~-r:~ {
d' • } 

d1] 10) 

+E rh-~-r:~ . {
• d' "} 

d1] (0) 

(9.31) 

Working in a similar way with Eq. (9.30) the result is: 

{rh dd ~-r:~} =c{rh dd ~-r:~} 
1] ~) 1] ~ 

+E rh -~-r:~ . {
• d '} 

d1] 10) 

(9.32) 

From (9.31) and (9.32) we can resolve E: 

E = {[rh dd ;e - r:;e] [rh dd ~ - r:~] 
1] ~ 1] ~) 

- [rh dd ;e - r:;e] [rh dd ~ - r:~] } 
1] Is) 1] (0) 

x~[r1r: - rhr:*](O) I. (9.33) 
1 

Now we have to make an evaluation of the asymptotic 
behavior (h-oo) of(9.28) and (9.33), for the initial conditions 
(7.31) of the QEP, and for the initial conditions (8.7) that 
diagonalize the Hamiltonian. Making the change of varia­
bles (9.1), both conditions can be written: 

(,;) { -ah 
g~s(1] = s) = G~(s)h, = s 

- (21Ta)3/2~2w 

(9.34) 

X - -+1-[ 
H .W]} 
m m 1'1=';)' 

(9.35) 

(5) 

g~s(1] = s) = rh (s)tY, + f1.h (S )hjhs 

( 
. hjhs ) aH ]} X-&, + + -hjhs . (9.37) 

m(m + w) mw 1'1=(;) 

In the previous expressions we have had to consider 
a = 1 for the QEP, and a = 0 for the diagonalization of the 
Hamiltonian. Similar expresions result for S = O. 

From the expressions (9.31) and (9.37) we easily ob­
tained the constant G~, G :0, Yh ,f1.h' r:, andf1.:. With these 
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constants and the expressions for gE and (d /d1/~ obtained 
from Olver results, the equations (9.33) let us demonstrate 
that ES 0 (h -3), when h-oo. 

This result is worth indistinctly, for the conditions that 
diagonalize the Hamiltonian and for those of the QEP. 

If we replace now the expressions (9.5), (9.6) and the 
values of G ~ and G~'" in (9.28), we obtain: 

E+Jh2=~[ -2i+ (0'+ l)H] 
4 w~) 

[
(0' - I)H i(2H2 + R /6)] 

X + 2 
W 2w (0) 

X exp( - ih is PT 1/2d1/') 

(9.38) 

-!(-2i+ (0'+1)H] 
w (0) 

[
(0' - 1)H i(2H2 + R /6)] 

X + 2 
W 2w Is) 

xexp( + ih f p T
I/2d1/') + O(h -3). 

We see here that if we use the conditions that diagona­
lize the Hamiltonian (0' = 0), it is IE + Jh 212 - 0 (h - 2), and 
considering Eq. (9.26) the mean density of created particles is 
not finite. 

Ifwe use instead the conditions of the QEP (0' = 1) in 
(9.38), then we obtain: 

E+Jh2=~[2H2+2R/6] exp(-ih (SPTI/2d1/') 
4 W (0) Jo 
_![2H2+2R/6] 

W Is) 

xexp( + ih iSPTII2d1/} (9.39) 

We emphasize that in Eq. (9.39) we can guarantee that 
E + Jh 2 has no terms in h - I, but we cannot guarantee the 
exactness of the terms in h -2, because in the calculus we 
have neglected terms in H2. Consequently, we only can say 
that IE+Jh 2

12S O(h -4). 
Therefore 

ss, 

SO(h -4). 

With the theory constructed from the QEP, the mean 
density of created particles in a finite time is finite. 

Finally, we are going to give brief consideration to the 
mean value of the energy density. Suppose that the state of 
the massive vector field in the time t = .'7, is the vacuum 
state 10)/ . We are interested in knowing which is going to 
be the mean value of the expression (2.9) for a time.'7' >.'7. 
So we have to calculate:,- (01 :Tg (.'7', X): 10)/- making use of 
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the following development for the field: 

f [ IY') 

q?1'(.'7',X)= d3~f a~s(.'7')<p ~s(.'7',X) 

+ a,!~ (.'7,)I;·)~:(.'7" X)]. 

Using Eqs. (5.4) and (5.5) to write the operators a;;") 
andah~ (.'7') as functions of the operatorsahs (.'7) andahf (.'7) 
we obtain: --

X LP,!ss.f3 * _ '!ss" + [comp.conj. L = y' 
s 

X f ~ -'!ss" f3 '!ss' + [:2 ~* i'!..J:'!S" 

2 

+ w2j* ohJOhs" +.;- L/*jhs·JjhS" - - a j --

+ ~ Iihj*ihJOhS" - ~ Iihj;hs.f*OhS· 
a i a i 

- -l-Ih.hj'*h'!:h" - _l_Lfjh"f*'h'] 2a4 ij I J SIS 2a4 ij J SIS t = .'7' 

(9.40) 

Ifin this equation we replace (9.25) and the conditions 
(7.31) we obtain finally: 

.'7 (OI:T O
o(.'7', X):IO)/-

=fd31J..{ -i~[ \2 2(C+Dh2)(~ +;h 2) 
(21m) 2wa 

+ :2 (2CE*+(C+Dh2l(~ +;h 2)) ] 

+~[2IEI2 + IE+Jh 212 ]}. 
(21Ta) 

(9.41) 

We have to notice here that the last term in the integral, 
as we have already seen, behaves like 0 (h -3), when h-oo. 
Nevertheless, in order to prove either the convergence or the 
divergence of the integral (9.41) it has been necessary to take 
into account the terms up to H 2 order. 

CONCLUSION 

The QEP formulated in this way for the case of a vector 
field, as we did in the case of the scalar field (cf. Refs 1 and 2), 
leads us to a model of particles for which the Bogolyubov 
transformation gives us a finite mean density of created par­
ticles. As far as the mean value of the component TOo of the 
energy-momentum tensor is concerned, we are not able to 
assure neither its convergence nor its divergence. In spite of 
the fact that the last term ofEq. (9.41) makes the integral not 
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convergent, this is a term in H 2 and in our calculus we have 
not taken this term into consideration. This is going to be 
considered in a future work for the case ofthe massless vec­
tor field, which is more interesting from a physical point of 
view. 
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We show that Wick polynomials of a generalized free field with a mass gap are not infinitely 
divisible. 

PACS numbers: l1.lO.Cd, 02.1O.Nj 

I. INTRODUCTION 

In a paperl by Hegerfeldt it was shown that any field 
(relativistic or Euclidean) can be decomposed into prime 
fields, which are themselves indecomposable, and an infi­
nitely divisible field. The free and generalized free fields are 
examples of infinitely divisible fields. Now we want to look 
into the class of Wick polynomials of generalized free fields 
to see whether there are other candidates for such fields. 

A necessary and sufficient criterion for a field to be infi­
nitely divisible is the conditionally positive definitness of its 
truncated n-point functions. In this paper we stay within the 
framework of the Wightman axioms. In the following we 
want to show that Wick polynomials, for which the underly­
ing generalized free field has a mass gap, are not infinitely 
divisible. Without the cluster property it is known that there 
are many such fields. Take for example rrT 

= P - 1= (O,p\, P 2, ... ), where P can be any Wight­
man functional. It is evident that all assumptions except 
clustering are fulfilled. Therefore our proof will rely mainly 
on cluster properties in contrast to the paper where we in­
vestigated the case of a Wick square using a special trick. 

II. WICK POLYNOMIAL 

Let us start with a generalized free field if> (X).3 Its 2-
point function W (y - x): = (fJ.if> (x)if> (y)fJ ) is given by 

W(~)=~/2 r eiP?:p(p2)ddp• 
(211') )pEV; 

~E'r+: = Rd + iV+. 

where d is the dimension of space-time andp( p2) denotes the 
Lehmann spectral function. We assume a mass gap, i.e., 
p( p2) = 0 for p2 < M 2. Lorentz in variance implies 
W (~ ) = W (~2). This together with positivity gives the 
estimates 

W(z)< WWu - Izl)), z = 0" + i7EC\.[0,oo) 

A P(O") 
W( - u)<-- e - Mv'u 0 < (FER 

0" ' • 

for some positive constant a and some polynomial P. 
A Wick polynomial4 in its simplest form is an expres­

sion like 
n 

:P(if> ):(x) = L ak:if> k:(X), akER, n>2. 
k=1 

The dots denote Wick ordering. But it is only a minor modi­
fication to replace:if> k:(X) by :Pk(if>, ... ,if> ):(x) where 
Pk(X\' ... ,xk) is linear in all its arguments and the coefficients 

are not only numbers but can be finite products of ap such 
that :Pk(if> ..... if> ):(x) is a scalar-e.g., 0 if> (x), 
:if>Pif>p:(x), :if>pvif>pif>v:(x) •••. Therefore we call 

:P(if> ):(x) = i :Pk(if> ... ·.if> ):(x) a Wick polynomial, too. 
k=1 

We want to deal only with neutral, scalar fields though we 
expect the result to be true for other fields, too. But it is much 
more complicated to write down the positivity condition for 
general tensor fields. 

Now we want to show that no Wick polynomial is infi­
nitely divisible. This is equivalent to showing that the trun­
cated n-point functions rr~(XI, ... ,xn) are not conditionally 
positive definite. Let us recall that a functional r over the 
Borchers algebra ![ is said to be conditionally positive defi­
nite itffor all.[ = (O,fI,f2, ... )E,f' ru"'@.[»o. 

In the following we consider only the truncated 4-point 

function rr,f(X l , ... ,x4) = W.f\SI,S2,S3),Si: = Xi+ I - Xi' If 
rr,f is not positive definite then rrT cannot be conditionally 
positive definite. W.f\SI,S2,S3) is the boundary value of the 
analytic function W.f\~\'~2'~3)'~i = Si + i'T/i! 'T/iEV+. Lo­
rentz invariance together with locality enlarge the domain of 
analyticity and imply that W ,f(~ \1~ 2'~ 3) is an analytic func­
tion of the six independent variables ~ i , (~1 + ~ 2)2, 

(~l + ~2 + ~3f, ~;, (~2 + ~3f, and ~ ~; i.e .• W.f(~I,S2,S3) 

= WI(~i '(~I + ~2)2, (~I + ~2 + ~3)2'~;'(~2 + ~3)2, ~~). For 
Wick polynomials we know the domain of analyticity. It is 
given by Jr :H0 ... 0 H, where H C C denotes the domain of 

analyticity for the 2-point function W (~ 2) of the underlying 
generalized free field. For our purposes it is enough to know 
that H~C\.[O,oo). 

III. PROOF 

We want to give an indirect proof. Assume rrI to be 
positive definite. Then the Cauchy-Schwarz inequality tells 
us that for Z,z"~I'~3E7+ 

I Jr,f\z + (l,z,z',Z' + ~3W 

~ Jrnz + (l,z,z,z + ~1)rr.f(Z' + (37,z',z' + ~3)' 
or written in translation invariant manner 

I WIt - (l'~2'~3W 
< WIt - (l.i'T/2'~l)WI( - ?3,i'T/2'~3)' 

with ~2 = Z' - Z = 52 + iTf2E7+, where we have chosen the 
imaginary parts of z' and z to be equal. 
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Let us attack the problem in d = 3 dimensions first. For 
d>4 we put zeros at all the remaining free places of the d­
dimensional vectors b. 

A special choice for the bi' i = 1,2,3 is 

bl = A (0,1,0) + i'1/I, A> O,'1/IEV+, 

IWJ(( - ;tlz,( -;, + b2)2,( -;, + b2 + b3)2,bL(b2 + b3)2, 

Let us write the above inequality in the invariants 

<WJ(( - (1)2,( - tl + i'1/Z)2,( -;1 + i'1/2 + ~1)2,(i7h)2,(i'1/2 + ~If,~~) 
X Wn( - ti,( -;3 + i'1/2)2,( - ;3 + i'1/2 + ~3)2,(i'1/2)2,(i'1/2 + ~3)Z,~~). 

By continuity and because the real parts of bl and ~3 are spacelike we can set '1/1 = '1/3 = 0 as long as '1/2EV +. The values of the 
invariants are 

( - ;If = b i = ( - (3)2 = b; = - A 2, 

(- tl + b2)2 = (- tl + b2 + b3f = b~ = (b2 + b3f = i(V2)1l- (p,1)' f, 
(- t1 + i112)2 = (i'1/2 + bl = (-;3 + i'1/z)2 = (i'1/2 + b3)2 = -). 2 - (p,IA )2, 

( - tl + i'T}z + btlz = {i'T}z)z = (-;3 + i'T}2 + b3)2 = - (p,1). f, 
and therefore the following inequality must be fulfilled: 
I WT! -). 2,i(v2)1l- (p,IA )2,i(v2)1l- (p,1). f.i(V2)1l- (p,IA )2,i(v2)1l- (p,1)' )2, - ,..1,2)1 

q¥-T( - A z, - A Z _ (p,1)' )Z, _ (p,IA )z, _ (p,IA )2, _ A 2 _ (p,IA f, _). 2). (1 ) 

Now we have to study the structure of WY(bl,;Z';3) or ?P'J(ZI,zZ,z3,z4)' 
For a moment let us consider a very simple Wick polynomial, namely, :r/J 2:(X). The truncated 4-point function corre­

sponds to a diagram5 like 

Such diagrams are self-explanatory: 

{
W(Zj-Z;) j>i} 

Z;----Zj = W(Zi - Zj) i>j' 

JrT(z I,zZ,z3,z4) 

= 16{ W(zz - ZI)W(Z4 - ZI)W(Z3 - ZZ)W(Z4 - Z3) 

+ W(zz -ZI)W(Z3 -ZI)W(Z4 - ZZ)W(Z4 -Z3) 

+ W(Z3 - ZI)W(Z4 - ZdW(Z3 - ZZ)W(Z4 - zz)J 

= 161 W(btlW(bl + ~z + ;3)W(~2)W(~3) 
+ W(~I)W(;I + ~2)W(b2 + b3)W(b3) 

+ W(;I + ;Z)W(;I +;z + ~3)W(;Z)W(;z + ;3)\' 
The left-hand side of the inequality (1) converges in the 

limit ,..1,-+00 to 161 W(i(v2J/LW, whereas for the right-hand 
side we get 

lim 16! [W( - A 2)W( - lulA )Z]2 
A~oo 

+ [JV( -). 2)W( - A Z - (p,IA )z)F 
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+ [W( - ,..1,2 - (p,1). f)W( -iliA )2)]1 = 0, 

because W ( - A 2) falls off exponentially and W ( - lui A )2) 
explodes only like an inverse power of (p,1 A )2. So to get a 
c~ntradiction we on~ have to adjust J..l > 0 such that 
W(z'(V2)1l):;;60. But Wis an analytic function in C'\[O, (0) and 
cannot be identically zero on the half-line {1j.L,1l > 0 I. 

In the case of:P(r/J ):(x) = ~~ = 1 ak:r/J K:(X), an :;;60, n > 2, 
the following diagram 

ZI~Z2 

Z4 ~~ Z3 

= W(~I + ~Z)W(b2 + b3)[ W(bl + ~2 + ~3)W(b2W ~ I, 

is one contribution to the left-hand side of inequality (1) 
which remains finite in the limit ,..1,-+ 00 . On the other hand 
the right-hand side converges again to zero, because a term 
which contains only b2 and bl + bZ + ~3 violates the cluster 
condition for W r and therefore there is at least one factor 
W ( - A 2) which kills any finite power of W ( - (p,/ A )2) in the 
limit ,..1,-+ 00. 
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For a general Wick polynomial :P (t/J ):(x) 
= };Z = I :Pk (t/J, ... ,t/J ):(x) we remind the reader that each :Pk 

(t/J, ... ,t/J ):(x) can be obtained asa limit of:Pdt/J (x1),···,t/J (xk )):­

all the singularities between the Xi'S are removed by Wick 
ordering!-where we set x I = .. , = Xk = x. For a diagram 
contributing to WI this means the following: 

Instead with one point z, we start with the points 
UI,. .. 'U k , U i = uj for i =j, in the vicinity ofzl' To each point 
U i there is attached a line representing a factor W (y - U i) or 
W(U i - y). Because of Wick ordering there is no line between 
any two ui's. Now we have to apply some differential opera­
tors al" and contractions to the u/s prescribed by 
:Pdt/J (utl,.·.,t/J(ukj):. Finally we put U\ = ... = Uk =z\. For 
the points ZZ,z3' and Z4 we proceed in an analogous way. The 
result is that~ome of the factors Whave to be replaced by 
derivatives WOl multiplied with some polynomial in the in­
dependent invariants, e.g., 

a A 2 a A a W«(zz -zd )-W((Z3 _Z!)2) 
:z II" azlt 

A A 

= W'(ti)·2tf·W'((tl + tz)2)2(t! + tzt 

= W'(ti)W'((t\ + t2)z).2[ti + (t! + tZ)2 - t~]. 
q[ course all the deriv~ives of W (z) obey similar bounds like 
W(z) .itself does, i.e., WOl( - A, 2) still falls off exponentially 
and W(I)( - (pI A, f) grows atmost like an inverse power. So 
the conclusion is the same. The left-hand side of inequality 
(1) for Wr has a limit greater than zero, whereas the right­
hand side coverges to zero. 

V.RESULTS 

This result can be extended in many respects. 
(a) It is not really nes..essary to assume a mass gap for 

t/J (x). All we need is that W( - A, 2) and all its derivatives fall 
off stronger than any inverse power for A, going to infinity. 
Sufficient for this is to assume that p(M)M - N dM is a 
bounded measure for all sufficiently large N. 
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(b) We dealt only with the case of3-or more dimensional 
space-time. What hapr.ens in two dimensions? By choosing 

t! = A, (0,1), t2 = ~ (l,~) + i~ (1,0), t3 = i~I,O) = i7]2' 

we get the same result. Of course in the inequality 

I Wr( - t!,t2,t3W 

<; W II - tl,i7]2,td W IIi7Jz,i7]2,i7]2)' 

the second factor of the right-hand side grows like a power of 
A, but this is killed by the fall off of the first factor. For the 
left-hand side we can argue as above, because there are terms 
with remain finite or even grow with A, going to infinity. 

(c) If the generalized free field does not fall of fast 
enough in spacelike directions we were sucessful only in spe­
cial cases, e.g., for the Wick square we can show that it is not 
infinitely divisible as long as the growth for small distances is 
not much stronger than the decrease for large spacelike ar­
guments of the 2-point function. 
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Using the concept of gauge equivalence of two-dimensional classical field theories, we reduce the 
a'v 

nonlinear a model to a system of2N - 1 independent real fields obeying relativistic field 
equations. 

PACS numbers: 1l.1O.Lm, 11.10.Np 

1. INTRODUCTION 

Gauge transformations of the linear Lax system of dif­
ferential equations for an exactly integrable field theoretic 
model represent a simple and elegant tool to constitute a 
field-coordinate transformation within a model. They exhib­
it that various models occurring in the discussion of classical 
exactly integrable field theories are-in spite of their differ­
ent physical interpretations-mathematically equivalent, 
i.e., they differ only in the choice of field coordinates. 

If the linear Lax system is written as 

dsrp (S,7f;t) = U( S,7f;t)rp (S,7f;t), 
(1) 

allrp (S,7f;t) = V( S,7f;t)rp (s,7f;t), 

where U and V are meromorphic functions of the parameter 
tEe, the gauge transformation is defined by 

U' =g-IUg -g-Iasg, 
rp = grp '; (2) 

V' =g-IVg-g- 1a
7l
g. 

S = (XO + xl)/2 and 7f = (XO - xl)!2 are the usual light­
cone coordinates, rp and g take values in a certain Lie group G 
and U, V take values in the corresponding Lie algebra fft . The 
structure of U, Vand U', V', respectively, suggests at times 
parametrizations, which in general are different, so that one 
is led in this way to different coordinate systems. 

The first clear demonstration of this was given by Zak­
harov and Takhtadzyan' and by D. Chudnovsky and G. 
Chudnovsky. 2 They pointed out that the nonlinear Schro­
dinger equation and the Heisenberg equation for a continu­
ous chain of spins in the isotropic case are related by a gauge 
transformation. Afterwards it was shown,3 that the same 
relation holds for the m·n component nonlinear Schrodinger 
equations and a generalized Heisenberg model for a matrix 
S, being an element of a Grassmann manifold U(m + n)! 
U(m)XU(n) and also for the O(n) invariant nonlinear a 
model and certain generalized sine-Gordon equations. 

It is a natural question to ask whether this technique 
can be further exploited to construct the generalized sine­
Gordon models equivalent to the epN a models.4 In this 
paper we will just discuss this question. But instead of gauge 
transforming the Lax system of the a models we will demon­
strate that by assuming a certain structure of the matrices 
U, Vand a special dependence on the parameter t one is lead 
in a natural way to a class of models which are generaliza­
tions of the sine-Gordon model. The gauge transformation 
of the Lax system of these models then is very simple-the 

transformation g is identical with rp ( t = 1 )-and leads to 
the aN a models if U, V are elements of the Lie algebra of 
U(N + I) in a way to be specified in Sec. 2. 

2. REDUCED cpN a MODELS 

The special dependence of U and Von the parameter t 
will be 

U=tA + C, 

V=t-1B+D. 

The consistency condition 

d71 U - d ,;V + [U, V] = 0, 

then decomposes into 

aliA + [A,D ] = 0, 

dsB + [B,C] = 0, 

aTlc - a,D + [A,B] + [C,D] = O. 

(3) 

(4a) 

(4b) 

(4c) 

Relativistic covariance requires D to be an 7f component, C 
to be a S component of a Lorentz two-vector. We now con­
sider a decomposition of the Lie algebra fft of the group 
U(N + 1) into the Lie algebra 2" of the subgroup 
U(1) X U(N) and its orthogonal complement k with respect 
to the Killing form of U (N + 1): 

[tJ =:2 ffi k. 

Note that 
[:Y, :Y]C g, 

[:2,k ]Ck, (5) 

(k,k]C:Y. 

Let us assume that A,BEk then it follows from (4) and (5) 
that C,DE:2. Because of the very structure of :Y and k we 
represent A,B and C,D by complex block-off-diagonal and 
block-diagonal matrices respectively, in the following way: 

0 ¢'··~N~ ') 
( - ¢, A= o ' 
- J.v+ I 

0 ~'··~N+' ) ( ~~, (6a) B= o ' 
-lPN+l 
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(
- trX 

C= o ~ ), X t = - X, D analogously. 

(6b) 

Note that also from our final intention it is natural to choose 
the following starting point: 

If ZEC N +, is the usual epN field and Ya complex 
N X (N + 1) matrix such thatg = (Z,Y) is a movingortho­
normal frame of C N ~ " then 

with 

(see Ref. 5). 
Since in the epN model we may normalize the coordi­

nates such that 

- !tr( gtDg g)2 = - !tr( gtD" g)2 = I, 

we require in addition 

Proposition 1: By a gauge transformation 

(6c) 

h (5,1])EU(l)XU(N) one may reduce (3) to a standard form 

with 

U=;A + C, 

V= ;-'B, 

0 

A~( 0 

-I 

0 

° } 
0···0 

B as in 

0 

C2 

(6a), 

(7a) 

(7b) 

(7c) 

V' = ;-'h I-'Bh, + h i'Dh, - h I-'a"h,. 

Choosing h, (5, 1]) so that 

ar,h, =Dh" 

leads to 

V' =;-IB I, 

and (4a) and (4c), are reduced to 

ariA' = 0, i.e., A; =A ;(5), 

Weare yet free to apply a gauge transformation 

(8) 

(9) 

(10) 

(11 ) 

(12) 

h2(5 )EU(l) X U(N) which rotates the S--dependent unit vec­
tor of A'. 

UJ into 

leaving the conditionD = 0 invariant. h2(5) is determined up 
to transformations h3(5)EU(l)XU(N -1) which leave 

invariant, and by inspection ofEq. (12) we see that h3(5) can 
be used finally to reach the structure of C indicated in (7d). 
Soh (5,1]) = hg,1])h2(5)h 3(5)transforms(3)into(7a)-(7d). 
Inserting B,C into Eq. (4b) and solving for the cj , we arrive at 
(7e), and (70. Thus Eqs (4a) and (4b) have been solved, and 
the remaining Eqs. (4c) are the field equations for the ({!j: 

a,lc, +CPN+l -({!N+l =0, 
(13) 

a'lCk + ({!k = 0, k = 2···N. 

They involve 2N -1 independent real scalar fields. 

3. THE GAUGE TRANSFORMATION 

Proposition 2: The model defined by the linear system 

(7d) asrp = Urp, C= 0 

0 CN 

0 -e2'" -eN -c\ 

where 

({!N+ lagCPN+' + ~Z'=2 a,({!k'CPk c,= ----~------------~----
31({!N+,1

2 -1 
(7e) 

as({!k ({!k 
Ck = ----- + ----- Ct· (7t) 

({!N+' ({!N+' 

Note that indeed cf = - c i . 

Proof The first step towards such a standard form is a 
gauge transformation h ,(5,1] )EU(l) X U(N) by which D is re­
duced to zero: 
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a"rp = Vrp, 
where U, Vare given by (7) is gauge equivalent to the epN 

model. 

and 

Proof We chooseg = rp C; = I)EU(N + I), then 

as g = (A + C )g, 

a"g=Bg, 

U' =g-IC;A + C)g -g-I(A + C)g 

= C; - l)g-IAg, 

V' =; -lg-IBg _ g-IBg 

= C;-I - l)g-IBg. 
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Let us define 

S~g'Pg who« p~(+~ -1 

As g runs through U(N), S runs through epN. Then 

sass = g-IPg(ag(g-I)Pg + g-Ipagg) 

= g-Ip ( - (A + C)Pg + g-Iasg). 

Because of PCP = C, PAP = - A, we obtain 

sass = 2g- 'Ag, 

and similarly 

saT]s = 2g- I Bg. 

On the other hand we have S 2 = 1 and therefore s·a gS 
= - al;ss, hence 

U' = 1(; -1) [S,asS], 

V' = 1(;-1 -1) [S,JT]S], 

(14) 

U', V' are just the operators of the linear system of the Cp N 

model, i.e., of the dual symmetry, and the integrability con­
dition for (14) is the field equation of the epN model. 

4. EXAMPLES 

(i) N = 1. The ep 1 model is the 0(3) umodel, the equiv­
alent linear system (7) is then 

U = ; ( _ ~ ~) + (C~ _ C~). 
V = ;_I( 0 i2), 

- ({Jz ° 
where C} = ({J2Jgi2/21({J212. With ({J2 = e - ia we obtain 
C 1 = (i/2)Jl;a. Hence 

U =;( ° 1) + ~ (Jga 0) 
-1 ° 2 ° - Jsa ' 

V = ;-I( _ ~_ ia e~a). 
This is again the linear system of the sine-Gordon model­
up to a rescaling of Sand 77. 

(ii) The reduced Cp 2 system can be parametrized in 
terms of three independent real scalar fields a, ,p, t/J: 

376 

sinae- N' 

° ° 

cosae-I<f» 

° , 
o 
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~ ). 
- C2 -C1 

° ° 
It turns out to be convenient to introduce a new variable{3 by 

({J3J!;i3 + i2Js({J2 i 
C I = 31 ({J3/2 _ 1 = : 2: J I;P, 

Then 

C2 = ei(,p- ¢)(asa + i cotaJt;({3 +,p », 
and t/J is determined by a, p, ,p by the equations 

J!;tP = - ~JI; {3 + coeaJ!;({3 +,p), 

JT] tP = - -+- (aT] {3 + JT],p cos2a). 
sm a 

a, {3, and ,p solve the hyberbolic field equations 

Oa + ~osa Jt;({3 +,p )JT](P +,p) + sina cosifJ = 0, 
sm3a . 

o {3 -4cosa sin,p = 0, 

O,p - . 1 !JT]aJt;({3 +,p) + Jt;aaT](p +,p») 
sma cosa 

+ sin,p (1 +3 cos2a) = 0, 
cosa 

which can be derived from the Lagrangian density 

2' = Ha,.,aa"'a + !J,., {3J"'P + coeaa,.,(p +,p) 
XJ"'({3 + <p)] + cosa cosifJ-1. 

We finally remark that a, {3, and,p are related to the Cp 2 field 
Z in normal coordinates by 

(DI;Z .DT]Z) = cosaei
¢, 

iat; (3 = (D!;Z .DsDgZ), - iJT] {3 = (D7JZ .D7JD7JZ), 

For {3 = ,p = 0, the above system reduces to the sine-Gordon 
equation with the Lax pair written in the spin 1 representa­
tion corresponding to the 0(3) subgroup ofU(3) generated 
by the Gell-Mann matrices A2' A5 , A7 • 
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Quantum tachyons in Schwarzschild space-time 
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The wave equation of a spinless tachyon is studied in Schwarzchild space-time. In contrast to 
earlier approaches to the problem, it is shown that tachyonic static solutions satisfy a simple 
second-order linear differential equation regardless of the mass of the black hole and the mass 
parameter of the tachyon. Physical implication of the present approach is discussed. Using 
Langer modification of the WKB (Wentzel-Kramers-Brillouin) boundary condition an expression 
similar to the Bohr-Sommerfeld quantization condition is derived. 

PACS numbers: 11.10.Qr, 14.80.Kx 

Following a line of research initiated by Barashenkov, I 
by Davies,2 by Honig e! al.,3 and by Narlikar and Sudar­
shan,~ Dhurandhar5 in a recent publication contemplates 
analyzing tachyonic scalar waves in Schwarzschild space­
time by using a semiclassical treatment. Here the tachyons 
are regarded as quantum wave packets, but the gravitational 
field is unquantized. Thus the tachyonic wave function rP 
satisfies the Klein-Gordon equation in free space. Expand­
ing rP into partial waves and separating out its time depen­
dence by means of Fourier analysis, one arrives at a differen­
tial equation which does not permit simple analytical 
solutions. To deal with the situation Dhurandhar makes 
specific assumptions with regard to the mass of the black 
hole and mass parameter of the tachyon, obtains a relatively 
simple equation, and constructs solutions by the WKB 
method,6 which are valid everywhere in space, save certain 
exceptional regions. This treatment provides, in a natural 
way, physical information about interaction of quantum ta­
chyons with a potential barrier produced by a SchwarzschiId 
black hole. As is typical of the WKB approximation, the 
Airy function is exploited to make a smooth transition be­
tween the oscillatory and exponential domains which lie on 
the negative and positive energy sides of the classical turning 
point. 

The object of the present note is two-fold. 
(i) To obtain the soluble equation of Dhurandhar by a 

strict mathematical procedure and thereby avoid the mass 
restriction imposed in Ref. 5. 

(ii) To obtain the WKB eigenvalue formula via the 
Bohr-Sommerfeld quantization condition for tachyonic sca­
lar waves in the background of Schwarzschild space-time. 
We also present astrophysical implications of (i) and (ii) 
wherever possible. 

The tachyonic wave function rP(R,f),rp,t ) in empty space 
statisfies the Klein-Gordon equation 

(02 
- M~)rP(R,f),rp,t) = 0 , (1) 

where Mo is the mass parameter of the tachyon and the 
operator 

(2) 

Here gij is the metric tensor for Schwarzschild space-time 
and - g = detg ij. The components of gij are 

goo= (1- ~G), gil = _ (1- ~G)-l, 
(3) 

g22 = - R 2, and g33 = - R 2sin2f) , 

M being the mass ofthe black hole and G the gravitational 
constant. 

With the metric (3), the scalar field in Eq. (1) can be 
split into partial waves and time-dependence separated. To. 
that end one uses the partial wave and Fourier 
decompositions 

00 rP/(R,!) 
rP(R,f),rp,t) = L PI(cosf) , (4a) 

1=0 R 
and 

rP/(R,!) = f: 00 A (m)I/f/(R )e - WI dfJ , 

and thus arrives at 

(4b) 

d 21/f/ 2m 
dT + r(r-2m) 

dl/f/ r (2 r - 2m + m + ---
dr (r-2mf r 

2m(r-2m) 
1(/:1) (r-2m»)1/f/=0, (5) 

with 

r = RMo, m = GMMo' and m = fJ 1Mo . (6) 

Note that because of azimuthal symmetry of the problem, 
the function rP is independent of rp. It is clear from Eq. (4b) 
that the square of fJ corresponds to the energy associated 
with a particular partial wave 1. 

Dhurandhars observes that Eq. (5) is fairly complicated 
but it assumes a relatively simple form if the mass of the 
black hole is of the order of the mass of the sun and the 
tachyon mass parameter equals the mass of an electron. We 
point out that such an assumption is not necessary to reduce 
Eq. (5) to a tractable form. To see that we transform the 
dependent variable by substituting 

I/f/(r) = cP f(r)exp ( - mJ' dX) (7a) 
x(x -2m) 
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(7b) 

This yields 

d 2<p {I ? ( 2m I (I + 1) 
--+ oi+l-

dr2 (r-2mf r r' 

X (r-2m)+ 742)<pfI. (8) 

The term m 2/r4 inside the large parentheses represents a sin­
gular region centered about r = O. In place of this term 
Dhurandhar found -2m(r -2m)/r4. Thus the region of 
coordinate singularity appears to be over estimated by a fac­
tor offour in the approximate treatment made in Ref. 5. 
Anyway, if we look for solutions ofEq. (8) outside the small 
sphere centered about r = 0, we can drop the term m 2/r4 and 
arrive at the desired equation. For the s-wave case this equa­
tion reads 

d 2<p + ? (k 2 _ 2m)<p = 0 , 
d? (r-2mf r 

(9) 

where k 2 = oi + 1. We have, for brevity, omitted the super­
script fl and subscript I = O. At very high energies the s­
wave is expected to sample the region of space near the sin­
gularity. The term m 2/ r4 will no longer be negligible. Thus at 
distances close to r = 0 one will have to deal with an 
equation 

d 2<P ? + -2 [k 2 -u2(r)]<P=0, 
d? 4m 

(10) 

where 

7 2m 
u-(r) = -- (11) 

r 
Equation (10) is identical with Eq. (25) of Ref. S. The reason 
for this coincidence is fairly straightforward. In obtaining 
Eq. (10) from the behavior ofEq. (6) near r = 0, Dhurand­
har has chosen to work with the right kind of transforma­
tion, namely, 

¢ = r1/2<p . (12) 

The transformation (12) is a special instance of (7a). In par­
ticular, when r is very small one can replace x(x -2m) by 
-2mx to obtain Eq. (12) from Eq. (7a). 

Looking at Eq. (7b) we see that the partial wave solu­
tion of Eq. (1) breaks down at r = 2m, the event horizon for 
the Schwarzschild black hole. In this region, curvature ef­
fects come into play. In Ref. 5, WKB method has been used 
to examine the nature of the solution here. The point 
r l = 2m/k 2 is a classical turning point ofEq. (9). Therefore, 
the situation in the vicinity of r = r l deserves to be more 
closely examined. Since Dhurandhar has treated this point 
in some detail, we pose a slightly different problem. 

It is well known that as the particles of real mass cross 
the Schwarzschild radius, they cannot come out. In contrast 
to this the gravitational field of the black hole tends to op­
pose the infall of tachyons. A classical tachyon is bounced by 
the black hole and emerges from inside the event horizon. 
Besides this, a quantum tachyon also tunnels through the 
potential barrier and hits the singularity.s In the jargon of 
the trade, could one visualize the possibility of a black hole 
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producing and ejecting tachyons? It may be that the peculiar 
space-time effect inside the Schwarzschild radius generates 
tachyons, which may form bound or quasibound states and 
eventually come out of the Schwarzschild barrier due to any 
small perturbation whatsoever. Thus any experiment which 
attempts to detect tachyons should be directed towards 
black holes rather than a laboratory set up. It will, therefore, 
be of some general interest to formulate the eigenvalue prob­
lem for the interaction of a quantum tachyon with Schwarzs­
child space-time within the framework of the WKB 
approximation. 

At the classical turning point r, in a repulsive potential 
field, like ours, the WKB function has a singular amplitude. 
This prevents formulation of the boundary condition. The 
difficulty can, however, be circumvented by using the well­
known work of Langer. 7 The method consists in replacing 
the WKB differential equation by another differential equa­
tion which (i) agrees with the Schrodinger equation near the 
classical turning point and (ii) agrees with the WKB differ­
ential equation elsewhere. Before we proceed to use the basic 
philosopy of Langer's work, it will be worthwhile to look 
closely into Dhurandhar's formulation of the boundary 
condition. 

Equation (8) (with m 2/r4 deleted) exhibits that the /­
wave problem has two classical turning points determined 
by the positive real roots of the equation 

OJ2 - uy(r) = 0 , (13) 

with 

uy(r) = (1 - 2~) e (/ ; 1) - 1 ). (14) 

It is clear from Eqs. (13) and (14) that unlike the I-wave case, 
thes-wave problem has only one turning point. Thus for / > 0 
one can derive an expression similar to the Bohr-Sommer­
feld quantization condition. The s-wave case cannot be treat­
ed similarly. It appears that Dhurandhar has overlooked this 
point. 

To treat the lowest partial wave on equal footing with 
the higher ones we replace / (/ + 1) by (/ + 4f in Eq. (14). 
Such a replacement is consistent with the L~nger modifica­
tion of the WKB boundary condition. R The turning point r l 

and r2 are now determined from 

(15) 

with 

(16) 

Clearly, the s-wave problem has also two classical turning 
points. 

If <p {I is to be bounded for r < r" then in r l < r < r2 

<p ?(r) = Q 1/2(r)cos (f dr Q (r) - :). (17) 

Similarly if <p ?(r) is to be bounded for r < r 2' then in r 1 < r 
<r2 
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The quantity Q (r) in Eqs. (17) and (18) determined from 
Eqs. (8), (15), and (16) is given by 

(19) 

The two expression for tJ> {l given above must be the same. 
Thus 

L'dr Q(r) = (n +!)1T. (20) 

The result is very similar to the Bohr-Sommerfeld quantiza­
tion condition. Derivation ofEqs. (17)-(20) is fairly straight­
forward. Reference 7 will be useful in working out the de­
tails. In the general case one cannot use simple analytical 
methods to determine the eigenvalues via Eq. (20) since nei­
ther the solution ofEq. (15) nor the integral S;: dr Q (r) can 
be obtained in closed form. However, it is possible to treat a 
special case for low frequency waves, which are expected to 
lie at very large distances from the singularity. With this 
approximation, Eq. (15) yields the following expressions for 
the classical turning points. 

r, = m - [m 2 + (l + !/(w2 + 1)] 1/2, (21a) 
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and 

r2 = m + [m 2 + (I + !i(w2 + 1)] 1/2. (2Ib) 

In this case 

Q = [(r - r t )(r2 - r)]'/2 (22) 

Thus the determination of energy eigenvalues for low fre­
quency waves by combining Eqs. (20)-(22) is a simple prob­
lem of elementary calculus. 
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The two Froissart-Martin high-energy upper bounds for forward and nonforward scattering are 
combined into one formula under the additional assumption that the scattering amplitude is 
polynomially bounded in energy for all scattering angles inside the Lehmann-Martin ellipse. The 
method used presents a modification of that of Kinoshita, Loeffel, and Martin. The analogous 
bound for the scattering of particles with spin is obtained as well. Using the same method, a bound 
for the case of complex scattering angles is also derived and ways leading to its improvement by 
using the solution of the Dirichlet problem are suggested. 

PACS numbers: 11.20.Dj 

1. INTROOUCTION 

F roissart 1 was the first to obtain high -energy bounds on 
the scattering amplitude from the requirements ofunitarity, 
polynomial boundeness, and the Mandelstam representa­
tion. The Same results were rederived later by Martin,2 who 
used the analytic properties of the scattering amplitude 
which follow from axiomatic field theory instead of the 
Mandelstam representation. The bounds were found sepa­
rately for the forward (and backward) direction and for all 
other scattering angles: 

I/(s,cose) I < CIS In2s, for e = 0 or 1T, (I) 
s3/41n3/2s 

I/(s,cose) I < C2 , for e # 0 and 1T. (2) 
Isine 1112 

These two bounds cover all physical values of the scattering 
angle e, but they do not transform into one another for e 
approaching 0 or 1T. They also say nothing about/(s,cose) 
outside the physical interval -I <;cose<; 1. 

The aim of the present paper is to extend (1) and (2) to 
unphysical angles and also to the case of particles with spin. 
The method used here presents a generalization of that de­
veloped by Kinoshita, Loeffel, and Martin in order to derive 
an upper bound on the scattering amplitude from the Man­
delstam representation?·4 In Sec. 2, following the approach 
of Ref. 3, we derive some useful mathematical relations and 
estimates. [In this approach,it is additionally assumed that 
the scattering amplitude/(s,z) is bounded by a power SN (poly­
nomial boundedness) in s for all energies above a certain val­
ue at allz inside the Lehmann-Martin ellipse.] In particular, 
we find that the function g(s,w) defined below by formula (4) 
is bounded by the power SN + 114 at large energies, thereby 
improving the bound ~ + 3 of Refs. 3 and 4. Then, In Sec. 3, 
we derive a bound combining (1) and (2), i.e., all physical 
angles, into one formula, Eq. (25). Let us remark in this con-

nection that there is, of course, a much simpler formula 
which combines (1) and (2) (in a continuous manner), namely, 

I/(s, cosO) I < inf c i s In2s, Cz . 
( 

S3/4 In 3/2S) 

I sine 11/2 

But the method used in Sec. 3 to combine (1) and (2), later 
allows us to obtain a bound on the amplitude at unphysical 
angles (Sec. 4). The generalization of the results of Sec. 3 to 
the case of particles with spin is given in Sec_ 5_ A further 
improvement of the former bound using the solution of the 
Dirichlet problem is in progress. 

2. GENERAL RELATIONS 

The amplitude/(s,z) for the scattering of two spinless 
particles can be expanded into the Legendre series 

V~ oc 

I(s,z) = - I (21 + l)a,(s)P,(z), 
2k ,~O 

(3) 

where s is the total energy squared, z = cosO, e is the scatter­
ing angle, and k is the momentum of the particle, all in the 
center-of-mass system. 

Simultaneously, consider the auxiliary function g(s,w) 
defined by 

V~ oc 

g(s,w) = - I (21 + I)a,(s)w'. (4) 
2k I~O 

The series (3) converges inside the ellipse Ep with the semi­
major axis p equal to 

p = 1 + als, (5) 

and with the foci at the points z = ± 1, a being a positive 
constant, which depends on the process considered. This im­
plies the following relation for the expansion coefficients 
al(s): 
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v; 2/+1 i - (21 + l)a,(s) = --.- Q,(J.t)f(s,/l) d/l, 
2k 2m E,. 

where the integral is taken along the ellipse Ep (cf. Ref. 5, 
Sec. 39). Denoting by M (s) the maximum of I f(s,/l) I on the 
ellipse, we have 

V; la,(s)l< M(s) i IQ,(/l)lld/ll. 
2k 21T E" 

The Legendre function Q,(/l) can be estimated as follows 
(cf. Ref. 5, Sec. 38): 

I Q,( /l) I < (1TII )1/2 R - (I + 1)(1 - R -2t l / 2, 

here R = P + (p2 _1)1/2, Thus, 

lads) I < ;;M(S)L(S) (1TI\1/2R -1'+I)(I_R-
2
)-1/2, (6) 

lao(s)l<l, 

where L (s) is the length of the ellipse. Using the expression 
lim,_= inflal(s) I-II' fortheconvergenceradiusR of (4), we 
obtain that 

(7) 

We now use the following well-known representation of 
the Legendre polynomials 

1 I w' P,(Z) = - dw, 
m' r (w2 - 2wz + 1)1;2 

(8) 

where r is a curve connecting the points z - (Z2 - 1) 1;2 and 
z + (Z2 _1)1/2 (see Ref. 5, Sec. 156). We choosez so that the 
points z ± (Z2 - 1)1/2 lie inside the convergence circle elf of 
(4), and choose r so that it lies fully inside it, too. Then, 
using (3), (4), and (8), we can relatef(s,z) to g(s,w) by the 
following formula: 

f(s,z) = J.. r g(s,w) dw. 
1Ti Jr (w2 - 2wz + 1)1;2 

(9) 

We assume now that the scattering amplitudef(s,z) is 
bounded by a polynomial in s for all energies higher than a 
certain value, 

(10) 

at all z inside the Lehmann-Martin ellipse, Nbeing indepen­
dent ofz. 

The function g(s,w) can be estimated as follows. Rela­
tion (4) and inequality (6) imply 

Ig(s,w) I < M(s)L(s) (I-R -2)-1/2.f 21~ 1 R -11+1) Iwl' 
2~1T 1=1 ~/ 

+ 1 +0(+) 
< M(s)L (s) {'- (21 + 1) I~II. 

[21T(R 2 - 1)] 112 I~O R 

Using the well-known formula '2.t'=olu' = u(l - U)-2 for 
lui < 1 we obtain 
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I (s,w) 1< M (s)L (s)R (R + I wi) 
g [21T{R 2 - 1)] 1/2(R - Iwli 

2M (s)L (s)R 2 

< [27T(R 2 _ l)]II2(R -Iwlf' ([wi <R). 

We also can derive an as)mptotic formula 
(R 2 - 1)1/2 -(2als)I/4y12 for S-oo because of (5) and 
R = P + (p2 - 1)1/2. Since L (s) is the length of the ellipse, 
we have L (s)-4 for s_ 00. Recall that M (s) < S N for suffi­
ciently large s because of (10) Consequently, the last in­
equality yields 

lim sup Ig(s,w) I < 1, 
s~oo h (s,w) 

where 

4 
h (s,w) = ----

(2a)I/4V 1T (R - Iwlf ' 

This implies the following high-energy upper bound on 
g(s,w): 

SN + 1/4 

Ig(s,w) I <5 (R _ Iwl?' for Iwl <R, (11) 

for any 5 larger than 4/[(2a)I/4y1 1T). 
Besides this polynomial bound, an energy-independent 

upper bound ong(s,w) holds inside the unit circle, Iwl < 1. It 
follows from the unitarity condition, la,(s)1 < 1, and has the 
form 

(12) 

These two bounds can be used to improve the bound on 
g(s,w) for I wi;;;. 1 by applying the following Theorem. 6 Let 
t/J (z) be analytic in a domain limited by two circular arcs A I 
andA 3 (see Fig, 1), which intersect at the points A andB. Let 
t/J (z) be bounded from above by MI and M3 on A I and A3, 
respectively. Then t/J (z) is bounded on the intermediate circu­
lar arc A2 connecting the points A and B by M2, where 

(13) 

Here a and (3 are the angles of intersection of A \1 A2 and A 2' 

A 3 , respectively. 
We will use this theorem to extend the bound (12) in the 

complex w plane to a point denoted by re il3 which lies outside 
the unit circle Iwl < 1. The three arcs must be chosen so that 

FIG. I. The domain, in which tP (z) is holomorphic, is a sickle-shaped region 
between the arcs of circles AI and A,. 
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A I andA 3 1ie fully in Iwl < 1 and in Iwl <R, respectively, the 
point re iO being situated on the arc Az. This leads to the 
following situation (see Fig. 2): 

(i) A I is the arc of a circle of radlus r - E centered at the 
origin (where E > 0 will be determined later); 

. (ii) A 2 is the arc of the circle passing through the points 
re ,8 and ± (r _ E)e i(tr/2 + Ii); 

(iii) A3 is the arc of the circle passing through the points 
(R - 17)e iO and ± (r - E)e,{tr/2 + Ii) (17 > 0 will be determined 
later). Here, R is the radius defined by relation (7). 

Some elementary trigonometrical calculations lead to 
the following relations: 

. E(2r - E) 
sina =, (14) 

,z + (r - E)2 

sin{3 = 2[ r(r - E)[(R -17f - (f - E)z] 

- E(2r - E)(r - E)(R - 17) 1 
X {[,z + (r - El2] [(R -17)2 + (r - Ef]} -I. 

(15) 

~ince the ellipse E" approaches the segment [ -1,1] with 
lllcreasing s, we have to require 

E--.o, 17--.0, R - 1, r-l, 

with r> 1, r - E < 1. This means that 

a~O, /3-0, 

and, consequently, 

a R-r 
----1 
f3 E ' 

if, additionally, 

E + 17 --.0. 
R -r 

Let us choose f3 / a such that 

f3 /a = Ins 

(16) 

(17) 

(18) 

Rew 
---+----~------~~--------~~~~ 

FIG. 2. Application of the Hadamard-Nevanlinna theorem to the function 
g(s,w). 
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and apply the formula (13) by setting 

CI SN , 1/4 
MI = and M, = k ____ _ 

(1 - Iwlf" ~ 17 2 ' 

with 17 = R - Iwl [see (12) and (11), respectively]. Then, 
formula (13) takes the following form: 

M2 = ( cle'" , 1/4 )lm/(1 ~ Ins) (£)1/11 + In.,) • (19) 

(1 - r + Ef 172 

Whereas E is determined from (16) and (18),17 can be 
chosen in such a way that its influence in formula (19) is 
suppressed. In particular, we demand 

1]2/(1 +-ll\s) ~e - 2el" 

for sufficiently large energies. If we choose, for instance, 
17(s) = s - Co then the condition (17) induces the inequality 
Co> 1/2. 

Further, we shall need a uniform estimate for g(s,w) in a 
region Iwl..;;;r. We use again the condition (17) and obtain 

Y=I+--- . - 1 ( 2a )112 
1 + Ins s 

(20) 

In this way, we are led to the following form of estimate 
in the region I w I <)': 

Ig(s,w) I < C
z , 

[I - r + (R - r)/lns] 2 

(21) 

where Iwl = rand C 2 = cle N + 1/4 + 2e" both for physical and 
for unphysical scattering angles. 

Using this result for g(s,w) and the relation (9) between 
f(s,z) and g(s,w) we can obtain the bound on the scattering 
amplitudef(s,z). Its form is different for the physical and for 
the unphysical scattering angles. 

3. THE CASE OF PHYSICAL SCATTERING ANGLES 

For e = 0 or 1T the integrand in Eq. (9) has poles at the 
points w = z = ± 1. Finding the value (9) at the points 
z = ± 1, inserting Eq. (21) into the result obtained and tak­
ing into account Eqs. (7) and (5), we obtain the following 
bound on the amplitudef(s,z) for s>a: 

In2s ~ Czs In2s 
f(s, + 1) = g(s, + 1) < c2 2 (22) 

- - (R -I) - 2a 

i.e., the Froissart bound (1) for forward scattering. 
In the case of a scattering away from the forward or the 

backward direction, the integrand in (9) has no poles but has 
a cut in w along the interval [e - ie,e i1. We can write from (9) 

I 11 g(s,w) I If(s,cose) I ,:;; - 0 10 IdwJ, 
1T r (w~ -2w cose + 1) I~ 

(23) 

where the contour r connects the points eif! and e - iii and 
does not leave the interior of the circle Cr. 

We choose the integration contour to be composed of 
(see Fig. 3): 

(i) the interval AB: w = reill! I, I - Isine I ,:;;r,:;; I; 
(ii) the arcBC: w = (1 - Isine I)e i

¢, - Ie I ,:;;r,h,:;; Ie I (for 
Ie I > 1T/2, r,h runs from Ie I to 1T and from - 1T to - [e I); 

(iii) the interval CD: w = re - ill) I, 1 - Isine I ,:;;r,:;; 1. In­
serting relation (21) into (23) we see that the integrands over 
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Imw 

Rew 

FIG. 3. Integration contour ABeD for the estimate ofthe right-hand side of 
Eq. (23) in the case of physical scattering angles. 

the intervals AB and CD are equal and that the integral over 
BC does not exceed the bound on the integral over AB. We 
have 

I w2 - 2wz + 1 11/2 = (1 - r)1/2 [4r sinze + (1 - r?] 114. 

Substituting (21) into (23) we obtain 

If(s,cose) I 
3 il Ig(s,rei8

) I d <- r 
TT I -sin8 (1 - r)1/2[4rsin20 + (1 _ r)2p/4 

i
lsine I ,,' dv 

<~ , 
o (0 + vZ)2lsine II/Z 

(24) 

where 

£ = R (s) - 1 _ (2a)1/2 v = (1 - r)1/2, U - ,-

Ins - v's Ins 
for s>a, 

C
3 

= 6c2 = ~eN+ 114+2co , sincec
i 

= 2. 
TT TT 

Evaluating this integral, we finally obtain the following up­
per bound on the scattering amplitude: 

c3 (1 IsinO 1112 
If(s,cose) I < 2" 03/21sine 11/2 arctan 0112 

+ I ). 
0(0 + IsinO i) 

(25) 

This formula gives, apart from constant factors, the bound 
(1) for e~lj and the bound (2) for 0>0. 

4. UNPHYSICAL SCATTERING ANGLES 

If z lies outside the physical interval [ -1,1], all formu­
las derived in Sec. 2 remain valid. We representz in the form 

z = y cosO + i(r - 1) 1/2 sine, (26) 

where y > I and eEl - TT,TT], but e has no longer the meaning 
of the scattering angle. Using Eq. (9) and the bound (21) we 
obtain 

/f(s,z) / < C2 r I Idwl (27) 
TT Jr' (l-r+Ef Iwz-2wz+ 11 1/2 ' 

where E = (R - r)/lns and r' connects the point 
w = z + (Z2 - 1)1/2 with w = z - (ZZ - 1)I/Z and lies fully in 
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the interior of Cy. Evidently, 

z ± (ZZ - 1)1/2 = Y ± e ± i8 , 

and 

WZ _ 2wz + 1 = (rei'i' _ y+eie)(rei'i' - y_e - i8), 

where 

y ± = y ± (r -1)\;2, 

and 

w=rei'i'. 

(28) 

The contour r' must lie inside Cy and the following inequal­
ities must be satisfied: 

y+ <r. 

The right-hand side of (27) can be estimated in various 
ways and we shall not look for the best estimate here. One 
possibility would be to follow closely the approach of Sec. 3. 
We show another way, choosing for r' in (27) the segment 
connecting the points y-e - ie and y+e ie. Along this line we 
have Iw2 

- 2wz + 11 = b2(1-A. 2), - I<A.<I, r = bo 
+ blA. + b).. 2 with bo = r - sin20, bl = 2Y(r - 1)1IZ, bz 
= r - cosle, Idwl = (bZ)I/Z dA., and the right-hand side of 

(27) becomes 

Cz fTrl2 dx 

-;; -- ,,/2 [I + R Ilns - A (bo + bl sinx + bz sinZx)I/Z]2 ' 

A = 1 + 1Ilns. 

This integral can easily be shown to be bounded by czI ITT, 

where 

1= x . f
"/2 d 

- rr/2 [1 + R Iins - Ay - A (r _1)1/2 sinx]Z 

Thus 

rR -Ay 
If(s,z) I <cz ( _ A )3/2( _ A )3/Z' rR y+ rR y-

r R = 1 +RIlns. (29) 

This is a high-energy upper bound onf(s,z) for z inside E (5) 
which is the ellipse with foci + I, - 1 and with the semima­
joraxis 1 + [1/(1 +lns)2] also The bound depends on s 
through R and A. Moreover, in contrast to relation (25), 
which holds for physical angles, z in (29) outside the physical 
segment [ - 1,1] cannot be kept fixed. With increasing 5, the 
ellipseE (5) shrinks to the segment [ - I, I]. The parameter y 
tends to 1 so as to preserve r R - A Y + positive at all energies 
above some value. 

It is to be mentioned that the bound (29) is not the best 
one and may be improved in two different ways. One of them 
is a better estimate of the right -hand side of (9), of course. 
The other one consists in solving the Dirichlet problem for 
the doubly connected domain whose boundary is formed by 
two disjoint curves r l and rz, where r l is the interval 
[ - 1,1] and rz is the boundary of E (5). 

As (1) and (2) are better bounds than (29) at the points 
zEF1, the solution ofthe Dirichlet problem forf(s,z) bounded 
by (1), (2), and by (29) atzEF I and atzEFz respectively, would 
yield an improvement of (29) inside E Is). A detailed analysis 
of this problem will be given later. 
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5. THE CASE OF ARBITRARY SPINS 

For the case ofthe scattering of particles with spins the 
series (3) will be rewritten as follows 7

: 

F;=F1:~':,(s,z) = f (2/ + 1) ff"",,A,A,,(S) dil1 (z), (30) 
J~M 

where Aj is the helicity of thejth particle, 

A =Aa -Ab , ft =Ac -Ad' M=max(IA 1,lftl)· 

The series (30) converges in Martin's ellipse Ep , 8 for the 
fixed energy SI/2 and helicities Ai' 

The functions G 1:~':, (s,w), similar to the function in­
volved in Eq. (4), are defined as 

GA,A,,(s,w) 
A ,,A " 

= f (2/ + 1) f{)c,,A,A,,(S) sign(A,ft)( - /)1.1 -111 
J~M 

X (r(J + m + 1)F(J - m + 1) )1/2 wJ - M, (31) 
r(J + M + l)r(J - M + 1) 

where 

m = min(IA I,[ft[) 

and they satisfy the conditions (11) and (12) (see Ref. 9). 
Using the integral representation for the functions 

di'l (z), 10 we obtain the following relation between the func­
tions FA,A,,(s z) and G A,A,,(S w): A,)c" ' A,)c" ' 

A,A" 1 f dw G~j':(s,w)h (O,t,a,b) 
FA"" (s,cosO) = - , (32) 

,. 11"i r (1 - 2 cosOw + W2)1/2 

where 

i sinO 

a = IA -ft[, b = [A +ftl, 
[cos(O /2) + it sin(O /2)] a + b 

h (O,t,a,b ) = ~--'---':'-":'--'----~~~-
t a 

(33) 

and the contour ris the same as that for the spinless case (see 
Fig. 3). 

For fixed valuesA,ft the function h (O,t,a,b) is majorized 
on the contour r by a constant which is independent of 0. 
Indeed, let us express w from Eq. (33) in terms of O,t: 

w = cosO + (i/2)(t + t -I) sinO 
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On the contour r the function (w - cosO )/sinO is bounded 
by a constant for any angles 0, therefore t,r l and h (O,t,a,b) 
are bounded by constants which are independent of O. 
Therefore the integral (32) is reduced to Eq. (23) and, in anal­
ogy with Eq' (25), we obtain the upper bound on the ampli­
tude Fi(s,cosO): 

Fi (s,cosO) < const ( 1 
[)i/2[ sinO [1/2 

+ , 1 ) 
[)i(8i + /sinO /) 

where 

[sinO [1/2 
arctan -'---'---

Ri(S) - 1 (2ay/2 
8; = ~ -_-- for s>a j • 

Ins ~s Ins 

(34) 

If O<'[)i or O>[)i formula (34) transforms to Eq. (1) or Eq. (2). 
It agrees with the result of Refs. 11 and 12. Analogous con­
siderations, as in Refs. 13 and 14 for the helicity amplitudes, 
can be used also here to obtain bounds similar to (25). 
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The partial-wave unitarity condition is complicated by the presence of overlapping left and right 
branch cuts when the lowest exchanged mass is small in comparison to the direct-channel mass. A 
coupled-channel ND -1 method for constructing unitary amplitUdes with overlapping cuts is 
described. The study is motivated in part by the problem of analyzing the 1T1T - KK system near 
the S * resonance. 

PACS numbers: 11.20.Fm, 11.50.Ec, 11.80.Gw 

I. INTRODUCTION 

We discuss the unitarity condition for coupled two­
body channels in a definite angular-momentum state. For 
simplicity in notation we take two channels, but our methods 
apply as well for any finite number. The square of the energy 
in the center-of-mass frame is denoted by s, and Si is the 
threshold of the ith channel, s 1 <S2' As is appropriate in ana­
lytic S-matrix theory, we study a generalization of ordinary 
unitarity. If the masses of the particles in one channel are not 
too dissimilar to those in the other, generalized unitarity has 
the form 

[T(s+) - T(s_)]/2i= T(s+)p(s)T(L), 

S >Sl' T(s ± ) = lim T(s ± iE), 
,-0+ 

(1.1) 

where the 2 X 2 scattering matrix T (s) is analytic in regions 
above and below the half-line s> s I' The diagonal matrix of 
phase-space factors pes) includes unit step functions () that 
vanish below channel thresholds: 

pes) = [p,(s)8,j J, PieS) = ()(s - SJqi(S). (1.2) 

For the case of spinless, equal-mass particles in channel i one 
has 

qi(S) = [(s-SJ/S]1/2. (1.3) 

Generalized unitarity (1.1) restricts the amplitudes T1z{s) 
and T22(S) in the region s 1 < s < S2 where channel 2 is closed, 
whereas ordinary unitarity refers only to open channels. 

A complication arises if mass differences are large. 
Namely, the left cuts of some of the amplitudes overlap the 
half-line s > s I' This occurs when the lowest mass in a cross 
channel is sufficiently small in comparison with the mass of 
the direct channel. The unitarity condition then becomes 

[T(s.) - T(s-)112i = T(s.)p(s)T(s_) +..:::1L T(s), (1.4) 

where..:::1 L T (s) is the matrix of discontinuities ofT (s) over the 
left cuts (denoted collectively by L). 

"Work supported in part by the National Science Foundation and the Unit­
ed States Department of Energy under contract No. W -7405-ENG-48. 

b'Participating guest. 

An example is the two-channel problem with 1T1T and 
KK channels in a definite isospin state, considered near the 
KK threshold where the 41T state has only a small production 
cross section. Under the assumption of Mandelstam analy­
ticity, the partial-wave amplitude for KK_KK has a left cut 
beginning at the branch points = 4(m;' - m~). According 
to (1.4) the right cut begins at s = 4m~, so that the two cuts 
overlap. The amplitUdes for 1T1T-1T1T and 1T1T_KK do not 
have overlapping cuts; their nearest left branch points are at 
s = O. The possible importance of treating correctly the 
overlapping cuts in the phenomenology of the 1T1T-KK sys­
tem, especially near the S * resonance, has been emphasized 
by Yndunlin,I-3 Gonzalez-Arroyo,3.4 and co-workers. 3 Al­
though the 1T1T-KK system has been discussed extensively,5 
it appears that a full explication of the unitarity effects re­
mains to be made. A similar situation of overlapping cuts 
occurs in the NAT system, which is of high current interest in 
connection with baryonium states. 6 

In studying systems with overlapping cuts, from either 
a dynamical or a phenomenological viewpoint, one encoun­
ters a generalization of the standard problem of partial-wave 
dispersion relations. 7 That is, given the left cut part of the T 
matrix, 

I fen T(s'+ )p(s')T(s'_ )ds' 
B(s) = T(s) - -

1T " s' - s 
(1.5) 

determine the most general T (s) having that left cut part and 
satisfying the augmented unitarity equation (1.4) as well as 
appropriate conditions of analyticity and asymptotic behav­
ior. We shall provide a straightforward solution of this prob­
lem, based on the matrix ND -I method.8

-
11 As in the usual 

ND -I method, the problem is reduced to solving a linear inte­
gral equation for N(s). It is gratifying to find that the equa­
tion is identical in form to the usual one. Only the derivation 
of the equation is altered. Being of Fredholm type under 
weak conditions onB (s), the equation is amenable to numeri­
cal solution. 

Our results are applicable in phenomenology as well as 
in dynamical schemes. In phenomenology the traditional ap­
proach to determination of B (s) is to use crossing symmetry 
and experimental information on scattering in the cross 
channel. Such an approach determines the nearby singulari-
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ties of B (s) to a certain extent, but leaves the distant singular­
ities to be represented by empirical parameters. A potential­
ly more informative approach now under development is to 
use a new definition of Reggeon exchange, valid at low as 
well as high energy.I2 The Reggeon exchanges involve all 
partial waves in the cross channel and form an important 
(possibly dominant) part of the analytically continued cross­
channel absorptive part. It is hoped that a model of B (s) 
based primarily on Reggeon exchanges will be realistic. 

An ambitious scheme for construction of a crossing­
symmetric unitary Regge theory, proposed in Refs. 12 and 
13 and extended in a forthcoming paper to allow coupled 
channels, requires solution of a generalization of the prob­
lem treated here. In a crossing-symmetric treatment of coup­
led JrJr and KK channels, for instance, one must account for 
the 4Jr threshold at S = 16m; in the KK amplitude, which 
lies to the left of the beginning of the left cut at 
S = 4(m~ - m;). As we shall show in a later paper, this 
complicated situation of overlapping cuts can be handled in 
a rather simple way by extending the present ND -I method to 
allow a matrix of externally prescribed absorption param­
eters, in analogy to the work of Ref. 14. In the crossing­
symmetric theory the absorption parameters for the 4Jr state, 
etc., are obtained dynamically through crossing. The ex­
tended ND -I method with absorption should also be useful in 
phenomenology, especially for study of absorption in the NN 
system. A correct treatment of overlapping cuts is conceiv­
ably important in assessing the effects of absorption on bar­
yonium states predicted from crossed NNpotentials.6 

Section II contains the general solution of the two­
channel problem under rather weak conditions on B (s). It 
will be evident that the method works as well for n channels. 
The Castillejo-Dalitz-Dyson (CDD) ambiguiti is treated 
in detail, since a complete treatment for the coupled channel 
case has not been available in the literature. Recently Nen­
ciu, Rasche, Stihi, and Woolcock 15 criticized theND -I meth­
od and suggested a method based on a pole approximation to 
B (s) as a replacement. We feel that the discussion ofSecs. II 
and III answers their criticisms and shows that the method is 
both general and practical. In our experience the pole ap­
proximation has not been very useful, since in realistic mod­
els B (s) is not given in terms of poles and to approximate it by 
poles with sufficient accuracy is rather awkward. We note, 
however, that the pole approximation can be used in the 
ND -I scheme with overlapping cuts and that it leads as usual 
to explicit analytic forms for the solution of the integral 
equation. 

In Sec. IV we give an N D -I method for a single-channel 
problem with absorption present at threshold; for example, 
KK-->-KK. The absorption parameters are regarded as given 
and left cuts mayor may not overlap the absorption cut 
below threshold. 

In Sec. V we discuss a special case of our problem solved 
recently by Gonzalez-Arroyo4; namely, a two-channel prob­
lem in which only the element B22(S) of B (s) is nonzero. We 
reveal two new aspects of the Gonzalez-Arroyo solution by 
deriving it from our formalism: (a) It necessarily entails 
CDD poles as defined in the two-channel formalism; if there 
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is not at least one CDD pole, only the trivial solution in 
which TII(s) = TI2(s) = 0 is obtained; (b) even though the 
Gonzalez-Arroyo solution entails arbitrary rational func­
tions, it is not the general solution of the problem with 
B II(S) = Bds) = 0; rather, it corresponds to putting some 
elements of the CDD pole residue matrices equal to zero. 

In Sec. VI we comment on a proposal ofYndunlin for 
an explicit unitary parametrization of the T matrix with 
overlapping cuts. 

Appendix A is concerned with asymptotic estimates of 
principal-value integrals under conditions oflogarithmic de­
crease of the density function. Appendix B contains the 
proof that the integral equation of Sec. II is of Fredholm type 
under conditions of logarithmic decrease of B (s). 

We hope to reexamine in a later paper the phenomenol­
ogy of the JrJr-->-KK system near the S * resonance using the 
methods described. 

II. GENERAL SOLUTION FOR TWO-CHANNEL CASE 

In this section we solve the two-channel problem, with 
two pseudoscalar mesons of mass m i in the ith channel. The 
phase-space factors are as given in (1.3), with Si = 4m;. We 
make analyticity assumptions weaker than those implied by 
the Mandelstam representation, since the extra generality 
involves little effort. 

Let us first recall the implications of the Mandelstam 
representation. The partial-wave amplitudes TII(s) and 
T I2(s) = T21(s) are analytic in the s plane, each with cuts 
(- 00,0), [SI'OO), wheresl = 4m~. If m~ <2m~, T22(s) is 
analytic in the plane with cuts ( - 00, 4(m~ - m~)], [s 1,00). 

??~=========~- - --

FIG. 1. Possible analyticity domains {] II' {]~; I of T,,(s). T 22(s). 

respectively. 
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If m~ ;;;.2mi , we must regard T22(S) as sectionally analytic, 
since the cuts overlap and divide the plane in two: 

{
Tit )(s), Ims> 0, 

T22(S) = Ti:; )(s), Ims < 0, 
(2.1) 

where Tit )(s) and Ti:; )(s) are analytic in their respective 
half-planes. One has ~j(s) = Tij(s*)*, which for i = j = 2 
means that Tit )(s) = T~:; )(s*)*. 

Our requirements on the Tmatrix, weaker with respect 
to analyticity, will be as follows: 

(2.2a) 

(b) T,,(s) and Tds) are analytic in open neighbor­
hoods {l ", {l'2 of the half-line [s" (0), as illustrated in Fig. 1; 

(2.2b) 

sEfl it), 

sEfl i:; >, 
(2.2c) 

where nf )(s) is analytic in {l if ). Here f1 ~f ) is an open 
region of the upper half plane with [s, - E, 00 ) as part of its 
boundary, and {l i:;) is the complex conjugate of that region 
(see Fig. 1); 

(d) T(s) = T(s*)*; (2.2d) 

(e) .<1T(s) = [T(s+) - T(s_)Jl2i 

= T(s+)p(s)T(s_) +.<1 L T(s), S;;;'SI, (2.2e) 

.1LT(s) = (~ (}(SL ~S)CP(S»). SI<S<S2' 

where () (s) is the unit step function and cp (s) =.<1 Tzis), 
s, <;s<;s L; 

XBL 793-1022 

FIG. 2. Possible analyticity domains fl, ,. flO] of B, /5), B2is), respectively. 
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I

s - S' III IT(s+)-T(s'+)I<;K(lns)-a -s- , (2.2l) 

a> 1, ° </1<;!. 

Here and in the following, K represents a generic positive 
constant, which is understood to have different values in 
different equations. The inequalities (2.2l) apply to each ele­
ment of the matrix T(s) separately. The second of these in­
equalities follows from the stronger but more comprehensi­
ble requirement that T (s+) be Holder-continuous for s < rand 
continuously differentiable for s > r with 
I r(s+)! <Ks-'ln - as, the point r being arbitrary. 

We shall determine the entire class of Tmatrices satis­
fying conditions (2.2a), (2.2b), (2.2c), (2.2d), (2.2e) and 
(2.2l) and having the same given left-hand cut term, 

1 loc T(s'+ )p(s')T(s'. )ds' 
B(s) = T(s) - -

1T SI S' - S 
(2.3) 

Note that property (2.2l) ensures convergence of the integral 
in (2.3). The following conditions on B (s) are a consequence 
of the conditions on T (s) and the definition (2.3): 

(a) Bij(s) = Bji(s); (2.4a) 

(b) BII(s), B,ls), and B22(S) are analytic in 
fl\\ = {lIlU[S\, (0), n\2 = fl 12u[su 00), and 
fl22 = fl it )ufl i:; )u [s L' 00 ), resp. (see Fig. 2); (2.4b) 

(c) B (s) = B (s*)*; (2.4c) 

(d) !B(S)!<;K(lns)-a, S;;;'S,' 

IB (s) - B (S') I <;K(lns) -" I s ~ S' II', s';;;.s;;;.s\. (2.4d) 

The property (2.4d) is obtained from (2.3) with the help of 
Lemma 2 On asymptotic behavior of principal-value inte­
grals which is proved in Appendix A. The other properties of 
B follow immediately from (2.2). 

Henceforth we suppose that a function B (s), satisfying 
(2.4a), (2.4b), (2.4c), and (2.4d), is given. We seek the most 
general T(s) that gives that B (s) through (2.3), and which 
satisfies (2.2a), (2.2b), (2.2c), (2.2d), (2.2e), and (2.2l). Our 
analysis is based on the nontrivial theorem that any T (s) 
satisfying conditions (2.2d), (2.2e), and (2.2l) has an ND-' 
representation with appropriate properties. To be more ex­
act, under those conditions there exists a 2 X 2 matrix g; (s) 
such that 16. 17 

(a) g; ij(s) is analytic in the plane with cut [s" 00) and is 
defined by continuity on the cut. The function on the cut, 
iiJ ij(s ± ), is Holder-continuous on any finite interval. (2.5a) 

(b) 2f:(s_) = [I +21p(s)T(s+)]9(s,); (2.5b) 

(c) Yes) = iiJ(s*)*; (2.5e) 

(d) 2f:(s) is nonsingular (has an inverse) at every finite 
point ofthe eut plane, includingpointss + on theeut; (2.Sd) 

(e) There are integers n, such that the modified matrix 

9(s) = [s-n'I.0. I (s), s· n,g;.2(S)] 

tends to a finite, real, nonsingular limit as Isl-..oo: 

§(s)---..9(00) = 9*(00), det9(00)#O. 
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Here 9 :;(s) denotes thejth column of 9(s). (2.Se) 

The properties (2.5) clearly do not determine 9 (s) uniquely; 
at the least, one may interchange the columns of a given 
9 (s) and multiply them by nonzero constants, thereby ob­
taining a new matrix that satisfies (2.5). Nevertheless, the 
(nonordered) pair of integers n l , n2 is uniquely determined 
by the asymptotic behavior of T(s), and n l + n2 sets the de­
gree of ambiguity in the determination of T (s) from a given 
B (s), as we shall explain presently. 

In the single-channel case 9 (s) is determined up to a 
constant multiplier and has the familiar form 

u?r( ) A ( s i'" 8(s')ds' ) 
;;7/ s = exp - - " ' 

1T .I, S (s - s) 
(2.6) 

where A is an arbitrary real constant and [) (s) is the phase 
shift, normalized so that [) (s I) = O. In the many-channel case 
there is, in general, no closed expression for 9 (s). Rather, 
9 (s) is obtained through solution of a certain Fredholm 
integral equation with a kernel constructed from T (s.). If 
[) (s) in (2.6) tends to a limit [) (00) and obeys the bounds 

18 (s) - [) (00)1 <K(lns) - ", 

(2.7) 

s < s' , 0 < J-l < 1, a > 1, 

then 

(2.8) 

If [) (00 );;'1T, one has a CDD ambiguity in the determina­
tion of T(s) from a given B (s); cf. Ref. 7. We shall find a 
similar ambiguity in the two-channel case if n 1 + n2 ;;' 1. Let 
us write 

T (s) = [T (s)9 (s)] g' (s) = jf/(s)Iii -, (s), (2.9) 

and compute the discontinuity of %(s) from (2.Sb). If the 
unitarity equation (2.2e) holds, we have 

L1,V(s) = [T (s.) 9 (s,) - T (s.)§;' (s.) ]!2i 

= \ T(s+) - T(s.)[1 +2ip(s)T(s.)]) 9 (s.)/2i 

= L1LT(s)9(s.) = L1LT(s)9(s), S;;'SI' (2.10) 

In the final step of this calculation we are able to replace 
,9- (s.) by 9(s) because ofthe form of L1L T(s) and the fact 
that the cut of Iii 2i(s) begins at s = S2' We have L1./V(s) = 0, 
s;;'s" in the simpler case in which left- and right-hand cuts do 
not overlap. With overlapping cuts, 

L1.V,/s) = 0, 

L1'V'2i(s) = e (SL - s)¢> (s)9 2/S), (2.11 ) 

j = 1,2, S;;'SI' 

The left-hand cut of each matrix element A~tj(s) does not 
overlap the right-hand cut of the corresponding 9 ;/s). 

We next consider the possible asymptotic behaviors of 
9 (s) allowed by (2.Se) and for each type of behavior write a 
Cauchy representation for a matrix D (s) closely related to 
/d (s). The matrices D (s) will subsequently be used to derive 
integral equations for N (s) = T(s)D (s). We suppose initially 
that there is no bound-state pole of T (s), and also that neither 
column of 9) (s) tends to the null vector as \s\_ co; thus, 
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n; ;;,0. Presently we shall show that the vanishing of a column 
of .fj} (s) at infinity is an exceptional case, not expected to 
occur in realistic models, provided that there are no bound 
states. 

First take Case 1: n l = n2 = 0 in (2.Se). We define 

D(s) = f:iJ(s)9· I (co), N(s) =.,V'(s)f:iJ"(oo). (2.12) 

By properties (2.Sb), (2.Sc), and (2.2f), 

ImD (s+) = [D (s.) - D (s.)] 12i 

- p(s)T(s+),q; (s.).fj) .I( co) 

- pes }V(s)f:iJ -I ( co ) 

- p(s)N (s) = 0 (In - "s). (2.l3) 

If follows that D (s) has the Cauchy representation (Case 1): 

D (s) = 1 - ~ I~c p(s')~ (s')ds' . (2.14) 
1T I, s - s 

Wenext consider Case 2: n I + n2 > Oin (2.Se). To define 
D (s) in this case we first choose any polynomials of the form 

{

TI(S-Ski )' Skj<S\, 
Pj(S) = k - I 

1, ifnj=O, 

(2.15) 

where the real points Skj' k = 1,2, ... , ni,j = 1,2, are aJl 
distinct. Then D (s) is defined by 

(
PI I(S) 0)_ 

D(s)=.0:1(s) 9. 1(00) o P 2 I(S) , 
(2.16) 

and it has the Cauchy representation 

2 ~ Clk}) 
D (s) = 1 - I L --

} Cc I k ,Ski - S 

_ ..!.. I'F p(s')~ (s')ds' , 
1T s, S - S 

(2.17) 

sinceD (00) = 1 andN (s) = 0 (In as). The residue matrices 
C (k,) have components 

( 
n, ) I 

Ci~~)=·0:'Ij(Skj) II (Ski-spi) Vi",I(oo). 
p I.p~ k 

(2.18) 

Henceforth we shall consolidate the indices k andj and write 
(2.17) as (Case 2): 

D(s) = I _ ± ~ _ ..!..In p(s')~(s')ds' . 
; 1 0', - S 1T s, 05 - S 

(2.19) 

Except for possible poles, the matrices D (s) have the 
same properties (2. S) as 9) (s). Also, (2.10) implies that 

L1N(s) = L1f T(05)D(s), S;;'SI_ (2.20) 

The poles in (2.19) are analogous to the familiar CDD poles 
of the single-channel case: we shall again call them CDD 
poles. Because the pole positions 0', are all distinct, the resi­
due matrices C, are singular: 

detC; = o. (2.21 ) 

That is seen from (2.18): the matrix elk}) has rank l, being a 
dyadic constructed from the vectors f:/ ,j(Ski) and .':/ /. 1 (00). 

We now turn to the derivation of the integral equation 
obeyed by N (s) = T (s)D (05) for each of the two cases. The 
integral equation has a dual status. First, it is a necessary 
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condition on the N (s) associated with any given T (s). Second, 
it is a means of constructing a properly analytic, unitary, and 
symmetric T (s) from a given B (s). In applications one usual­
ly thinks only of the second aspect, but for the general the­
ory, especially for demonstrating the generality of the solu­
tion of the construction problem, it is necessary to consider 
both aspects. We begin by deriving the equation as a neces­
sary condition on N(s) for a given T(s) and later treat the 
construction problem. 

For a given T(s) satisfying conditions (2.2) and such 
that Case 1 holds, we examine the matrix function 

A (s) = [T(s) -B(s)]D(s) _ 1. roo B(s')p~s')N(s')ds' 
1r )s, s - s 

(2.22) 

SinceB (s)p(s)N (s) = 0 (In -2as), the integral converges. No­
tice that by (2.3) the difference T(s) - B (s) is defined in the 
whole cut plane, even though T(s) and B (s) separately may 
not be, in view of our weak assumptions on the region of 
definition and analyticity of T(s). Clearly (2.22) defines a 
function A I(S) = A (s), analytic in thehalfplane Ims > 0, and 
another function A 2(S) = A (s), analytic in Ims < O. We show 
that A2(S) is the analytic continuation of A I(S) and that in 
fact A I(S) = Az(s)=O. For s <SI 

.41A (s) = [.41 T(s) -.41B (s)]D (s) = O. (2.23) 
Fors;;;'sl 

.41A (s) = ~N (s) -.41B (s)D (s_) - B (s.)~D (s) 

- B(s)p(s)N(s) 

= ~L T(s)D (s) - ~L T(s)D (s) + B (s)p(s)N(s) 

- B (s)p(s)N(s) 

= O. (2.24) 
The structure of.41 L T (s), assumed in (2.2e), and the () func­
tions in .41 D (s) = - p(s)N (s) allowed us to replace D (s_) by 
D (s) andB (s.) by B (s) in (2.24). In the case without overlap­
ping cuts the terms.41N (s) and -.41B (s)D (s_) are separately 
zero; here they are nonzero but fortunately cancel. We see 
that A (s) is analytic in the entire plane. Also it vanishes at 
infinity, as is clear from (2.3), (2.14), and (2.22). Thus 
A (s)=O and (2.14) may be substituted into (2.22) to yield the 
integral equation 

N (s) = B (s) + 1. roc B (s) - ~ (s') p(s')N (s')ds'. (2.25) 
1r 1. s-s 

Thanks to the () function in pes') the domains of the first and 
second rows of N (s') in the integral are [s 1,00) and [S2' 00), 
respectively. Consequently, each Nij(s) is in a region of anal­
yticity over the domain in which Eq. (2.25) is to be solved, as 
is seen from (2.11). 

The derivation of the integral equation proceeds simi­
larly in Case 2. The only change required is to account for the 
poles of D (s). Referring to (2.22) and (2.19), we see that A (s) 
inherits the poles and in fact 

n, I 
A (s) = L -- [T(aJ -B(aJ}C;. 

i=l s-ai 

(2.26) 

This equation yields the result 
n, 1 

N(s) = B(s) + L -- (R; + B(s)]C; 
i= I S-O'j 
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+ 1. roo B(s) -~(s') p(s')N(s')ds', (2.27) 
1r L, s - S 

Ri = T(a;) - B (a;). (2.28) 

Henceforth we refer to the general equation (2.27), which 
includes (2.25) as the special case with Ci = O. 

The integral equation (2.27) is amenable to the Fred­
holm theory in an appropriate Banach space, as is shown in 
Appendix B. By the Fredholm Alternative Theorem,20 the 
integral equation has a unique solution in the space consid­
ered, provided that the corresponding homogeneous equa­
tion has no nontrivial solution in that space. We shall sup­
pose that the homogeneous equation in fact does not have a 
nontrivial solution, since the contrary case has not arisen, as 
far as we know, in realistic physical models. It does arise in 
the anomalous event of an "extinct bound state" as discussed 
by Atkinson and Halpern. 18 The assumption that there is no 
solution of the homogeneous equation allows us to rule out 
the possibility that a column of ffl(s) vanishes at infinity, as 
promised above. If fiJ.j(s), thejth column of fiJ(s), tends to 
the null vector as Isl~oo, then it has a Cauchy 
represen tation 

1 Soc p(s').f1 (s')ds' 
fiJ.j(s) = - - --,--'---

1r s, S - S 
(2.29) 

Owing to the lack of the usual unit matrix term on the right­
hand side of (2.29), the corresponding integral equation for 
JV/s) is homogeneous: 

A/" ( ) _ 1 f'" B (s) - B (s') ('\ A/" ( ')d ' (2.30) 
JY .j s - - ,P S j</f 1 S S. 

1r s, S - S 

Thus fl. j(s) = 0 and fiJ is) = 0, contrary to the fact that 
ffl(s) in nonsingular. The derivation of(2.30), carried out as 
before by showing that A (s) = 0, fails if T(s) has a bound­
state pole. We defer the discussion of bound states. 

Since we have ruled out the possibility that ffl :i(s) van­
ishes at infinity, we may conclude that the matrix N (s) for 
any T(s) obeying (2.2) satisfies (2.27). Furthermore, the 
properties (2.2)and (2.5)guaranteethatN (s) = T(s)D (s)lies 
in the Banach space used in the Fredholm theory of Appen­
dix B. Thus, for a given T(s), the matrix N (s) = T(s)D (s) 
coincides with the unique solution of the integral equation 
provided by Fredholm theory. 

WhenB (s) rather than T(s) is given, there is noa priori 
certainty that a corresponding satisfactory T(s) exists. By 
the preceeding remarks we do know that if such aT (s) exists, 
it must be obtainable in the form N (s)D (S)-I, whereN (s) is a 
Fredholm solution of (2.27) for some choice of the param­
eters C; and R;, with an arbitrary choice of the a;; here D (s) 
is given in terms of N(s) by (2.19). We now show that the 
Fredholm solutionN (s) of(2.27) gives aT (s) satisfying (2.2), 
provided that deW (s) i= ° in the cut plane and that, when 
there are CDD poles, another minor condition holds (condi­
tion (2.34) below). This assertion holds for any choice of the 
parameters consistent with restrictions already laid down. 
Those restrictions, we recall, are that all parameters be real, 
that a i < s l' a; i= a], detCi = 0, and that the R i be positive­
definite, symmetric matrices. The positive-definite character 
of R; follows from its definition and (2.3), since 
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T(s.)p(s)T(s_) = T(s.)p(s)T(s.) t, where tdenotes Hermitian 
adjoint. The matrices C i and R i entail only three real param­
eters each, since Cj is singular and R j is symmetric. 

If N (05) is a solution of(2.27) and D (05) is given by (2.19), 
we may write T (05) = N (s)D (stl, the proposed solution of 
our problem, in the form 

( 

n,. 1 
T(s) = B(s) + j~1 S _ O'i R,Ci 

+ ~ ('" B(S')P~S')N(S')dS')D_I(S). 
1T )" s - s 

(2.31) 

This expression is derived by recognizing a termB (s)D (s) on 
the right-hand side of (2.27). Since deW (s) is nonvanishing, 
it is clear that T (s) has analyticity in accord with conditions 
(2.2), provided that it has no pole at s = O'j. To demonstrate 
absence of a pole we write D -1(S) = cofD (s)/det D (s), and 
show by calculation, using det Ci = 0, that 

C;cofD(s) = 0(1), s---+O';, 
(2.32) 

o 
detD(s)- __ ' - + 0(1), 

s - O'i 

OJ = 2:(Cil1 Cj22 + C;nCj11 - Cil2 Cj21 - Cj12Cj21) 
}#I 

+ Cjll [I + 122(O'j)] + Ci22 (1 + 111(0',.)] 

- Idv,.)C j21 - 121 (v,,)CiJ2 , (2.33) 

where lu(s) denotes the integral that appears in Dy(s). Thus 
formula (2.31) contains no pole provided that 

(2.34) 

Condition (2.34) is the extra requirement for existence of a 
solution in the presence of CDD poles, mentioned above. 

Having proved analyticity, we have yet to show that 
(2.31) is properly unitary and symmetric. To check unitar­
ity, we first calculate AN (s) = Li (T(s)D (s» from (2.31): 

AN (s) = B (s.)AD (s) + LiB (s)D (s_) + B (s)p(s)N (s) 

= - B (s)p(s)N (s) + LiL T(s)D (s) + B (s)p(s)N (s) 

= AL T(s)D (s). (2.35) 

The unitarity condition (2.2e) is now verified as follows: 

T(s.) - T(s_) = [N(s.)D(s.tID(s_) - N(s_)]D(s_Y' 

= [N(s.)D (s.)-!D (s_) - N(s.) 

+ 2iLiL T(s)D (s)]D (s_Y' 

= N(s.)D(s.yl [D(s_) - D(s.)]D (s_t' 

+ 2iLiL T(s) 

= N (s.)D (s.tlp(s)N (s)D (S_yl + 2iAL T(s) 

= T(s.)p(s)T(s_) + 2iAL T(s). (2.36) 

As before, the prefactors pes) and LiLT (s) allowed us, on 
occasion, to replace s + by s. This calculation reveals a situa­
tion not present in the case with nonoverlapping cuts. Name­
Iy, T (s) satisfies unitarity only if N (s) satisfies the integral 
equation (2.27). In the nonoverlapping caseN (s)D (stl is uni­
tary, but in general not symmetric, for an arbitrary real ma­
trix N (s) such that the integral in D (s) is well defined. 

Symmetry of T(s) in (2.31) is proved by the method of 
Bjorken and Nauenberg.!O We examine the function 

<P(S)=DT(S)[T(s)- Tr(s)]D(s), (2.37) 
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where the superscript T denotes transposition. Because of 
the definition (2.3) and the assumed symmetry (2.4a) of B (05), 
it is clear that <P (s) is analytic in the upper and lower half­
planes, even though we have not assumed that T (s) is analyt­
ic in a whole cut plane. We shall show that the discontinuity 
of <P (s) over the real axis is zero and that <P (s) has no pole at 
s = Vi' Since <P (s) vanishes at infinity, it must then be identi­
cally zero. The symmetry of Twill follow, since we have 
assumed that D (s) is nons in gular. For s,;;;su Li <P (s) is obvi­
ously zero, since LiD (s) = 0 and B (s) = B T(S): 

Li<P(s) = D T(s)Li [T(s) - TT(S)]D(s) 

= D T(s)A [B (s) - B T(s)]D (s) 

For s>s! we apply (2.35) and find 

A<P(s)=A [DT(S)N(s)-NT(S)D(s)] 

= D T(s.)LiN(s) + AD T(s)N(s_) 

- NT (s)AD (s) - AN T (s)D (s_) 

= D T(s)LiL T(s)D (s) - NT (s)p(s)N (s) 

+ N T(s)p(s)N(s) - D T(s)AL T(s)D (s) 

=0. 

(2.38) 

(2.39) 

The CDD poles in the factors D T(S) and D (s) of(2.37) cancel. 
That is seen by introducing (2.31) and invoking the symme­
try of R j ; the sum of the pole terms is 

(2.40) 

To show that T (s) of (2.31) satisfies the bounds (2. 2f) we 
refer to the Fredholm theory of Appendix B, which shows 
that the solution N (s) of the integral equation obeys bounds 
the same as those of T (s). If I (s) denotes the integral appear­
ing in D (s), then Lemma 2 of Appendix A shows that I (s.) 
also obeys bounds like (2.2f). It follows that 
IT (s.) I ';;K(lns) ~ a. To verify the second inequality of (2.2f) 
we write, with s.;;s', 

N(s)D (05 + ) -1 - N(s')D (s'+ ) ~ 1 

= [N(s)-N(s')]D(s+ )~I +N(s')D(s+) 1 

X [D (S'~ ) - D (S + )]D (S'+) !. (2.41) 

When there are no COD poles it is obvious that the required 
bound is satisfied for each ofthe terms on the right side. With 
poles, the only additional task is to demonstrate local Holder 
continuity near the poles. That is easily done with the help of 
(2.32) and assumption (2.34). 

We have finished the proof that T (s) constructed from a 
solution of the integral equation (2.27) satisfies all of the 
conditions (2.2), provided only that det D (s)#O in the cut 
plane and a, I=- O. 

The question of how to verify in practice the condition 
det D (s) #0 arises. In the following section we describe a 
simple and practical method of verifying the condition, 
which involves computation in the physical region only. 
Fortunately, it is not necessary to search the complex plane 
for zeros of det D (s). 

Suppose that we solve (2.27) with an arbitrary choice of 
the real, symmetric, positive-definite matrices R j ; let us de-
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note these input parameters as R :n. If Tout(s) denotes the 
amplitude constructed from (2.31) and the solution of(2.27), 
will it necessarily happen that R ~UI = TOU'(OJ - B (oJ 
=R:n? 

In general the answer is no, because it is always possible 
to change R ;n without changing R ~ut. Since C; is singular, it 
has a real left eigenvector V; with eigenvalue zero: 

viC; = o. (2.42) 

If we change R :n by adding to it the positive-definite sym­
metric dyadic Av;v;, A > 0, there is no resulting change in 
R ;'UI, sinceR ;n enters the equations for N (s)and Tout(s) only 
in the product R :nc;. Furthermore, we may argue that in 
general 

R ;'u' = R;n + IW;V;, (2.43) 

where,u = ,u(R ;n) is a real scalar function of R ;n. Ifwe multi­
ply (2.31) on the right by D (s) and equate residues of the 
poles on either side of the equation, we find that 

(2.44) 

Both columns of C; are proportional to the same vector Uj! 

and R ;'UI - R :n, being real and symmetric, has the 
representation 

2 
Rou'_Rin= ~ ' . . w T 

I I L.,./I.)W)) • 

j~ I 
(2.45) 

By (2.42) and the orthogonality of the Wj we see that either 
w/u; = 0 or Aj = o for eachj, and that at mostoneoftheAj is 
nonzero. If AI, say, is nonzero, then WI has the same direc­
tion as V, (being orthogonal to u;) and (2.43) follows. Since 
R 7u, is a nonlinear function of R :n (in the domain where it is 
not a constant function) the function f.l(R ;n) is not a simple 
one. 

How many arbitrary parameters are associated with 
each CDD pole? To answer this question we first note that 
the pole positions 0; are not to be counted as free parameters. 
Suppose that we have constructed an amplitude T(s) from 
(2.27) with input parameters (T;, C;, R;. Recalling the deriva­
tion of (2;27), ,we see that th,e same T (s) has a representation 
T(s) = N (s)D (stl, whereD (s) has new pole positions cT and 
new residu~s C;, and N (s) satisfies (2.27) with «(T;, C;. 1U 
--(cT;, c" R; ,). Thus a change in pole position (T; may always 
be compensated by a change in C; and R; so as to yield the 
same amplitude T(s). The essential parameters are three in 
C; and three in R;, but it must be remembered that there is a 
subspace in the space of R; parameters on which T(s) is con­
stant; i.e., we may add any term of the form Av;v;, A > 0, to 
R; without changing T (s). 

III. BOUND STATES, LEVINSON'S THEOREM, AND A 
TEST FOR THE PRESENCE OF GHOST POLES 

Bound states seem not to occur in meson systems, but 
there is nevertheless a good technical reason to discuss them. 
The many-channel version of Levinson's theorem states that 

(1!2i)ln detS (00) = - n h + nc , (3.1) 

where nh is the number ofbound-st2.te poles, nc the number 
of CDD poles, and S the scattering matrix 

S(s) = 1 +2ipI/2(S)T(s+)pI/2(S). (3.2) 
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The quantity In det S ( 00 ) is defined by considering In det 
S (s) as a continuous function of s, with In det S (s I) = 0, and 
taking the increment between s = s. and s = 00. Our interest 
in bound states and the Levinson relation stems from the 
circumstance that "ghost" poles (spurious poles of the T 
matrix lacking a physical interpretation) are counted in Le­
vinson's relation just as though they were bound-state poles. 
In a system with ghosts (3.1) is replaced by 

(1!21)ln detS (00) = - nb - ng + no (3.3) 

where ng is the number of ghost poles. In a calculation with 
the ND -I method based on a specific model of B (s), the num­
ber In det S ( 00) is computed easily in conjuction with the 
solution of the integral equation, nc is an input parameter, 
and nb = 0 is usually demanded by the physics of the situa­
tion. Thus we can determine the number of ghosts from 
(3.3), rather than by searching the complex plane for zeros of 
det D (s). Should bound states be allowed in the problem, 
their location and number are easily determined by looking 
for zeros of det D (s) on a small interval of the real axis. 

Levinson's relation is true for any amplitude T(s) satis­
fying conditions (2.2), provided that the homogeneous form 
ofEq. (2.27) has no nontrivial solution (in the space consid­
ered in Appendix B). Of course the latter condition is a re­
striction on B (s) alone and it seems invariably to be met in 
realistic models. It is understood that the poles of T(s), nb in 
number, are all simple poles with factorized residues (i.e., 
each residue matrix is of rank 1). A proof of Levinson's rela­
tion, valid under the conditions stated here, is given in Sec. 5 
of Ref. 11. The proof as written applies when the poles of T (s) 
are at real points s <s •. One may also have ghost poles at 
complex points in conjugate pairs (s, 5*). An extension of the 
argument of Ref. II is required in that case. 

IV. SINGLE-CHANNEL PROBLEM WITH OVERLAPPING 
CUTS AND ABSORPTION AT THRESHOLD 

In some phenomenological studies it may be more prac­
tical to treat only one channel explicitly, accounting for 
coupled channels by empirical absorption parameters. A 
simple extension ofthe single-channel N / D method with ab­
sorption 7 allows one to handle processes such as KK --KK 
and NN->NN, which have absorption at threshold and over­
lapping cuts. The object is to construct unitary single-chan­
nel amplitudes of the form 

T(s) = BL(S) + ~ (W T(s'+ )q~sl)T(s'_ )ds' 
1T )s, s - s 

+ ~ (OC F(s')ds' 

1T )SI Sl - S 
(4.1) 

where the left cut part B L (s) and the absorption function F (s) 
are given. We suppose that B L (s) has the properties of the 
function B 22(s) of Sec. II; [so in (4.1) is to be identified with S2 

in Sec. II]. The inelastic threshold s[ is assumed to be lower 
than the physical threshold So and may be either to the left or 
to the right of the end of the left cut at s L' With the channel 
considered labeled as the zeroth one, F (s) is the inelastic part 
of the unitarity sum, 

F(s) = I Ton (s+)p"(s)T"o(s_), (4.2) 
,,#0 
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where the functionsPn(s) contain step functions to account 
for the closing of channels. The sum over n may actually 
include integrals if states with more than two particles are 
involved. We haveF(s»O even for s <so; since the Tmatrix 
is real-analytic and symmetric, Tno(s_) = Ton (s+)* even be­
low the threshold of channel O. For s>so, F (s) is expressed in 
terms of the usual elasticity function 1/(s): 

F(s) = [I -1/2(s)]/4q(s), s>so, (4.3) 

T(s) = [1/(s)e2
'O(S) -I ]!2iq(s), s>so' (4.4) 

We suppose that F(s) satisfies bounds like those on B (s) in 
(2.4d). It then follows from (4.3) that [1 - 1/(s)]/q(s) satisfies 
such bounds as well, and in particular that 1/(s)-+ 1, s-+so + . 

In the N / D method with absorption,? the function 9' (s) 
is defined in terms of the real phase shift 0 (s) of (4.4) by the 
expression (2.6). In the present extended method we use the 
same §iJ (s), but use a B (s) different from the usual one; 
namely, 

B(s) = BL(s) + ~ ('" F~s')ds' 
1T)" s - s 

+- S. 
1 1= 1 - 1/(s') d' 

21T s, q(s')(s' - s) 
(4.5) 

In other words, we treat the part of the absorption cut be­
tween Sj and So just as though it were a left cut contribution. 
The derivation of the integral equation then proceeds in the 
same way as in Ref. 7. In the case without CDD poles the 
equation reads 

1/(s)n(s) = ReB (s) 

+ ~ 1.00 

ReB (s~ = :,eB (s') q(s')n(s')ds', (4.6) 

where n(s) = - ImD (s+)/q(s). The amplitude is obtained in 
terms of n(s) [which is not the same as the numerator func­
tion N (s)] by the formula 

T(s) = B(s) + _1_ roc ReB (s');(s')n(s')ds' , (4.7) 
1TD (s) j,,, s - s 

(4.8) 

Each of the last two terms in (4.5), contributing to ReB (s), 
has a logarithmic singularity at s = So' The singularities of 
the two terms cancel, however, because F(s) is Holder-con­
tinuous and 

F( ) 
1 - 1/2(s) I -1/(s) 

S = - , S-+so + . 
4q(s) 2q(s) 

(4.9) 

As a result ReB (s) is Holder-continuous for s>so and the 
integral equation (4.6) is of Fredholm type on the space of 
Appendix B, provided that 1/(s) has no zero. A solution of the 
integral equation gives an amplitude (4.7) that is properly 
analytic and satisfies unitarity in the form 

ImT(s.) = T(s.)(} (s - so)q(s)T(s_) + F(s) + LlLT(S), 
(4.10) 

s>Sj' 

provided that D (s) has no zero in the cut plane. As in Sec. III, 
a practical test for the presence of ghost zeros of D (s) may be 
based on Levinson's relation, which in the present case holds 
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in the form 

0(00)= -1T(nb -nc)' (4.11) 

V. A SPECIAL CASE SOLVED BY GONZALEZ-ARROYO 

We return to the two-channel problem of Sec. II and 
discuss a special case treated by Gonzalez-Arroy04.3; name­
ly, the case in which the left cut parts of Til and TI2 vanish 
and nonrelativistic kinematics hold: 

BII(s) = BI2(s) = Bzls) = 0, 

PieS) = e (s - s,)(s - syl2, i = 1,2. 

(5.1) 

(5.2) 

Because PieS) grows at infinity, we must assume that Bn(s) 
vanishes more rapidly than does B (s) of Sec. II. Instead of 
(2.4d), we take 

[B22(s) [ <KS - a, s>sz, 

I 
s-s' II" [B22(s) - B22(S') [ <KS - a -S- , 

~<a<l, O<Jl<~. (5.3) 

For a given B (s) satisfying (5.1) and (5.3), we seek the 
general T(s) satisfying (2.2a), (2.2b), (2.2c), (2.2d), (2.2e), 
and bounds such as (5.3) instead of (2.2t). For such a T(s) 
there is a 9'(s) satisfying (2.5a), (2.5b), (2.5c), (2.5d), and 
(2.5e) and a correspondingD (s), as defined in (2.16), having 
the representation (2.19). Consequently, the integral equa­
tion (2.27) holds. The first row of the matrix equation is 
trivial, giving NIj(s) explicitly as a function of CDD 
parameters: 

n, (Re)1 
NIj(s) = I "J, j = 1,2. 

,= I S - 0', 
(5.4) 

From the second row of the integral equation we have 

n, 1 
NzI(s) = I I [R, + B(s)]C, IZI--

,~I S-O', 

and 
n, I 

NnCs) = B22(S) + I I [R, + B(s)]C, 122--
,= I S - O'i 

+ ~ 100 

Bzz(S~ = :zZ(S') qz(s')N22(s')ds'. (5.6) 

The integral in the D matrix elements (2.16) corresponding 
to (5.4) may be evaluated to obtain 

Dlj(s) = Ol} + t (C')I) + (RiC,)\j 
i= } 

(5.7) 

We suppose as in Sec. II that the homogeneous version of the 
matrix integral equation for N (s), equivalent in the present 
case to the homogeneous version of the scalar equation (5.5), 
has no nontrivial solution, Then if there are no CDD poles, 
the integral equation (5.5) for N 2I (s) is homogeneous and has 
only the trivial solution NZI(s) = O. Without CDD poles we 
obtain only the trivial solution in which channel 2 is com­
pletely decoupled, and TII(S) = TIZ(S) = TZI(S) = O. Thus 
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the solution of Gonzalez-Arroyo necessarily entails eDD 
poles as defined in the two-channel formalism. Since Gonza­
lez-Arroyo reduced his problem to a one-channel case by a 
special device, this fact was not previously apparent. 

To reduce the problem to a one-channel case through 
our formalism we circumvent solution ofEq. (5.5) and re­
quire solution of (5.6) alone. Accordingly, we suppose that 
the solution of(5.6), in a Banach space appropriate to condi­
tions (5.3), is given; see the remark at the end of Appendix B. 
The solution N22(S) obeys conditions like (5.3); of course, the 
same is true of the solution N21(S) of (5.5). Because the inho­
mogeneous term in (5.5) is 0 (S-I), it is possible to show that 
N21(S) = o (s-l)andD21(s+) = 0 (S-I/2). The proofis done by 
showing that the integral operator "improves" the asymp­
totic behavior of NZI(s), That is, if N21(S) = 0 (s - a), then the 
integral is 0 (s - 2a + 112). By iteration of this argument one 
eventually getsN21 (s) = O(S-I). 

We exploit the symmetry of the Tmatrix, writing 
T(s) = l' (s)/deW (s) and 

Tds) = - Nll(S)Dds) + N12(s)DIl(s) = TZI(s) 

= - N2zCS)Dzl(S) + N Zl (s)Dzz(s). (5.8) 

From (5.4) and (5.7) we may compute Tl z(s); it is just a 
rational function, since the terms from the imaginary parts 
of Dds) and DIl(s) cancel. With that observation and a 
knowledge of Nzis) and Dzz(s) we can use (5.8) to find the 
general form of N 21 (s) and DZl(S). The rational function 
TI2(s) is 

Tlz(s) = - NII(s)ReDds) + Nds)ReDll (s) 

~(RiCi)Il~[(C) ( )1/2(RC)] - L... L... j IZ + Sl - uj j j IZ 
i S - U i j 

1 ~ (R i C;)12 
X --+ L... 

s - uj i S - U i 

X (1 + I [(C) II + (SI - uYIZ(Rj Cj )ld _1_) 
J s-~ 

<P (s) 
= --, S>SI' 

pes) 
(5.9) 

where 

pes) = IT (s - u;) (5.10) 
i= 1 

and <P (s) is a polynomial of degree not greater than nc - 1. 
The second-order poles, corresponding to i = j in the sums of 
(5.9), cancel because of the condition detCi = O. 

Equation (5.8) may be construed as a Riemann-Hilbert 
boundary-value problem for determination of DZl(S). Since 
N2j(S) = - ImD2j (s)/qz(s), the real part of(5.8) reads 

<P(s) 
qis) pes) = - ImDzl (s+)ReD22(s+) + ReDzl (s+)ImD22(s+) 

= [D22(s+)Dzl (s_) - Dzz(s_)Dzl(s+)]12i. (5.11) 

By the rearrangement displayed in the second line of(5.11), 
the Riemann-Hilbert problem 17 is transformed to an inho­
mogeneous Hilbert problem 17: 

(5.12) 
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To solve the Hilbert problem we invoke the ubiquitous phase 
integral 

d ( ) ( 
S loc b(s')ds' ) s =exp - - , 
1T $, s'(s' - s) 

(5.13) 

(5.14) 

Notice that b (s) is the phase shift for the amplitude 
N 22(s)/D22(s), which obeys elastic unitarity and is not to be 
confused with the channel-2 scattering amplitude T22(S). It is 
easy to see that DzzCs)/ d (s), being real for s > Sz, is a rational 
function with poles only at s = U i ; we may write 

1/1 (s) 
D22(S) = - d (s), 

pes) 
(5.15) 

where 1/1 (s) is a polynomial of degree nz equal to the number 
of zeros of DzzCs). Nothing prevents D22(S) from having ze­
ros, in general, since poles of N22(s)/ D22(S) are not poles of 
the full T matrix. We have b (00) = 1T(nc - nz ), since 
D 22(s+) -1 and d (s+) -b (00 )/1T, S-+ + 00. Now substitute 
d(s_)/d(s+) for D zzCs_)/D22(s+) in (5.12) and use (5.15) to 
obtain 

[D21(S+)/d (s+) - D21(S-)/d (s_)]12i 

(5.16) 

Thus we have the discontinuity of DZl(S)/d (s) over the cut 
[sz, 00) and it is real as required. In addition we know that 
D 21 (s) is analytic in the plane with cut [S2' 00), except for 
simple poles at s = U i , and that it vanishes at infinity: 
D 21 (s+) = o (S-1/2). Sinced(s)-sn, -n'atinfinity,D

21
(s)/d(s) 

obeys an un subtracted dispersion relation if nc >n z • The 
right-hand side of(5.16) is 0 (s -1/2 + n -11,) since degree (<P) 
<n,. -1. For nc >n z we have the representation 

DZI (s) = d (s) (_ ~ (00 qis') <P (s') ~ 
1T J" Id (s'+ W 1/1 (s') s' - s 

+ i (C;)ZI _1_). (5.17) 
i = I d (u;) s - U i 

Note that d (s) may be redefined through multiplication by a 
constant, but that (5.17) is invariant to such a change 
(d-Ad, I/I-+A -11/1). For nz - nc = n, > 1 we must introduce 
n, subtractions and replace (5.17) by the formula 

D () ( )d (~D21(t;) I 
21 s = Q S (S)~I d (t;) Q '(t;)(s _ t

i
) 

I (X qzCs') <P (s') ds' 

1T 1 Id(s'+ )1 2 I/I(s') Q(s')(s' -s) 

+ ~ (C;)21 __ 1 _), 
L... (5.18) 

I ~ I Q (u,)d (u,) s - U i 

where Q (s) is a polynomial with distinct roots ti < S2' none of 
the ti coinciding with a uj . The function NZI(s) 

= - ImD21 (s+)/qis) may be computed from (5.8), (5.9), or 
by taking the discontinuity of (5.17) or (5.18). By either 
method we find 

N () - N ()D21(s) + <P(s) 
21 S - 22 S D22(S) P (S)DZ2(S) (5.19) 
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The representation (5.17) of D21(S) is determined by 
(Ci )21 and the functions <P (s), D22(S), The latter are in turn 
determined by the matrices Ci and R i , through (5.9), (5.6), 
and (2.19). Thus we have determined D21 (s) in terms of the 
input parameters Ci and Ri without having solved the inte­
gral equation (5.5), provided that nc - nz ;;;,0. On the other 
hand, we can assert that N2I(s) as determined by (5.19) and 
(5.17) in fact solves the integral equation, since the matrix 
D (s) constructed from a solution of (2.27) satisfies all the 
requirements that led to the unique function (5.17). 

In nc - nz < 0 (which implies that nz ;;;,2), then D 21 (z) is 
not determined uniquely by the above considerations be­
cause of the unknown subtraction constants DZI (t,)/ d(t,) in 
(5.18). Consequently, we cannot be sure that the correspond­
ing NZI(s) satisfies (5.5). Nevertheless, we can demonstrate 
that T (s) constructed from (5.18), (5.19), and the other pre­
viously determined elements of D (s) and N (s) actually is a 
solution of our problem for arbitrary subtraction constants 
(provided, as usual, that deW (s) #0 in the cut plane). It then 
follows that N21(S) constructed from (5.19) and (5.18) with 
arbitrary subtraction constants satisfies (5.5), but with a val­
ue of the parameter (R i CJ21 that may only be computed a 
posteriori as ![T(ui ) - B(u,)]Ci J 21 from the T(s) construct­
ed. To show that T(s) [constructed with (5.18), (5.19), and 
arbitrary subtraction constants] is a solution of our problem 
we have only to verify unitarity, since proper analyticity is 
evident and symmetry of T (s) was ensured through the use of 
(5.8). Unitarity follows from the calculation (2.36) if(2.35) 
holds. The first row of (2.35) is trivial because of (5.4), and 
we have .1Nn (s) = [.1 L T(s)D (S)]22 = .1 L T2z{S)D2Z(S) as is 
usual for a single-channel N / D problem. To finish the proof 
of (2.35), one has only to show that 
.1N2I(s) = .1 L T22(s)D21 (s), and that is easily done by (5.19) 
and (5.18). For s > S2' .1N21(s) = 0 because NZI(s) is real, be­
ing the discontinuity of the product of two real-analytic 
functions displayed in (5.18). Fors<s2' (5.19) gives 

.1N, I(S) = .1N,,(s) D21(S) =.1 L T22(S)D, I(S), (5.20) 
- -- Dn(s) -

To make contact with the solution of Gonzalez-Arroyo, 
we look at the K matrix 19 

(5.21) 

The solution in question is such that the element K22(S) is 
equal to the K matrix for the "decoupled" channel-2 prob­
lem, namely, N 22(s)/ReDzls): 

Condition (5.22) can be met in only two ways: either 
ReD I2(s) = 0 or N 2I(s)ReD2z{s) - Nn(s) ReD21 (s) = O. The 
latter equation implies that Klis) = K 2I (s) = 0, however, 
from which it follows that T12(s) = T21(S) = 0; i.e., that the 
solution is trivial. We must take ReDds) = 0 and by (5.7) 
we see that the Gonzalez-Arroyo solution corresponds to a 
particular choice of CDD parameters such that 

(C')12 = 0, (R i Ci )12 = o. (5.23) 
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With ReDI2(s) = 0 one has 

Kds) = K 21 (s) = Nds)/ReDzz{s), (5.24) 

and 

K 1 () ()ReD21 (S») II(S) = Nil S - NI2 S . 
ReDII(s) ReD22(s) 

(5.25) 

According to (5.4) and (5.15), we may write (5.24) in the 
form 

K () Pds) 1 
12 S = pes) Red(s) , (5.26) 

where Pds) = Nlis)P(s) is a polynomial of degree not 
greater that nc - 1 . Gonzalez-Arroyo has 

l°l(s) 
Klis) = [1 - iqz{s)K22(s) 1 d (s.) 

Dn(s.) X(O)(s) X(O)(s) 
= -- = --, (5.27) 

ReD22(s) d (s.) Red (s) 

where X (O)(s) is a rational function that is 0 (s'" I - n') at 
infinity and has poles at the zeros of D 22(s) [i.e., of if/ (s)], in 
agreement with our function Pds)/if/ (s) of(S.26). Theargu­
ment of Ref. 4 seems to allow poles of X (O)(s) at other points 
as well, but our generally valid expression (5.26) shows that 
additional poles are not possible: we have X (O)(s) 
= Plz{s)/P (s) with poles only at the zeros of D22(S). 

Next let us evaluate (5.25) using expression (5.17). With 
the help of (5.1 5) and (5.14) we get 

[ 
if/IZ(S) 

KII(s) = NII(s) + -­
if/ (s) 

(
p IX Q2(S') <P (s') ds' 

X --;; \, Id(s'+ W if/(s') s' -s 

_ ± (C')21 _1_ + qz(s)tano~s)<p(S»)) 
i~ld(Ui) S-(1i Id(s.)I-P(s) 

(5.28) 

The corresponding formula in Ref. 4 is 

K (s) = h (DI(S) + P foc qz(s') (if/d S'»)2 ~ 
II 1T s, Id (s'+ W if/ (s') s' - s 

+ qz(s)tano(s) ( if/lz(s) )2 S;;;'S2 (5.29) 
Id(s+ W P(s) , , 

where h (0 '(S) is a rational function that has poles at the zeros 
of if/ (s) and is 0 (S-I) at infinity. In order that the terms pro­
portional to tano (s) in (5.28) and (5.29) agree, it is necessary 
that <P (s) = if/IZ<S) and ReDII(s) = 1. According to(5.9)and 
the condition ReDlis) = 0 already imposed, <P (s) = if/12(S) 
follows from ReD I1 (s) = 1. By (5.7) the latter is true if and 
only if 

(C')II = 0, (R,C,)II = O. (5.30) 

With <P (s) = if/ds) we still have to resolve the discrep­
ancy between the integrals that appear in (5.28) and (5.29). 
Consider the function 

f(s) = if/1z(S) ~ foc ( qi' ), if/12(t) 1 ~ . 
if/(s) 1T \, Id(t.)I- pet) t-s 

(5.31) 
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The bracketed expression is 0 (t - n, + n, - 112) at infinity and 
we are assuming that nc>nz ; hence the integral is 0(S-I/2). 
The factor in front of the integral is 0 (sn, - n, - \ We may 
write a dispersion relation forf(s) with n subtractions, where 

(5.32) 

Namely, 
n -I 

f(s) = I. f(m)(O)sm 
m=O 

where the sum over i is due to the poles of 1!1fI (s) at points t i , 

assumed distinct. The bracketed factor in the integrand is 
o (t -3/2) so that we can remove all n subtractions in the inte­
gral by iteration of the identity 

sn sn-I G 1 (1). - -+ (5.34) 
(s - t )t n - ~ - t 

Thus 

Ref(s) = 1f112(S)!.- (00 q2(t) 1f112(t) ~ 
'P(s) 1T J.. Id(t.)1 2 'P(t) t-s 

!.- ioc qz<t) ( IfIllt»)2 ~ + R (s), (5.35) 
1T s, Id(t.W lfI(t) t-s 

where 

n - 1 n~ a 
R (s) = I. pm)(O)sm + sl> I. -'-

m __ 0 i = I S - ti 

+ n:f sm ~ i oo 

qz(t) ( IfIdt»)2 ~. (5.36) 
m~[) 1T s, Id(t.W 'P(t) t m+ 1 

We see that the integrals in (5.28) and (5.29) differ by a ra­
tional function that has poles at the ti and which in general is 
o (sl> I) at infinity. 

Finally, in order that (5.28) and (5.29) be compatible, 
the rational function 

NII(s) + R (s) _ IfIds) i (C;)21 _1_ 
'P(s) i~ I d(aJ s - a i 

(5.37) 

must have the properties required of h (O,(s). If nc = nz , nz 

+ 1, then R (s) = 0 (S-I) and all terms in (5.37) are 0 (S-I) at 
infinity as required. Otherwise the second and third terms of 
(5.37) must cancel appropriately at infinity. Gonzalez-Ar­
royo tacitly assumed, in fact, that nz = O. With that assump­
tion we get a solution of his form when nc = 1 and the CDD 
residues satisfy conditions (5.23) and (5.30). Even though 
the solution of Gonzalez-Arroyo contains arbitrary rational 
functions, it is far from being the general solution of the 
problem posed. 

VI. REMARK ON A UNITARY PARAMETRIZATION 
SUGGESTED BY YNDURAIN 

We have shown how to construct properly analytic am­
plitudes satisfying the unitarity equation (2.2e), but the con­
struction has the disadvantage of requiring the solution of an 
integral equation. For phenomenology it would be useful to 
have a parametrization of T(s), analogous to the usual K 
matrix parametrization, that would automatically satisfy 
(2.2e). Yndunlin I has proposed a parametrization which has 
the required property in the regions I <;S<;S2' Define T (s) such 
that Tu(s) = Tu(s), except for i = j = 2, and 

- 1 lSI ¢ (s')ds' 
T 22(s) = T22(S) - - , . 

1T 0 s-s 
(6.1) 

There is nothing special about the lower limit 0 in the inte­
gral; any lower limit less than Sl will do. Define a matrix 
M(s), which is related to T(s) in thewaythatM(s) = K-I(S) 

is related to T(s): 

T(stl = M(s) - ip(s). (6.2) 

Now we may show that the unitarity condition (2.2e) is 
equivalent to the reality condition M (s) = M (s)* in the re­
gion s I <;S<;S2' Let us consider the region s>s I> supposing that 
M (s) is real in that region. We write 

T(s) = T(s) + T(s), 

~ iSI ~ ~s')ds' ]. 
1T 0 s-s 

Since reality of M (s) implies that 

Ll T(s) = T(s.)p(s)T(s_), 

we have 

Ll T(s) = T(s.)p(s)T(s_) + LlL T(s). 

Also, 

T(s.)p(s)T(s_) = T(s.)p(s)T(s_) + U(s), 

where 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

U'j = T_ i1 P IT.t I) + T- i2P2 T +2J + T_ i1Pl tt IJ 

+T- i2P2 T +2J +T_ II P IT+ IJ +T_ i2P2 T +2) 

=P2(T i2T+2J +T-i2T+2J +T_i2T+2J)Di2Dj2. 
(6.7) 

Since U(s) = 0 for S<;S2' Eq. (6.5) is indeed the unitarity 
equation for s I <;S<;S2' 

For s > S2' however, unitarity is not equivalent to M (s) 
being real, since U22(s) #0 in that region. Indeed, unitarity 
for s > S2 is equivalent to M (s) = K -I(S) being real, where 

T(st l = M(s) - ip(s). (6.8) 

The relation between M and M is as follows: 

(
[ 1 + (M22 - ip2)T22 J!MII - ipl) - M~2 Tn 

MI2 
(6.9) 
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Clearly if (5) does not change continuously into M (5) at 
5 = 52; rather, at 5 = 52 we have 

M = if _ T22 A (_ift~ if ~722). (6.10) 
I + M22T22 W'2M 22 M 22 

The matrices M (5) and if (5) are two different analytic 
functions that one would try to represent in terms of a few 
empirical parameters so as to meet the following conditions: 

(i)if(5)=M(5)*, 5,<5<52 ; 

(ii)M(5) =M(5)*, 5>52 ; 

(iii) M (5) and if (5) are related by Eq. (6.9),5>51, 

(iv) The analyticity properties of M (5) and if (5) should 
reflect to a reasonable extent the correct analyticity proper­
ties of T (5), especially the nearby singularities corresponding 
to the principal particle exchanges. 

It seems rather difficult to satisfy all of these require­
ments simultaneously; in particular it seems hard to satisfy 
(iii) in such a way that (i) and (ii) would also hold. We would 
expect Yndufllin's proposal to be rather limited in useful­
ness. The only alternative that we can think of, short of solv­
ing the integral equation (2.27), is to make a pole approxima­
tion for B (5). As is well known, the kernel of the equation is 
then separable and solution of the equation is reduced to 
quadratures and solution of algebraic equations. Unfortu­
nately, for a realistic representation of B (5) one usually needs 
so many poles that the resulting formulas are not very 
illuminating. 
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APPENDIX A: ESTIMATES OF PRINCIPAL VALUE 
INTEGRALS 

Weare concerned with the asymptotic behavior and 
continuity properties of principal value integrals of the form 

(AI) 

In the following a, e, and 8 are fixed positive constants, and K 

is "some positive constant" which is understood to have dif­
ferent values in different inequalities. 

Lemma I: Suppose thatf(t) obeys the conditions 

K (t-50 )e If(t)l<; - -- , 
tat 

(A2a) 

t2>t l , a+8<I, (»8. (A2b) 

Then the integral g(5) of (A I) is such that 

Ig(5) I <;K/So; (A3a) 

Ig(sl) - g(52) I <; ~ I 5, - 52 II!, S2>S1' s: s, 
(A3b) 

Lemma 2: Suppose thatf(t) obeys the conditions 
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If(t)1 < _K_ (t - 50 )e; 
(lnlY t 

If(t,)_f(t2)1<;~(t2-50)e-s\ t 1-t2 \6, 
(lnt,) t2 t. 

t 2>t1• a> 1, (»8. 

Then the integral g(5) of (A I) is such that 

Ig(s) I <;K/(lnsy - 1 ; 

(A4a) 

(A4b) 

(ASa) 

(ASb) 

We give a proof of Lemma 2; A proof of Lemma I fol­
lows the same lines, but is somewhat easier. To verify (ASa). 
we write 

g=pi
'LS 

+ (00 =g, +g2' f.l> 1, 
4 J/lS 

(A6) 

and majorize gz immediately: 

1
00 

dt 100 
dt K Ig21<;K <;K -- <; ---. 

/lS lnat (t - s) /lS t lnat Ina - • S 
(A7) 

For g] we use the identity 

g,(s) = rLS 

f(t) - f(s) dt + f(5) (;.t -1)5 . (AS) 
Js, t - 5 S - 50 

By introducing (A4b) and (A4a) in the first and second 
terms of (A8), respectively, we see that g 1(5) is bounded at 
small s, say s < 2so, and consequently (ASa) holds at small 5. 

For 5 > 2s0 the logarithmic term in (AS) clearly satisfies 
(ASa). The other term is decomposed and bounded as fol­
lows, with! <A < 1: 

<; _K_. (A9) 
InGs 

Thus (ASa) is proved and we see that the dominant part of 
g(5) at large s is from the tail of the integral, gi5). 

To establish (ASb) we split the integral as follows: 

g=pf" + L: =g, +g2' (AlO) 

The bound of g2 is easily obtained: 

Igis]) - giS2) I <;Klsl - s21 (00 1 a (t dt)(t ) 
J2<, n t - 51 - 52 

I 11 00 d t _K 1!...-5 1:.....---.-:5 2'-'.1 
<;KS,-S2 --<; 

2" t zInat S2Inas2 

<; ~ I 51 - S2 I <; ~ \ S1 - S2 \ b • 

Inas2 S1 lnas, s. 
(All) 

Now put S2 = S1(1 + b) and note that we may restrict atten-
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tion to small b, say b<~. For b > i the required bound is a 
direct consequence of (ASa): 

K 
Ig(sl) - g(S2) I < Ig(sal + Ig(S2)I < I a -I 

n SI 

< = -- . (AI2) Kb fj K I S I - S2 I fj 
Ina-lSI Ina-lSI SI 

Let us extend the domain off(t) to include the interval 
¥o<t<so, puttingf(t) = 0 on that interval. The property 
(A4b) holds for the extended function; for tl <So and t 2>so 

If(t l) - f(tz) I = I f(tz) I < ~ (1 _ So)(J 
Inatz t2 

K (1 So)(J-fj (1 .!..L)fj 
< lnatz - t; - t2 

<~(t2-S0)(J-fj(tl-t2)fj. (A 13) 
lnatl t2 tl 

By (AS) we have 

g I(S) = (2S. f(t) - f(s) dt + f(s)ln ( 2sz - S ) 
1/2 t - S S - soI2 

= hl(s) + h2(S), (AI4) 

and 

jln( 2S2 -S I
) I + 

SI -soI2 

If(S2)llln( 2s2-S1 )-In( 2s2-S2 ) I. 
SI - soI2 Sz - soI2 

(AIS) 

The logarithmic factor in the first term of (A 15) is clearly 
bounded by a constant for b<i and SI>SO. For the second 
term we use the mean-value theorem, noting that 

sup I ~ In (--=--2s2 - s) I 
s, ';;'<';;', ds S - soI2 

<sup/-I-I + sup I 1 I 
2sz - S S - soI2 

= I/s2 +1/(SI - soI2)<K/s I· (AI6) 

The difference oflogarithms in (AIS) is then less than 
Kb<Kb (; and the required bound of the increment of hz is 
obtained from (AIS). To estimate the increment of h2 we 
break the integral into three parts, 

1,,(1 -2b) 1S '(1 +2b) 1zs, 
h l = + + =JI+J2+J3·(AI7) 

$,,/2 s,(1 -2b) 5,(1 +2b) 

The separate terms in the increment ofi2 are so small that we 
need not consider their difference: 

I Jisl) - JZ(S2) I 

<IJisl)1 + lJisz) I 
K 1s

,(1 +2b) ( 1 <--- dt + 
sflnas l 5,(1-2b) It-sdfj 

K JI +2b ( 1 
= -- du + 

lnas l 1-2b lu -III-fj 
Kb(; 

<--. 
lnasl 

Next we estimate 

iI(S2) + J3(S2) - JI(SI) - J3(SI) 

It_

I

s2 Ifj) 

IU-I~bll-fj) 
(AIS) 
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(lS,(1 -2b) 12S• ) dt 
= [f(sl) - f(S2») + -

s,/2 s, (I + 2b ) t - S 

+ ((',(1-2b) + 12S
• )dt[f(t)-f(S2») 

\.t,/2 s, (1 + 2b) 

X (_1 __ _ I_)=kl +k2 • 

t-s2 t-SI 
(AI9) 

The part k I is easily disposed of: 

I ( 2s2 - SI ) I K b fj Ikd = If(sl) - f(sz) I In < -a- . 
SI - soI2 In SI 

(A20) 

For the first integral in k2 we need a further decomposition 
to handle the combination of two poles and a logarithm: 

I
S,(I - 2b) dt 1 1 

Ik211 <Kls1 - S21 -{j- I {j -I --I 
s,/2 tlnat It-s21- t-si 

=Kb 1
1

-
2b du 1 1 

s,/2s, u{jlnas1u lu-I-bll-fj lu-II 

(1
112 du 

<Kb -{j--
s,/2s, U lnaslu 

1 t -2b du ) 

+ lnasl JI/2 lu - 1 - b II - {jlu - II 

<Kb --- --- + ---G 
1 1S ,/2 dt 1 11 -2b du ) 

:-{j s,/2 t{jlnat lnas l 112 lu -II2
-{j 

< Kb (1 + b{j-I)< Kb{j . (A2I) 
lnas l lnas l 

To complete the proof of Lemma 2 we treat the second inte­
gral in k z: 

I
k I Kisl - s21 12S

> dt _I_ 
n < s~lnasz s,(1+2b) It-szl l

-
Ii It-sil 

I I f
2(1 + b) du 

_ K SI - S2 
- s~s:-(;lnas2 1+2b lu-I-bll-lJ lu -11 

Kb f2(1 +b) du Kb D 

<--- 2 {j < ---. 
Inas2 I +Zb lu -1 - b I - InGsl 

(A22) 

Notice that if two functionsfl(t )'/2(t) satisfy (A4), then 
the productfl(t )h(t) satisfies (A4) with the exponent a re­
placed by 2a. Consequently, when we estimate the integral in 
(2.3) using (2.2f) and the definition (1.2) of pet ), we find that 
it obeys conditions like (AS) with a = 2a, {) = fl. Since 
2a -1 > a, we thereby establish conditions (2.4d) on B (s). 

APPENDIX B: FREDHOLM THEORY OF THE INTEGRAL 
EQUATION 

We show that the integral equation (2.27) may be treat­
ed by Fredholm theory20 under conditions (2.4d) on B (s). 
We map the interval [Sl' 00) onto (0,1). The choice of the 
mapping is not crucial; we take t = SI/S for convenience. [In 
a numerical calculation of the Fredholm solution it is usually 
best to choose the mapping t (s) so as to make the integrand 
finite and nonzero at the point corresponding tos = 00.) We 
multiply the equation by (Ins) a, a> I, and seek a solution 
ifJ (t) = (Ins) aN (s) in a Banach space Uconsistingofreal ma­
trix functions ifJ (t) continuous on the closed interval [0, I) 
with norm 

lIifJll= suplifJuCt)l· 
l,iJ 

(BI) 
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Let us define the operator K by the formula 

K</l (t) = (lns)"!'" B (s) - B (s') pes') ~ ds'. (B2) 
I, s - s' (lnsy 

As we shall see presently, K maps U into itself if K</l (0) is 
defined to be zero. According to the Ascoli-Arzela crite­
rion, 20 K is compact (completely continuous) if the sequence 
(K</ln (t) I is bounded and equicontinuous, where I </In (t) I is 
any bounded sequence offunctions in U. 

Let I </In (t) I be a bounded sequence in U, II</ln II <K, and 
check boundedness of IIK</ln II as follows: 

IIK</ln II < sup 2)lns)" 
S iJ 

X (. oc ( B,j(s) - ~lj(S') Pj(s') I 11</l",I~ ds'. (B3) 
J. s - s (Ins) 

An analysis like that in (A6), (A 7), and (A9) (but not requir­
ing subtraction of a logarithim) shows that the integral in 
(B3) is 0 (In - 2" + , s), thus IIK</l" II <K, since a > I. Inciden­
tally we have shown that K</l (t )---+0, t---+O. With the definition 
K</l (0) = 0 the function K</l (t) is continuous on the closed 
interval [0, I]; K maps U into itself. 

The requirement of equicontinuity of the functions 
K</l" (t) is that for any E> 0, 

max I [K</l" (t ,) - K</l" (t2) L 1< E 
i.j 

(B4) 

when It I - t21 < 8 (E), where 8 is independent of n. With 
In (t l ,t2 ) defined as the left side of(B4), l</ln J any bounded 
sequence, and s I <S2' we have 

The right side of (BS) is independent of n and we have only to 
show that it vanishes with It, - t21. The analysis of (AIO)­
(A22), simpler now because we needn't bother with subtrac­
tion of logarithmic terms, shows that the second term h in 
(BS) has the bound 

h( ) 
___ K __ I s,-s21" = K 1 (,-

t2 1
11 

t "t2 < (lns ,)" , s, (lns I)" - , t 2 

(B6) 

Also, we may bound the two terms in h separately to get 

K (lns )" M 
h(t"t,)< +K ' < . (B7) 

- (lns,)'" (lns2)2a.' (lns l )'" 

For any E> 0 let us divide the interval of t2 into two parts, 
tz<1J(E) and tz > 1J(E), where 1J(E) is chosen to make 

M 1[ln(so/21J)]" '< !E, (B8) 

with M as in (B7). Then if tz<1J(E) and It, - t21 < 1J(E) we 
have by (B7) that h (t "t2) < ~E. On the other hand, ift2 > 1J(E) 
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we have by (B6) that 

K / t, - t2 /11 

h (t"t2)< . --- < ~E 
(lnsoY' - , 1J(E) 

(B9) 

for It, - t21less than some S (E). Hence for 
It, - t21 < min[1J(E),S (t)] = OI(E) we have h (t"t2) < !E. To 
majorize the first term g in (BS) we apply the mean-value 
theorem to the difference of logarithms and bound the inte­
gral as usual to obtain 

( ) K 1 s, - S2 1 g t"t2 < --- --- . 
(lns,)" s, 

(BlO) 

Alternatively, we may bound the two logarithmic terms sep­
arately and find 

g(t"t2)<KI(lns,)"-'. (BII) 

The argument used above then shows that get "t2) <!E for 
It I - tzlless than some oiE). For 
It, - t21 < min[ol(E),D2(E)] = 0 (E) we have/" (t"tz) < E, and 
the proof of equicontinuity and compactness of K is 
complete. 

Our hypothesis B (s) = 0 ([Ins 1 "), a> I, is close in 
some sense to being the weakest asymptotic condition on 
B (s) that leads to a Fredholm equation in a classical Banach 
space of continuous functions. With B (s) ~ (lns) 'the oper­
ator K is noncom pact in a space analogous to U, but may be 
regularized by extraction of a noncompact part in such a way 
that the problem is reduced to a regular Fredholm prob­
lem.2

' Under still weaker conditions on B (s) a regularization 
is possible, but only at the expense of new arbitrary constants 
entering the equations. 22 

Since Eq. (2.27) entails a compact operator, it may be 
,olved numerically by various well-developed methods; see, 
for instance, the review of Atkinson23 and the book of Anse­
lone;24 the latter deals with the rigorous justification of 
discretization. 

The operator of Eq. (5.6), multiplied by sa, is compact 
on a Banach space Vunder conditions (5.2) and (5.3) onp(s) 
and B22(S). Here V consists of real continuous functions 
</l (t) = s "Nn(s) with 

1I</lIl=suplcb(t)l. (B12) 

The proof of compactness is the same as that above, but with 
the estimates of Lemma 1 of Appendix A replacing those of 
Lemma 2. 
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We atttack the problem of finding appropriate representations of symmetry groups so that a 
conserved quantity derived by the Noether theorem from one symmetry of a theory preserves the 
other symmetry. This representation matching problem is well solved in two-dimensional gauge 
theory where we find a new representation of the translation group which leads straightforwardly 
to the symmetric, gauge-invariant energy-momentum tensor. 

PACS numbers: 11.30. - j, 02.20.Qs 

I. INTRODUCTION 

The success of gauge theory has revived interest in some 
old problems. The connection between constants of the mo­
tion and symmetry is one of them. It is well known that a 
conserved physical quantity is deeply related with symme­
try. The Noether theoreml.2 provides the connection be­
tween a physical observable and its symmetry source. But 
when a theory simultaneously possesses several kinds of 
symmetry, a conserved quantity derived from one symmetry 
by the Noether theorem may not preserve the other symme­
try; this leaves some ambiguities in interpreting this quantity 
as a physical observable. A gauge theory is one such case. 
The energy-momentum tensor and the angular momentum 
tensor derived from space-time symmetry are not gauge-in­
variant. The problem exists in the gauge field sector which is 
described by a Lagrangian of the form 

Y c/f = - !F~y Fal'Y = - VJ<FI'Y FI'Y. (1) 

Here 

and 

AI' = TU A~. (3) 

The generators of the gauge group are normalized by 

trP Tb = !8ab
• (4) 

Under the translation 

xl'-x;, = xI' + b
" 

(5) 

the field AI' is usually assumed to transform as a derivative 
or a "scalar" 

A ;, (x') = A" (x). (6) 

With the continuity of AI' ' one obtains an infinitesimal 
form of "local variation,,3 

8*A'l = A ~(x) - AI'(x) 

= - bY Bv AI' (x). 

Then the conserved current is 

(7) 

J
1
, ~ - (- 2trF:c5*Av + !l'bl') (8) 

= - b P(2trF; Jp Av + YgPI')' (8') 

alOn leave from the Department of Modern Physics, China University of 
Science and Technology, Hefei, The People's Republic of China. 

Thereby we derive out an energy-momentum tensor 

Tl'v = - 2trF; Bv Aa - Ygl'v' (9) 

Obviously it is not invariant under the gauge transformation 

A~ = U(AI' + U-lBj.lU)U-l,F~v = UFl'vU-l. (10) 

(Furthermore, this energy-momentum tensor does not cou­
ple to gravity4.) The same thing happens when one deals with 
the Lorentz rotation and angular momentum tensor. 

A conventional way to remedy these undesirable fea­
tures is to add a divergence free term (superpotentiaI4

) to 
TI'Y' making it symmetric and gauge invariant. For (9), one 
defines another quantity 

el'v = T",v + 2traa(Fl'<7 Ay) = 2trF/ Fpy - Yg",y. (11) 

Here we have used the equations of motion 

[DI',F"'V] = 0, 

D",=J", +A",. 

(12) 

( 13) 

Because this method is a bit artificial and obscures the 
connection between the conserved quantity and symmetry, 
it is interesting to find a way showing (11) as a natural infer­
ence of the Noether theorem. From the above process we can 
see that the form of a conserved tensor is related to what we 
choose for the representation of a symmetry group. The non­
gauge-invariant energy-momentum tensor is a consequence 
of choosing the field A", to generate a trivial representation of 
the translation group. Obviously, it is not necessary to re­
quire an unphysical vector field transform in this way. 

Thus the problem is to find a suitable representation of 
the translation group which makes the energy-momentum 
tensor gauge-invariant. This is a representation matching 
problem. It can be more precisely stated as follows: When a 
theory possesses two kinds of symmetry, can we find appro­
priate representations of the symmetry groups so that the 
conserved quantity derived from one symmetry by the 
Noether theorem preserves the other symmetry? 

Recently there has been some work along this line.
4
-9 

The authors of Ref. 5 found that the discussion of the closure 
of the supersymmetry leads to the concept of a gauge-invar­
iant translation from which one can obtain the gauge-invar­
iant energy-momentum tensor. Using a gauge transforma­
tion to eliminate the asymmetric, non-gauge-invariant part 
while making coordinate transformation, the author of Ref. 
6 modifies the translation law (7) into 
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(14) 

Then the desirable tensor follows. Unfortunately, as the au­
thor has pointed out, the transformation law (14) cannot pre­
serve the integrability condition. This transformation does 
not give a representation of the group. 

This paper attempts to deal with this particular repre­
sentation matching problem. We find that this problem can 
be well solved in two-dimensional gauge theory. In Sec. II we 
provide a new representation of the translation group in the 
Hilbert space of a U (I) gauge field. We obtain the gauge­
invariant tensor straightforwardly with the Noether theo­
rem after using the Lorentz condition. To discuss the alge­
bra, we also derive a new representation of rotations. In the 
light cone system the new transformation law gives an eigen­
form of the translation. Then we generalize this method to 
the nonabelian two-dimensional theory in Sec. III. Finally, 
Sec. IV is a discussion of the problems encountered in the 
four-dimensional case. 

U. REPRESENTATION OF 20 TRANSLATION 

Two-dimensional (2D) gauge theory is a good testing 
field where many ideas can be examined. to Now we provide 
another example to show the special advantage of2D theory. 
In this section we only discuss U(l) gauge theory. 

It is well known that the translation group only has one 
trivial finite order irreducible representation3 induced from 
Eq. (6). But one can nontrivially represent this group in the 
Hilbert space. In the U(l) case, (5) and (7) can be written as 

8 "'AI' = ib a Pa.1' v Av. 

The infinitesimal operators Pa are 

they satisfy the abelian algebra 

[Pa 'P{3 ] = o. 

(15) 

(16) 

(17) 

(18) 

Nevertheless, it is not necessary that every component 
of a vector field transform uniformly. Actually (5) also can be 
written in the form 

Qa./l \' = - i(ga \' a/I - gal' aV
), 

or using a matrix notation 

x' =B(b)x, 

X= C~). 
B (b) = e - 'b a Qa' 

Q" = - iEEa{3 a{3' 

1 ) o . 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

It is very easy to verify that the Qa 's satisfy the same 
algebra as the Pa's, 

(26) 

Now we suppose that under translation the vector field 
AI' transforms in the same way as x/

i 

401 J, Math, Phys., Vol. 22. No.2, February 1981 

(27) 

We obtain a complete variation in the infinitesimal form 

8AI' = ib a [Qa.l'v,Av] 

= - b a(al' Aa - gl'a av Av) (28) 

and a local variation 

8* AI' = ib a [Qa,l'v + Pa'l' v.A v ] 

= b a(Fl'a - gl'a av Avl· 

(29) 

(30) 

Substituting this back into (8), we obtain the right form of the 
energy-momentum tensor 

0I'V = FI'P Fpl' - !i'gl'v 

providing the Lorentz condition 

X =aa Aa =0. 

(31) 

(32) 

Under transformation (29), the field strength and the 
Lorentz condition are not changed 

8FI'l' = F'l'v(x') - Fl'v(x) 

= b U(gl'a - gva)~ Ap = 0, (33) 

8~Ap = b a ~ Fpa = O. (34) 

So the theory is translation-invariant. 
Equation (29) generates a representation of the transla­

tion group. The infinitesimal operators are Qa 'So To see their 
position in the whole Poincare algebra, we need to study 
them together with rotations. Using the same method one 
can obtain three forms of 2D rotation 

x~ = xI' +wl"'xl' 

= xI' + ( - i) (waP /2)~(lp'/l v Xv 
=X +(-i/2\r.,aPL vx /l JU' aP.1' v 

= xI' + ( - i/2}lUaP Nap.1' v xv' 

Here 

N v_ Q v Q v aP.1' - xp (l,1' - X" P.I'· 

In the matrix notation these operators have the forms 

~(lp = - iEEa{3' 

L a{3 = xp Pa - x" Pp, 

NaP = iE(Xa Ep Y - x!3 Ea Y)ay • 

Then we have the following commutation relations: 

B=Po PI LOl Qo QI NOI 
A =Po [A,B]=O 0 -iP j 0 0 -iQI 

PI 0 - iPo 0 0 -iQo 
LOl 0 iQI iQo 0 
Qo 0 0 -iP/ 
QI 0 -iPo 

NOI 0 

(35) 

(36) 

(37) 

(38) 

(41) 

(42) 

(43) 

(44) 

~Ol 
0 

0 

0 

0 
0 

0 
~j 0 

This algebra is larger than the Poincare algebra. II But we 
can define some appropriate operators 

(46) 
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M a{3 = !(La{3 + NaP + ~aP) 
= !(Xp Ta - Xa Tf3) + ~~aP (47) 

which satisfy the usual Poincare algebra 

[~"Tv ] = 0 

[Tp ,MaId = i gpf3 Ta - igpa Tp' 
(48) 

Using Tfl as translation generator we achieve the right 
energy-momentum tensor; likewise, the generator 
Lap + Na {3 provides the correct gauge-invariant angular 
momentum tensor. 

This infinite-dimensional representation (46) of the 
translation generator is "reducible". Actually, when we turn 
to the light cone system 12 

x ± = (l/V2)(xo ± XI)' 

a± = (l/v2)(JO ± al), 

A ± = (l/V2)(Ao ± AI)' 

the transformation law (29) becomes 

8*A+ = - 2(b -a~)A+ 

cS*A_ = - 2{b +a+)A_' 

(49) 

(SO) 

(51) 

(52) 

These equations are more likely showing the characteristic 
of the translation and we notice that in the light-cone system 
the different degrees of freedom under translation are 
separated. 

III. NONABELIAN CASE 

Turing to 2D nonabelian gauge theory, we first rewrite 
the curvature matrix in the form 

F,,,. = [D'l,AV] - [Dv,Ap], 

Dfl-===afl + 01" 
Comparing to the U{ 1) curvature 

F,o, = [a/lA,,] - [avAfl]' 

(53) 

(54) 

(55) 

we find that we only need to make a replacement of afl ~Dfl 
when dealing with the nonabelian case. So we change the 
transformation law (29) into 

o*Afl = ib P [Tp.p vA,,] 

(56) 

Here 
T "-'( vjj "jj D- V) 

p.1' - I gl' P - gp /' + gPP p . (57) 

In the matrix notation, the Tp have the forms 

--jj,), 
Do 

- .( jjl Tj=l -
-Do 

(58) 

They also satisfy the Lie-Cartan integrability condition 

[To,Tj] = 0 (59) 

and so we can get a finite form of the representation after 
exponentiation. 

Using this representation we soon obtain the correct 
energy-momentum tensor 

402 J. Math. Phys., Vol. 22, No.2, February 1981 

(Jfl V = - tr(F,/Fvp ) -:ig"v 
with the condition 

(60) 

[DI',AI' ] = 0, (61) 

which implies the conventional Landau gauge 

(FA; = O. (62) 

IV. DISCUSSION 

We have shown that in the 2D case the representation 
matching problem can be well solved. This is because in this 
case the antisymmetric tensor E I' v is just an exchange opera­
tor. In the 4D case the above trick does not work. We may 
write the translation in the form 

x~ =x/J +b" 
= xf' + lb a /(4c + a))(aga vav + egal' av + dcapl' "d")x". 

We define a set of operators 

T~.I' v = i(gl'va", + aga va,l + cgal'av + dEapll "J"). 

The commutators among them are 

(T~,T$]~ = - [(ae + d 2)(gal'gp v - ga vgp/.)J"ap 
+ (aZ -d Z)(g{3val'aa -gaval'ap) 

+ (eZ 
- d 2)(gal'apav - g{3l'a"a

V

) 

- 2d (CEpal'pa" + aEp{3a Val')J" J. 

(63) 

(64) 

Whatever one chooses for a,e, and d, except all zeros, 
will not make the To satisfy the abelian algebra. So it does 
not provide any representation of the translation group oth­
er than the usual one. But there is a possiblity that they may 
form a representation of some sort oflarger group. SQ for the 
40 case the representation-matching problem is still open. 
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Motivated by previous work on relativistic quantum dynamics expressed in alg~braic term~, we 
introduce a fully relativistic generalization of the Hooke group. ~he mathematIcal pr~pertJes, . 
relation to other proposed quantum dynamical groups, and the umtary ray representatIOns of thIs 
group are studied. Hadrons are viewed as de Sitter type micro universes, .where the q~antum 
dynamics is then determined by the relativistic Hooke group. Wave equatIOns are studIed, a m~ss 
formula is derived, the emergence of a Regge type formula is deduced, and correspondence WIth 
other extended hadron models is noted. 

PACS numbers: 11.30. - j, 11.70. + q, 03.65.Fd 

1. INTRODUCTION 

During the past few years, we attempted, in a series o.f 
papers, to establish and study relativistic quantum dynamI­
cal groups suitable for the description of subnuclear phe­
nomena. The prototype of such an enterprise is, naturally, 
the central extension of the nonrelativistic Galilei group, I 
!§ 4' which contains a complete account not only of quantum 
kinematics but also of the inertial dynamics of a free particle 
and which also supplies the Heisenberg rules of quantiza­
tion. Ifwas shown2 that !§ 4 can be rigorously motivated and 
deduced from a locality postulate (gauge principle). It is easy 
to show3 that an analogous line of arguments, employing the 
(flat) Minkowski space (rather than the Euclidean 3-sp~ce) as 
the event-space, leads to a relativistic generalization ~ 5 of 
the Galilei group, which has been established earlier on in~­
itive grounds4 and studied in several papers.5 The group ~ 5 

contains the Poincare group as a subgroup. Its generators 
correspond to the (Lorentz) rotations and boosts, energy­
momentum, event localization, and a relativistic develop­
ment operator (Hamiltonian). One of the Lie brackets pro­
vides a relativistic generalization of the Heisenberg commu­
tation relations and two other Lie brackets correctly render 
the inertial free motion of a relativistic quantal particle. The 
irreducible unitary representations lead to spin-towers. The 
Newton-Wigner position operator emerges in a natural 
way.3 

Since !§ s describes only free motions, we must search 
for a generali~ation which would account naturally for the 
emergence of force-effects. The hint in this direction can be 
found in the interesting work of Bacry and Levy-Leblond,6 
who introduced, by the method of group contraction from 
the de Sitter group, a nonrelativistic but "cosmologic" quan­
tum dynamical group ':W'4 which nowadays is usually called 
the Hooke group. This algebraic system is a simple general­
ization of the nonrelativistic Galilean structure with the es­
sential difference that the "inertial motion" now corre­
sponds to the behavior of a quantal particle under the 
influence of a harmonic oscillator force. 7 Some time ago we 

"'Permanent address from September 1978: Office of the Dean of Graduate 
Studies and Research, State University of New York, Plattsburgh, New 
York 12901. 

"Mailing address: c/o Department of Physics, Boston University, III 
Cummington Street, Boston, Massachusetts 02215. 

showed8 that this Hooke group arises in a natural way (simi­
larly as did the Galilei group) if one applies the locality prin­
ciple, this time not to a flat Euclidean event space but rather 
to a uniformly curved three-dimensional event space. 

Before engaging in a project aimed at the relativistic 
generalization of the Hooke group, we found it necessary to 
study whether this structure is capable of giving a low-ener­
gy (low excitation) approximative 2escription ofhad~ons. In 
order to make the application of &"4 to hadrons sensIble, we 
first must ask: why should the event space for hadron-phys­
ics be curved? In a recent paper9 we demonstrated that the 
required large curvature of space in a small region may arise 
from a vacuum contribution to the hadronic energy-momen­
tum tensor within the framework of completely unified 
spontaneously broken gauge theories of the Yang-Mills­
Einstein-Higgs type. 10 In a sense, in such a theory a hadron 
may be characterized as an oscillating, topologically open de 
Sitter type "microuniverse," a "bubble" embedded in the 
external overall flat Minkowski macroscopic world. Since 
the low-speed, small spatial distance appr~ximation6 (i.e., 
the space-speed contraction) ofSO(3,2) is &"4' it follows that 
the low-lying, nonrelativistic collective excitations of a ha­
dron will be indeed described by the Hooke quantum dyna­
mics. We pursued this line of argumene and established a 
relation between our (nonrelativistic) microuniverse model 
and the nonrelativistic SU(3) quark model with harmonic 
forces. ll 

In this paper we address ourselves to the question: what 
might be the exact, fully relativistic quantum dynamics in­
side the de Sitter microuniverse that corresponds to ha­
drons? Mathematically, this requires the establishing, via 
the locality (gauge) principle, of an algebraic structure that is 
based on an event space that has the geometry ofthe (homo­
geneous and isotropic) de Sitter space. Once we, in this man­
ner, are motivated to deduce the relativistic generalization, 
Y?5' of the Hooke group, we shall study its properties, its 
representations, the wave equations that follow, and their 
basic applications to hadron physics. 

2. DERIVATION OF THE RELATIVISTIC HOOKE GROUP 
FROM LOCALITY 

The procedure followed in this section is analogous to 
our method used for deriving the nonrelativistic Hooke 

403 J. Math. Phys. 22 (2), February 1981 0022-2488/81/020403-09$1.00 © 1981 American Institute of Physics 403 



                                                                                                                                    

groupR and the reader is referred to that paper for some de­
tails and for motivations of certain assumptions and steps. 

We first wish to construct relativistic quantum kine­
matics in a curved 4-space of maximal symmetry. Accord­
ingly, we adopt 

Assumption 1: The space of events is the (uniformly 
curved) topologically time-open 12 four dimensional de Sitter 
space ,Yo 

This space can be embedded in a five-dimensional flat 
spaceE3.2 as thesurfaceS3• 1 of a pseudosphere with radius 
r which is described by 

x~_x2+x~=r, (2.1) 

The group of symmetries of Y is then equivalent to "rota­
tions" of S,.I; hence it is isomorphic to SO(3 .. 2) with the Lie 
algebra 

(Mab,Mcd ] = i(gacMbd + gbdMac - gadMbc - gbcMad), 
(2.2) 

(a,b = 0,1,2,3,4), 

where goo = - gil = - g22 = - g33 = g44 = 1. It is COnve­
nient to introduce the notations 

J,,,,=M,.v , Il"===r- IM 4,, (/-L,V = 0,1,2,3), 

and then (2.2) becomes 

[Jpv,Jpa ] = i(gppJva + gvuJpP - gpuJvP - gvpJpu )' 

[J,.v,Ilp ] = - i(g,.pIlv - gvpIlIi ), 

[Il",Ilv] = ig44r-zJliv' 

(2.3) 

(2.4a) 

(2.4b) 

(2.4c) 

This algebra can be realized in the Hilbert space of square 
integrable functions ¢(x) on S3.1 as follows 13: 

II" - - ir-I(r - g"vxPXV)-1/2( - x,Lgvpxv(f' + gvpxVxpa" 

- rap), (2.5a) 

Jpv - - i(xliav - xvap). _ _ _ (2.5b) 
As we did in the derivation of [14' [15' and JY'4' we now 

formulate the crucial locality postulate: We demand that a 
local phase transformation be a globally, unitarily imple­
mentable automorphism of the Hilbert space. More formal­
ly, we introduce 

Assumption 2: To every transformation 

¢(x)-exp[icu(x)]¢(x) (2.6) 

with a differentiable cu(x) there corresponds in the Hilbert 
space a unitary symmetry operator U such that 

(U¢)(x) = exp[iOJ(x)]¢(x). (2.7) 

Using the realizations (2.5), we calculate 

(UIl,. U -I¢)(X) = exp[iOJ(x)]( - ir-I(r - gpvx"x'rI/2) 

X( - xligvpxv(f' + gvpx"xpa" - ra,,) exp[ - icu(x)], 

i.e., 

IIp-II,, + (xpxp(f'liJ - xpxpa"cu + rapliJ) 
X [r-I(r -xvxv)-1/2]. 

Similarly we find 

(2.8) 

J"v-J"v - X"avliJ + xva,.liJ. (2.9) 

As in Refs. 2, 3, and 8, we insist that the local phase transfor­
mation (2.6) be unitarily implementable, i.e., setting 
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U =exp(/F) with a self-adjoint F, transformations (2,8) and 
(2.9) be implementable as 

I1"--..exp(lF)I1,, exp( - IF), 

J,,,,--..exp(iF)J,,,, exp( - iF), 

(2.10) 

(2.11 ) 

where F should be constructed from the algebra of observa­
bles. In other words, we adopt 

Assumption 3: The algebra of observables is large 
enough to guarantee that local phase transformations (2.6), 
giving the changes (2.8) and (2.9) of the event space symme­
try generators, can be realized in the form (2.10) and (2.11) 
with F being a self-adjoint function on the algebra of 
observables. 

Similar to the caSe in Refs. 2, 3, and 8, it can be seen that 
F cannot be expressed as a function of II" and J,,,. alone and 
thus we must enlarge the algebra of observables. To see how 
to do this, we note that from (2.5), (2.8), (2.9) it follows (in 
lowest order) that 

i[F,JI" ] 
-I (.2 ')-1/2(.3P f'a + °a ) = r r - X,.X x"xpu liJ - xpx l,liJ r l,liJ , 

(2.12) 

i [F,J,I\' ] = - x" avliJ + Xv a" liJ. (2.13) 

Equation (2.12) shows that (unless liJ = const.) the commu­
tator [F,Il" ] must contain at least a c-number term and an 
operator whose realization in Hilbert space is x,. X,I (no sum­
mation). To gain insight, we take the flat space limit r--+oo 

and use the notation 

lim Il" - iI" , limJ,."=i,,v, 
r • oc r -"'= 

Then (2.8) and (2.9) become simply 

iI,l_iI" + a,JIJ, 

i,,,,-i,/\. - x,, a"liJ + xva" liJ. 

(2. 14a) 

(2. 14b) 

Let us now write the generic form of the gauge function as 

(no summation over /-L) and denote the corresponding g~ner­
ator by F v')' The flat space limit of this we denote by F(I')' 

Then from Eqs. (2.14) it follows that 

(2.15) 
[F( 1'),1,1\'] = i(gp,.F(Pl - g,>"F(,,)). 

One would expect that similar relations hold for the curved 
space quantities. However, as in the nonrelativistic case, K 

one can show that this is not possible. But again the argu­
ment used in Ref. 8 applies: We are concerned with local 
transformations liJ(x) and thus it is consistent to only consid­
er local displacements that are small compared with r. Equiv­
alently: The appropriate generators can be taken tovbe the 
limits (2.14a). From now on we shall write PII for II" (and 
J,,,, for i"v) and also set Q" =l-IF(II)' where the constant I 
has dimension length. From (2. 14a) the gauge behavior of P" 
is 
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From (2.4c) it follows that [P,l,PV] = O. Also, Eq. (2.4a) is 
unchanged and (2.4b) holds with Pp instead of IIp. Finally, 
using (2.15) and the discussion above, one establishes, in a 
manner completely paralleling the proof of Theorem I in 
Ref. 2, the Lie brackets for QI"' The complete Lie algebra 
reads as follows: 

[P,l,PV] = [Q'l,QV] =0, 

[JI"V'Pp ] = - i(gl"pPv - gvpPJ.l)' 

[JJ.lV,QpJ = - i(gJ.lpQy - gypQ,J, 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16e) 

For this we see that the structure of our kinematic group is 

K = SL(2,C)J ® [Tf ® (T~X T; ')], (2.17) 

which is identical to the one for flat Minkowski event-space, 
cf. Ref. 3. The realization of the algebra K is given by 

PJ.l ~iaJ.l' (2.18a) 

q,~ -1-'xJ.l' (2.18b) 

J"v-i(xJ.la" -XVaJ.l)+~J.lV' (2.I8c) 

where ~J.lV is an SL(2,C) spin matrix. At this point, the read­
er is advised to consult, for interpretation and further com­
ments, p. 2054 in Ref. 3. 

We now proceed to introduce dynamics, as was done in 
Refs. 2, 3, and 8, via 

Definition I: A development transformation of an iso­
lated system is a kinematical symmetryl4 characterized by 

JJ.lv-JJ.lV, PJ.l-g(QJ.l'PJ.l,Jpa )' QJ.l-f(QI"'PI",Jpa)' (2.19) 

The motivation is that the geometry of the event space re­
quires that the generator(s) of intrinsic development trans­
formations be invariant under Lorentz transformations but, 
unlike the case for a flat space, they need not be invariant 
under arbitrary large translations. 

Motivated by obvious arguments fully analogous to 
those in Refs. 2, 3, and 8 we make the following postulates: 

Assumption 4: Development transformations form a 
one-parameter Lie group TJ and thus they are represented 
by Ua = exp(ioS). 

Assumption 5: S is contained in the algebra generated by 

PI",QJ.l,Jpa · 
These assumptions, together with the invariance re­

quirements implied by Definition 1, determine the form of 
the development operator, 

S = S (P 2,Q 2 ,QP, TP,TQ,I), (2.20) 

where, as in Refs. 3 and 5, the SL(2,C)-spin Tis defined by'S 

TJ.lv===.lJ.lv -l(QJ.lPv - QvPJ.l)' (2.21) 

The development transformations give rise to an equiv­
alence relation on the algebra of observables generated by K, 
so that, as in our previous work, we can define a dynamical 
group Gby 

Assumption 6: The kinematical group K is isomorphic 
to the quotient group modulo Tf of some Lie group G. 

From K;:::;G ITf it then follows that S and the gener­
ators of K must form a closed Lie algebra. Therefore the 

405 J. Math. Phys .• Vol. 22. No.2. February 1981 

form (2.20) will be restricted to have the following structure: 

S=Ap 2+BQ2+C(PQ +QP)+D, (2.22) 
with A, B, C, D being real constant c-numbers. We then see 
that the Lie algebra of G has [in addition to (2.16a)-(2.16d)] 
the commutators 

[S,PJ.l] = i2/-'(BQJ.l + CPJ.l)' 

[S,Q).1 ] = - i2/- ' (CQ).1 + APi')' 

[S,JJ.lv] = o. 

(2.23a) 

(2.23b) 

(2.23c) 

In order to fix the as yet undetermined constants in 
(2.22) we posit, motivated by the same intuitive ideas spelled 
out in Ref. 8, the following: 

Assumption 7: The transformation T corresponding to 
inversion of dynamical development, 

T: Ua-U _ a' (2.24) 

is a kinematical symmetry. 14 
Assumption 8: The operator T of development inversion 

is invariant under local phase transformations, 

exp[iUJ(Q )] T exp( - iUJ(Q)] = T. (2.25) 

From (2.24) and Assumption 4 it follows that 

(is)'==T(iS)T- ' = - is. (2.26) 

Transforming (2.23) with T and using (2.25) for the case of a 
linear gauge transformation, we find, by arguments in com­
plete analogy to the work of Ref. 8, that 

A = -!/' B= _!/3V, C=O, 

so that (2.22) becomes 

S = - !lp 2 
_ !/ 3 y 2Q 2 + D, (2.27) 

where y is a constant (determining a scale of units) and D is 
an arbitrary constant. '6 Furthermore, the final form of the 
Lie brackets (2.23) will now be 

[S,P"] = - ivi2QJ.l' 

[S,QI"] = iP!" 

[S,JJ.lv] = o. 

(2.28a) 

(2.28b) 

(2.28c) 

In summary: the Lie algebra of the dynamical group G 
is given by (2.16) and (2.28). Thus, its structure is 

G=~s 

= TJ ®K = Tf ® [CSL (2,C)J ® T4Q) ® (Tfx T,' ')]. 
(2.29) 

Clearly, this is a relativistic generalization of the centrally 
extended Hooke group and we shall denote it by JVs. We note 
that the only difference between the algebra of 3.4 g sand 
that of JVs is the commutator (2.28a). 

We call the reader'S attention to p. 1667 of Ref. 8 and 
point out that entirely analogous remarks now hold for the 
relativistic case as well. In particular, we see that "relativis­
tic cosmologic time" can be interpreted, via our construc­
tion, in a purely group theoretical manner. Finally, we note 
that T has the meaning of cosmo logic time reversal. Its ac­
tion is characterized by 

Q~==TQJ.lT-' =QJ.l' P~=TPI'T-' = -PJ.l' 
(2.30) 
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and it is anti linear. Thus, from (2.26) it follows that 17 

S'=TST- ' = S. (2.31) 

We conclude this section by presenting a realization of 
the Lie algebra (2.16), (2.28) of JYs, given on a Hilbert space 
of square integrable functions defined on E 3•1 (p) XE,(r). 
Here E}., (P) is the Fourier-dual (momentum space) of the 
kinematical group K. The additional variable rlabels the 
sequence ("slices") of Hilbert spaces that are strung together 
in the big Hilbert space by means of the dynamical develop­
ment Tf. We find 

P" ~cos(vr)p", - ii-Iv sin(vr)Jp", 

Q" ~il-' cos(vr)Jp" + V-I sin(vr)p,," 

J"v ~i(Jpv "p" - Jp,:Pv) + .2'"v, 

S~iJT' 

(2.32a) 

(2.32b) 

(2.32c) 

(2.32d) 

3. DISCUSSION AND REPRESENTATION THEORY OF 
THE RELATIVISTIC HOOKE GROUP 

3.1 Group properties and Casimir invariants 

It is convenient to expresses the structure (2.29) of the 
locally compact 16 parameter group JYs in the isomorphic 
form 

JYs = (TfXSL(2,C)J)® [Tf®(TfxT; ')]' (3.1) 

The generic element of JYs can be written as 

Ii -(8;h) = (8;£T,a,b,A ), (3.2) 

where 8 is a phase parameter [associated with the central 
extension by T; " cf. Eq. (2.16)] and £T,a,b,A are the param­
eters associated with the generators S of dynamical develop­
ment, Poftranslations, Qof"relativistic Hooke boosts," and 
J of Lorentz transformations, respectively. The composition 
law is 

(3.3) 

with 

hlh2 = (£T I + £T2, a l COSV£T2 + v-'b, sinv£T2 + A la2, 

b l COSV£T2 - va I sinv£T2 + A ,b2, A 2A 2 ) (3.4a) 

and 

s(h l ,h2 ) 

= 1- I! [(2v) - 'b i - !vai ]COSV£T2 sinv£T2 + alb, COS2V£T2 
+ A la2(blcoSV£T2 - alv sinv£T2) j. (3.4b) 

The Casimir invariants are 

ffl, = !~'vT'''', 

::Jl 2 = !c"vpa T"YTpa, 

:Jll} = p 2 + v/ 2Q2 + 2/- 'S. 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

The first three coincide with the Casimir invariants of g s (cf. 
Refs. 3-5), becaus:. only the [S,PIl ] commutator of JY's dif­
fers from those of ~ s" The invariant:Jll 3 can be inferred from 
contraction arguments (cf. Ref. 18, Appendix C) and it dif­
fers from the fiJ 3 invariant of g s only by the presence of the 
Q 2 term. From (3.5d) we see that now S will have a discrete 
spectrum, in contradistinction to the case of g s. This has 
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crucial physical consequences, to which we shall return in 
Sec. 4. 

3.2 Relation of JY'5 to other relativistic groups 

It is known6 that the nonrelativistic Hooke group can 
be considered as a particular contraction ofSO(3,2), with 
respect to the rotation group SO(3). Similarly, it is expected 
that the relativistic Hooke group can be viewed as some con­
traction of a larger homogeneous pseudo-orthogonal group, 
with respect to its SO(3,1) Lorentz subgroup. As was shown 
in Ref. 18, p.46, the well-known group extension method of 
Rosen' 9 shows that the parent group must be a pseudo-or­
thogonal group of dimension six, i.e., SOt p,q) with 
p + q = 6. In order to study the relation of JiYs to other 
quantum mechanical and possible dynamical groups, we 
consider below the entire family of groups arising from sys­
tematically performed contractions of Sot p,q) with 
p + q = 6, all done with respect to the Lorentz subalgebra. 
Let M a {3 (a,f3 = 0,1,2,3,4,5) denote the generators of 
SO(p,q), and write 

M 4"=P,,, Ms,,-QIl' M 4S S. (3.6) 

Then the SOt p,q) algebra reads20 

[M"v,Mpa ] = i(g"pMva + gvaMIlP - g"aMvp - gpyM,w)' 
(3.7a) 

[P,1,Py ] =ig44M"y, [Q",Qv] =igssM"v' (3.7b) 

[P" ,Qv] = ig"vS , 

[S,QIl] = - igssPll , [S,P,,] = ig44Q", 

[M"v'Pp ] =i(g"pPv -gvpP,,), 

[M"v,Qp] = i(g"pQv - gvpQIl)' 

[M"v'S] = 0, 

where,u,v = 0,1,2,3. 

(3.7c) 

(3.7d) 

(3.7e) 

(3.7f) 

(3.7g) 

If we are interested in Lorentz subalgebra-preserving 
Wigner-Inonii contractions that also preserve the Lorentz 
transformation character of P,Q,S , then we have three dis­
tinct choices2': 

(a) Speed-Space contraction: Replace Q by cQ, P by cP, 
and take the limits 

lim cQ = Q " lim cP = P'. 
f .. 0 to_O 

(b) Space-Time contraction: Replace Pby cP, Sby cS, 
and take the limits 

lim cP = P', lim cS = S'. 

(c) Speed-Time contraction: Replace Q by cQ, S by cS, 
and take the limits 

lim cQ = Q " lim cS = S '. 
E-O E---+O 

Explicit calculation then gives the following P,Q,S 
subalgebras. 22 

1. Speed-Space contraction gives23
: 

[P,1,Py ] = [Q",Qv] = [P",Qy] = 0, 

[S,Q'l] = - ig5sP", [S,P,,] = ig44QI" (3.8) 
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If we take g44 = g" = goo == 1, corresponding to 
SO(3,3), or alternatively - g44 = - g55 = goo = 1, corre­
sponding to SO(5, I), then we have (two possible isomorphic 
versions of) our oscillatory relativistic Hooke group24 Jf"5' 
Naturally, we now have only the "geometrical" group (with 
[P,Q] = 0) and not its central extension JY's. (To obtain JY's, 
one must use a contraction procedure where the rhs of[P,Q] 
contracts to a constant. The way to do this has been done in 
Appendix C or Ref. 18.) 

If, on the other hand, we take g44 = - g55 = goo = 1, 
corresponding to SO(4,2), then (3.8) becomes the algebra of 
Castell's "preferred algebra /I", which he calls the macro­
scopic group.25 To fully appreciate the difference in interpre­
tation between our JY's and Castell's group II, one must note 
that Castell considered the conformal group with the phys­
ical generators PI1 ,{t ,D,Jl1v, and the SO( 4,2) generators 
contracted over are linear combinations of these. The corre­
spondence between our P" ,QIL ,S and the conformal (or 
SO(4,2)] generators is as follows: 

M4/1 = Pil = HPII + ill), MOil = QJl = !(P!, - ill)' 

M45 = S = D, Mil" = ill'" 

2. Space-Time contraction gives: 

[PII ,P,] = 0, [Qil ,Q,,] = igssM,,,, , [P,,,Qv] = ig,,,,S, 

[S,QII] = - igssP,,, [S,PII J = 0. (3.9) 

This structure is isomorphic to the algebra of the inhomoge­
neous para-de Sitter group. 27 

3. Speed-Time contraction gives: 

[PII ,P,] = ig44MI"" [Q!' ,Q,,] = 0, (PIL,Q,· J = ig!,vS , 

(3.10) [S,QII J = 0, [S,PII ] = ig44QI1' 

This is isomorphic to the inhomogeneous de Sitter algebra. 

III 

y 
v 

" " 

"­

FIG. 1. Results of contractions. 
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One can now perform further contractions of appropri­
ate type (a), (b), (c). The results are represented in Fig.!. 
(Notation: deS = inhomogeneous de Sitter; CR = relativis­
tic Carroll; StR = relativistic static. The prefix "p" on deS 
and ~ 5 is short for "para.'.z7 The Roman numerals I-V cor­
respond to Castell's notation. 25) The corresponding subalge­
bras are 

Relativistic Galilei group :.15: 

[PI"Pv ] = [QIL,QV] = [P,,,Qv] =0, 

(S,QIL] = 0, [S,P!,] = ig44Q". 

Relativistic para-Galilei group P:.15: 

[P!"P,,] = [Q!"Q,,] = [P,,,Q,,] =0, 

(S,QIL ] = - ig55P
"

, [S,P'l ] = 0. 

Relativistic Carroll group CR : 

[P!"Pv ] = [Q!"Qv] =0, [PI1 ,Qv] =ig"vS, 

(3.11) 

(3.12) 

[S,Q!,] = [S,P,,] = 0. (3.13) 

Relativistic static group StR : 

[P,l,PV ] = [Q",QV] = [PI1 ,Qv] =0, 
(3.14) 

[S',Q,.J = [S,P!,] = 0. 

3.3 Representations of JFs 

The irreducible unitary ray representations of JY's can 
be obtained by Mackey's method of induced representations. 
The quickest specific approach is to find a relativistic gener­
alization of the work by Dubois2K who constructed the repre­
sentations of the nonrelativistic ~4' We sketch29 the meth­
od as appropriate for ~s. 

We write 

JY', = rt"xr, (3.15) 

where 

(3.16) 

is the maximal invariant subgroup. We can induce the irreps 
of ~, from those of r; the irreps of r, in turn, can be in­
duced from those of the Abelian subgroup 

T- P~Tl I TP 
4= I X 4' 

i.e., we consider r in the form 

r = [SL(2,C)J ® Tf] ® T:. 

The irreps of t: are, obviously, of the form30 

U ((J,a) = exp[i(1]{J + pa)], 

(3.17) 

(3.18) 

(3.19) 

where 1] is a real number andp a 4-vector. 31 Let us denote 
SL(2, C) J ® T f ..1 and label &..1 by the pair (A ,b ). If we 
define the linear functional 

(1],pl{J,a) = 1]{J + pa, 

then the homomorphisms of..1 in the group of automor­
phisms of t: are associated with the action of..1 on t: by 
the rule 

(0 (1],p) I (J,a) = (1],pIO -l({J,a) 

for every &..1, (1],p)Et:. The transformation induced by 0 
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(7J,p) is given by 

.5 (7J,p) = (71, A -lp - 711 -IA -Ib). (3.20) 

For each value of 71 the induced automorphisms of t r yield 
an orbit. Their collection provides a partition of t r. We take 
a point (7Jo,Po) on the orbit 710 and wish to construct the irreps 
of the little group A Po associated to that point. Since the 
structure of the little group does not depend on the orbit nor 
on the particular point chosen on it, we may take 71 = 1 and 
chose Po = O. We then find that the little group is isomorphic 
to an SL(2,C) grOt:.p?2 Thus, putting things together, the 
representation of r can be described, on a suitable function 
space, as follows33

: 

[U (B,a,b.A )¢,1:~C]( p) 

= exp[i(B + pa)]V kC(A) ., 
SS",S S3 

X¢':'s~C(A -I(p - 1 - Ib I). 

Here V kc is the well-known matrix representation of 
SL(2,C) T. 

(3.21) 

To induce now the irreps of '*'5 from those of r we 
must find the orbits in the space f of equivalence cla;ses of 
i!reps of r, whic!t arise under the action of Tf. Denoting by 
y an element of r, it can be shown that there exists an equiv­
alence operator W such that 

U[o-(y)] = W(o)U(y)W-l(O), 

with W given by 

W(o) = exp(iE'o), 

where 

E'==-~/p2 + ~f3v2q2, (3.22) 

and where q is a 4-vector. Therefore, every point of r is an 
orbit in itself, whose little group is (isomorphic to) Tf. The 
irreps of the Abelian r f are, of course, of the form 

U (a) = exp( - iuo), (3.23) 

where u is a real constant. Putting all these results together, 
we finally obtain the explicit action of '*'5 on a suitable func­
tion space over the variables p and u as follows: 

[U (B;o,a,b.A )¢';~kC]( p;u) 

= exp\ i[ e + \~lp2 + ~13vq2 - u)o + pa) 1 
xV kC(A iss,.s's; r/t~,~C(A p- I - I - lA - Ib;u). (3.24) 

The "qf' "in the exponent must be interpreted as the differen­
tial operator il-1(a lapl") acting on r/t(p). 

There exists another, alternative procedure to derive 
the irreps of Jic5 ' This constuction, based on the generaliza­
tion of the representation theory of ~ 5 as presented in a 
previous work,34 has the advantage that it gives a deeper 
insight; a detailed account ofit can be found on pp. 53-65 or 
Ref. 18. In this approach the starting point is the 
decomposition 

JYs = N ® H, (3.25) 

with 

N = (r~ 'X r:) ® rf, H = SL(2,C)J X Tf (3.26) 

and the irreps of Jic5 are induced from those of N. Here we 
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want to use this approach only to discuss the classes of irreps 
that JYs can have . 

The automorphisms in N given by n-+hnh -I (with hEll) 
define orbits in N characterized by 

p2 + vl 2q2 = const. (3.27) 

One then finds that the little group is isomorphic to 
SL(2,C) TX rf, Under its action, all points of the orbit can 
be reached. Examining, in particular, the action of the Tf 
subgroup on points of the orbit, one can show that 

P-+P cosvo - [-lq sinvo. 

In particular, taking 0= Jr/2v, wehavep-+l-lq. Thus, ifon 
a certain orbit p2 > 0 everywhere, then also q2 > ° everywhere 
on the orbit, and similar statements hold for p2 < 0, p2 = O. 
Because of the disconnectedness ofSL(2,C), timelike vectors 
cannot be transformed into spacelike vectors, etc. Taking 
these comments into account as well as the fact that, because 
of ray equivalence, one can always choose ~ 3 = 0, Eq. (3.27) 
easily leads to the following classification of the irreps35: 

Class I: u>O, p2>O, q2>O, 

Class II: u < 0, p2 < 0, q2 < 0, 

Class III: u = 0, p2 = q2 = 0, rIO, q#O, 
Class IV: u = 0, p2 = q2 = 0, P = 0, q = O. 

Here u is the eigenvalue of S. For physical applications, we 
are interested only in Class 1. 

4. PHYSICAL CONSEQUENCES OF ~5 

4.1 Wave equation and mass spectrum 

In conformity with Section 1 of this paper and in the 
spirit of Ref. 9 we consider now the relativistic hadrons as 
bilocal objects: a microuniverse bubble embedded in the (flat) 
external Minkowski world. As in most bilocal models, the 
relationship between the external and internal dynamical en­
tities is not obvious and is expected to be model dependent. 
There exists, however, an algebraic approach, due to 
N ambu, 36 which yields a general, plausible, and easily appli­
cable prescription to combine the internal and external sym­
metries. We shall use this approach to determine the internal 
symmetry group in terms of the Hooke generators. 

Nambu's procedure entails two essential criteria for the 
internal group: 

(a) it contains a subgroup characterizing internal 
symmetry. 

(b) it is large enough to contain within its generators 
elements that are fourvectors or tensors under the Lorentz 
group. 

In general, one will then have infinite multiplets, and 
one can construct Lorentz invariant wave equations with the 
internal generators coupled to the external momentum. 

In the spirit of requirement (b) we see that the JYs gen­
erators available for the internal symmetry are the fourvec­
tors P , Q , and the scalar S. To meet condition (a), it is 

I" I" 

convenient to define 

A~=(vIV2)(IQI" -iv-IPI")' 
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(4.1) 

Then it is easily checked that the sixteen bilinears A ;A" in 
the enveloping algebra form a U(3, 1) Lie algebra. In order to 
have a semisimple group, we fix the eigenvalue of 

N===AtAI'. (4.2) 

Actually, the eigenvalues of N are 

n=n t + n2 + n3 - no, (4.3) 

where n are nonnegative integers. Fixing N leads (via the 
elimination of trace) from U(3,1) to SU(3,1). This is our in­
ternal symmetry. We note that fixing N is equivalent to fix­
ing S since from (3. 5d) we see that (in a given representation) 

S = -lv(N +1) + V9l'3' (4.4) 

The SU(3, 1) generators A ;Av form a tensor, the A; + AI' 
behaves as a (self-adjoint) vector, and S (essentially A ~A 1') 
behaves as a scalar under Lorentz transformations. Thus, 
the most general Nambu-type equation will be 

[A tAvPI'PV + alA t + A)PI' + f3p 2 - yS ]qtn.b(p) 

= O. (4.5) 

Here pI' denotes the external fourmomentum of the system. 
The wave function is an (infinite component) multiplet 
member, with level-label n and degeneracy label h, and ex­
ternal Poincare label suppressed. Since, by our above argu­
ment, the eigenvalue of S is fixed,37 we can identify [because 
of (4.4)] the label n with the eigenvalue (4.3) of N. 

The action of A tAv is simply to transform the degener­
ate eigenvectors of S among themselves, for a given level. But 
A t and A 1" being raising-lowering operators, will transform 
eigenvectors of S with a label n to those with labels n + 1 and 
n -1, respectively. Thus, (4.5) will be an eigenvalue equa­
tion for S eigenstates only if a = O. Then we have, finally, the 
wave equation 

(A tA"PI'P" + f3p 2 - yS)!pn.b(p) = O. (4.6) 

To extract physical information from (4.6), we go to the rest 
system, Pk = 0, Po = m, where m is the hadron mass. We 
have 

(4.7) 

Because of ray equivalence, from now on we will take, with­
out restricting generality, 9l' 3 = O. Then from (4.7), (4.4), 
and (4.3) we obtain 

[(no + f3)m 2 + ylv(n t + n2 + n3 - no + 1)] !pn,b = 0, 

i.e., we have the mass spectrum 

m 2 = - ylv(n t + n2 + n3 - no +1)/(no +f3). (4.8) 

Weare interested in Class I representations with 
m 2 = p2> 0, where, according to the discussion at the end of 
Sec. 3.3 the eigenvalue u of S is positive. From (4.4) (with 
9l' 3 = 0) it follows that this is the case i£35 

(4.9) 

Therefore, if y> 0, we must have f3 > - no and, if y < 0, we 
must have f3 < - no in order to have m 2 > O. 

Clearly, we now have a discrete mass spectrum. Howev­
er, even though the restriction to Class I avoids the emer-
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gence of m 2 .;;;0 solutions, the timelike oscillations still lead to 
a feature of the spectrum which is contradicting even quali­
tative experience: taking in (4.8) the maximum possible val­
uesno = n t + n2 + n3, the spectrum ofm2 has an accumula­
tion point at m2 = O. Hence, even though our general 
analysis does not explain it on theoretical grounds, we will 
assume that timelike oscillations are suppressed, no = O. 
Equation (4.8) then gives the reasonable mass spectrum 

m 2 = const(n + 1), 

n=n t + n2 + n3, 
(4.10) 

n, = non-negative integer. 

4.2 Relations with other hadron models 

The (degenerate) eigenfunction !p n,b in the Nambu type 
Eq. (4.6) is, in general, a member of an infinite dimensional 
multiplet in the internal space, and each member of this mul­
tiplet is an irrep of the Poincare group. We can write 

(4.11) 

where¢ n is an internal state vector and ifJa is a wave function 
in external space with Poincare label "a". Furthermore, we 
can express ¢ n as some wave function in the internal (Hooke) 
momentum space, 

¢n=l/J"(p). 

It is essentially a product off our Hermite plynomials. Since 
n reflects the eigenvalue u of S, we may conveniently write 

¢" = ¢(u;p) 

where,38 from (4.4), 

U= -lv(n t +n2 +n3 -no+l). 

(4.l2a) 

(4.12b) 

The composite, bilocal wave function of the entire 
"hadron" = Hooke bubble in Minkowski space can now be 
written 

f/J n (p,P) = ¢ ( u,p)ifJa (P). (4.13) 

For simplicity we assume that the external wave function 
belongs to the scalar representation of the Poincare group, 

(P2 
_ m 2 )t/Ja(P) = O. (4.14) 

For the internal space part we obtain, when using the realiza­
tion39 PI' -PI',QI' -ii-lap". oftheCasimirinvariant38 (3.5d) 

(p2 _ vDp + 2/- tu)¢ (u;p) = O. (4.15) 

The general relation between m 2 and the eigenvalues u and S 
as given by (4. 12b) is expressed by the formula (4.8), i.e., 

(4.16) 

The Equations (4.14) and (4.15) are identical in form to 
those which emerge in the relativistic harmonic oscillator 
model ofFeynman et al. 40 and which were further developed 
(connected to the parton model) by Kim and NOZ.41 In the 
work of these authors, the starting point is a system of 
"quarks" which are assumed to interact via relativistic har­
monic forces. The equations in question are then obtained by 
introducing center-of-mass and relative coordinates, but to 
obtain Poincare invariant c.m. motion equations it is neces­
sary toforbid oscillations of the center of mass ("spurious 
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oscillations"). In addition, timelike oscillations must be sup­
pressed in order to avoid tachyon solutions. In our approach, 
we do not have c.m. oscillations, so that there is nothing to 
artificially forbid. Also, the m 2 is positive in our model with­
out suppressing timelike oscillations (but in order to avoid 
an accumulation point at m 2 = 0 we also have to use the 
device of suppression). It is clear that, because the emer­
gence of Eq. (4.15), all results and conclusions of Refs. 40 
and 41 will also hold in our framework. 

We now use (4.15) to study the degeneracy of the mass 
levels. As before, we assume that timelike oscillations are to 
be suppressed, which means 

AoA 6cP (u;p) = AoA 6cP (u;p) = O. 

Then (4.15) becomes 

(p2 _ V2V~ + 21 -I u)cP (u;p) = 0, (4,17a) 

which is, of course, a three-dimensional harmonic oscillator 
wave equation and which in configuration space reads 

( - V; + V2
X

1 + 21 1 u)cP (u;x) = O. (4.17b) 

Introducing spherical polar coordinates and separating, the 
radial wave equation becomes 

[:; _ }(j; 1) _ v2? _ 21 - IU ]RJdu;r) = o. 

(4.18) 

The Laguerre polynomials R Jk are characterized, for given}, 
by the integer k = 0,1, ... and the value of u. The physically 
acceptable (normalizable) solutions are those for which 

- 21- l u = v(2k +} + 1). 

Since, from (4.12b) (with no = 0) we have 

21- 1u = - 2v(n + 1) (n-n l + n2 + n3), 

we see that 

n = k +}/2. 

Substituting this into the mass formula (4.10), we get 

m 2 = C-I(j +2k +2), i.e., 

j = Cm 2 -2k -2, k = 0,1,2, ... , 

(4.19) 

(4.20) 

where C is a constant. Thus, interpreting} (which is the "in­
ternal orbital angular momentum") as the spin of the phys­
ical hadron, we have a family of Regge trajectories with re­
currences at intervals of 2j. In particular, trajectories of 
opposite signature coincide. However, the above formula 
cannot be directly compared with experiments, because, by 
its derivation, it refers to a single collective excitation of the 
de Sitter microworld bubble whereas, as we discussed in de­
tail in Ref. 9, hadrons correspond to multiple excitations. 
The nonarbitrary value of 9? 3 for irreducible terms in the 
direct product of representations will then be reflected in the 
modification of the intercept of the trajectory, i.e., instead of 
(4.20) we would have 

} = Cm 2 -2k + B, (4.21) 

where, together with C, the B is also an undetermined con­
stant.42 It is possible, but perhaps not too profitable, to com­
pare (4.21) with, say, the known meson spectrum. 
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The Poincare group is represented taking as a complete set of commuting observables 
[Pn K3,3'3 J, where K3 is the boost along the third axis and 3'3 the third component of the null 
plane spin. We name it K 3-representation. There appears in it a parameter K, with dimensions of 
momentum, from which the infinite momentum limit can be implemented in a natural way as the 
contraction k __ 00. K 3-states and wavefunctions are well defined in the infinite momentum limit. 
They are related to null plane states and wavefunctions by a Mellin transformation. The 
convergence properties of null plane functions translate into analyticity properties of K 3 -

functions in the complex A. (eigenvalue of K 3 )-plane. 

PACS numbers: 11.30.~p, 03.65.Fd, 02.20.9s, 02.20.Rt 

I. INTRODUCTION 

The present work is a first step towards a rigorous anal­
ysis of the group content of the limit P3-- 00 in relativistic 
quantum mechanics. This limit has usually been handled in 
the literature through the infinite-momentum frame (IMF) 
construction,1 where the Poincare group is boosted along the 
third axis as 

(1 ) 

This framework has been very fruitful in the description of 
high energy processes2 but it is not entirely satisfactory from 
a theoretical point of view. Two main features of the trans­
formation (1) support this assertion: 

(i) As regards the Poincare group, the transformation (1) 
is an inner automorphism, as has been pointed out by Bacry 
and Chang,3 so that no mathematical simplification is ob­
tained from it, 

(ii) The IMF states are ill-defined because the transfor­
mation exp(iwK3) is obviously singular in the limit W--oo. 

The aim of this work will be to introduce an approach over­
coming the two difficulties we have just mentioned. 

It is usually thought that a kinematic approximation is 
described by an Inonii-Wigner-Mickelsson-Niederle4

•
5 

contraction of the Poincare group and its unitary irreducible 
representations. As an example to illustrate this assertion let 
us note that the nonrelativistic kinematics, Ivl/c small, and 
the covariance group in this region, the Galileo group, are 
obtained by the contraction c-- 00 of the Poincare group. In 
particular the rigorous link between relativistic and nonrela­
tivistic wave functions, for free and interacting particles of 
arbitrary spin, has recently been established6 by the present 
authors using the theory of contraction of Lie groups and its 
representations.5 In this case the contracted group, the Gali­
leo group, is simpler than the original group while the con-

"'On leave of absence from Instituto de Estructura de la Materia, Serrano, 
119, Madrid-6, Spain. 

tracted states are the nonrelativistic states and, thus, well 
defined. 

In general an Inonii-Wigner contraction4 of a Lie 
group leads to a contracted group which is not isomorphic to 
the original group. On the other hand, representations of the 
original group can be contracted leading to well-defined con­
tracted states. 

Therefore, it is possible to overcome the two difficulties 
mentioned above by means of a contraction of the Poincare 
group, and we shall keep in mind this philosophy in this 
work, so that the final scope of it will be to introduce a well­
defined contraction procedure over the Poincare group, and 
its irreducible representations, implementing in a natural 
manner the limit Pr-+oo and leading to an ultrarelativistic 
covariance group and well-defined ultrarelativistic covar­
iance group and well-defined ultrarelativistic states.? 

Now, the consistent definition of a contraction proce­
dure for representations requires US

5
•
6 to find a Hilbert space 

where both the Poincare and the contracted group are simul­
taneously realized. In other words, we need to find a com­
plete set of commuting observables (CSCO) remaining unal­
tered in the limit Pr-+oo. The search of this CSCO and the 
study of their properties as well as the representations of the 
Poincare group in the corresponding basis of eigenstates is 
the main purpose of this paper. 

In order to illustrate this point let us clarify why the 
canonical basis is not appropriate to our end. For massive 
particles, irreducible representations of the Poincare group 
with P 2 > 0, the canonical basis is made up of states defined 
by 

where Bp is the pure Lorentz transformaiton connecting 
p = (m,O) with (Wi p). given explicitly by 

(2) 

Bp = exp{ith -I ill _1_ P.k}. (3) 
Po Ipi 

The canonical states (2) are common eigenstates of the CSCO 
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I P,S3(P)I ' where S3(P) is the third component of the canoni­
cal spin 

SIp) = BpJB p- I . (4) 

An arbitrary state i4> } can be expanded in terms of the ca­
nonical basis (2) as 

14> ) = If d 3
p 

4> (p,CT)Ip,CT}, (5) 
a (j) 

in such a way that its projection over an element of the ca­
nonical basis gives the Wigner function 

4> (p,CT) = (p,CTI4». (6) 
However the space ofWigner functions 4> (p,CT), that is the 
canonical basis Ip,CT}, is not appropriate to describe the high 
momentum limit because these functions, or states, are not 
well defined in the limit P3~ 00 • 

Thus the problem to be solved is three-fold: 

(i) To obtain a CSCO unaltered in the infinite momen­
tum limit; 

(ii) to obtain the common eigenstates of the CSCO and 
to project over them the state space; 

(iii) to study the representation of the Poincare group 
over the Hilbert space subtended by the new states. 

In Sec. 2 we shall show that the suitable CSCO for spin zero 
representations is {Pi ,K3 1 (i = 1,2) while for nonzero spin re­
presentations we shaH choose to add, as fourth operator, the 
third component of the null plane spin Y 3' In the following 
of this introduction, we shall briefly review the main features 
of the null plane basis which will be often used throughout 
this paper. 

In the null plane basis the Poincare generators are di-
vided into two classes8

: 

(a) The kinematical generators 

EI = ~(KI + Jz), Ez = !(Kz -Jd, 

P + = !(po + P3 ), K 3,J3,PI ,PZ (7a) 

leaving invariant the null plane initial surface 
x- = ~(xo - x 3

) = 0: generating the stability group of the 
null plane considered as initial surface; 

(b) the dynamical generators 

P - = Po - P3 , F] = K] - J2, F2 = K2 + J I , (7b) 

which do not belong to the stability group (P _ translates the 
null plane while FI and F2 rotate it around the light cone 
x 2 = 0), describing thus the dynamics of the system. 

Basis vectors are defined as 

W+.PT' p) = Kp l~m,OT>p}, (8) 

where Kp is the Kogut and Soper boost, defined as9 

Kp = exp{ - i :: ET }exp{ - zln 2~ + K3} . (9) 

The null plane states (8) are common eigenstates of the 
CSCO IP +,p],PZ,Y3 j, where Y 3 is a Casimir operator of 
the stability group of the null plane, given by 

Y =J + ElPz - ElPl (10) 
3 3 P • 

+ 
which is the third component of the null plane spin, defined 
by 

(11) 
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The choice (8) for the basis vectors fixes the representation of 
the Poincare generators (7) as 

K3IPt,PI'I')=ip+ aa !P+,PT'p), 
rp+ 

J3ip+,pT>p) = [{PI a~2 - P2 a~) + Y 3] I P t ,PI ,/1/. 
P + Ip+, PT'P) = p+ I P+,Pr,p); 

m} =p} + m2
, (12) 

Pi Ip+,PT'P) =Pi I P+,PT'P) (i= 1,2), 

E;! P+,Py,p) = ip+ a~; ! p+,pnp) , 

F I } [. a . m} a ; P+,PnP = Ip; -a +1-
2
--a rp+ :P+ 'Pi 

-€ij(:~ Y 3 + P: yi)Jlp+,Pnp) , 

where 2' are the (2j + I i-dimensional matrix representation 
of the SU(2) algebra acting on the indexp. 

It goes without saying that the null plane basis is not 
appropriate to perform the high momentum limit for the 
same reasons applied above to the canonical basis. However 
the prominent role played by the null plane basis lies in the 
fact, as we shall see later in this paper. that the appropriate­
new-basis is related to it by a Mellin transform. 

II. STATES AND WAVEFUNCTIONS IN THE K3 -basis 

In this section we shall develop points (i) and (ii) of the 
program presented in Sec. 1. 

First of aU we shall obtain a CSCO which is not altered 
by the infinite momentum limit. We shall begin with the 
simple case of spinless particles whose physical degrees of 
freedom are described, in the null plane basis, by the CSCO 
{ P +,P; j. Obviously, as we have mentioned in the introduc­
tion, this set of operators is not appropriate to describe the 
high-energy limit p + -+ 00 • 

Therefore, we must replace the operator p + by another 
one, commuting with Pi and having a finite, smooth limit as 
p + -+ 00. Then if we choose this operator belonging to the 
Poincare algebra, we are led, in an unambiguous way, to the 
pure Lorentz transformation along the third axis K 3• In 
short, for spin zero representations the new CSCO we get is 
{K3,P;j. 

In the more general, arbitrary spin, case we must com­
plete the set IK3' Pi J with another operator, describing the 
spin degrees of freedom and commuting with ! K}, P; }. The 
simplest choice 'o is to take, as fourth operator, the third 
component of the null plane spin .'T3, Eq. (10). 

The common eigenstates of the CSCO, {K3,Y3,P; \. 
will be denoted by IAiPr.P), the eigenvalue corresponding 
to the operator K3 and, thus, satisfying the equation 

K 3 IA,pT>p) = A 1A.,Pr,P)' (13) 

The basis of states IA,PT' p) will be called, hereafter, the 
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K3 basis. 
The relationship between K3 and null plane states can 

be shown, from the action of K3 over the null plane states, 
Eq. (12), and the defining property of K 3-states, Eq. (13), as 

IA,pnp) = 1 (00 dp+ (P+)-iA./ P+,PnP), 
~21T Jo P+ K 

(14a) 

so that the K3-basis is nothing else than the Mellin transfor­
mation II of the null plane basis. In Eq. (14) we have been led 
to introduce, for dimensional reasons, the constant K with 
dimensions of momentum. We shall see later that this di­
mensional constant, which appears in a natural way when 
we change the basis, is able to implement the limit P + __ 00 , 

through the redefinition P + = K17 and the limit K ~ 00. In 
this way K is only a scale for momenta so that it plays the 
same role as C did in the nonrelativistic limit which, we '·e­
member, was implemented through the limit C __ oo. We 
shall come back to this point in the following section. 

The inverse Mellin transformation of (14) is given ex­
plicitly by 

I P+,PnP) = ~1T f: 00 dA (P+/K) + iA.1 A,PT'P). 

~ (14b) 

Using the orthogonality of the null plane basis 

(P+,PnPIP'+ ,p~,p') = p+a(p+ - p'+ )a(2)(PT - p~)app' , 

(ISa) 

we get the orthogonality relations for the K3-basis 

while the projection of the Krbasis over the null plane basis 
is given by 

(P+,PnPIA,p~,p')= 1 (p+)-iAc5(2)(PT_P~)c5pp'. 
~21T K 

(16) 

The completeness relations of the null plane basis 

l=l:fdP+ d 2pT Ip+,PT,p)(P+,Pnpl (17a) 
p P+ 

translates into the completeness relation of the K rbasis as 

(17b) 

We can alternatively use the language of wave functions. Let 
f/J (P+,PT'C7) be the null plane wavefunction, or projection of 
the state If/J ) over the null plane state IP +,PT'(7) 

(18a) 

We define the corresponding K3-function as the projection 

(18b) 

The relations between null plane and K3-functions are ob­
tained from 
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(19a) 

1 I oo 

- iA f/J(P+,PT'P) = -=- dA (p]/K) f/J(A,Pr,P}· 

~21T - 00 (I9b) 

The scalar product over null plane functions 

(f/J]>f/J2) = l: (00 dp+ f/J r (P+,PnC7) f/J2(P+,PT,C7) (20a) 
p Jo P+ 

translates into the following scalar product for K 3-functions: 

(f/J],f/J2) = ;: f dA d 2pT f/J r (A,PT,C7) f/J2(A,PT'C7)· (20b) 

Let us finally remark that convergence properties of null 
plane functions translate into analyticity properties of K 3-

functions in the complex A-plane. For instance, if the space 
of null plane functions is restricted to functions of finite 
norm, or square integrable functions, 

1If/J 112 = ('" dp+ d 2pT l: I f/J (P+,PT,C7)I 2 < 00, (21a) 
Jo P+ a 

as was implicitly supposed throughout this section, then the 
corresponding K 3-functions are analytic in the complex A­
plane, on an infinitesimal strip around the real axis, defined 
by (14) 

lImA, <E, (E>O), 
(2Ib) 

- 00 < ReA < 00, 

so that the inverse Mellin transformation (19b) makes sense 
when the integration contour C is taken along the real axis, 
as was initially assumed. 

Stronger convergence properties, or a more restricted 
space of null plane states, translate into analyticity proper­
ties on wider strips for K3-functions, as we shall see in the 
following section. In fact there is a one-to-one correspon­
dence between convergence properties of f/J (P+,PT' p) and 
domains of analyticity, in the complex A-plane, of 

f/J (P +,PT' pl· 

III. REPRESENTATIONS OFTHE POINCARE GROUP IN 
THE K3-BASIS 

In this section we shall develop point (iii) of Sec. I and 
compute the representation of infinitesinal and finite ele­
ments of the Poincare group over the K3-basis. 

A. Representation of algebra generators 

The representation of the algebra generators over the 
K3-functions, (18b), is easily obtained from the action of 
Poincare generators over null plane states, (12), and the rela­
tions, (14) and (19), between K3 and null plane states and 
functions. 

Let us denote the action of the generator 0 over K 3 -

functions by the same symbol o. We get the following 
representation: 
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K3t/> (A,PT'p) = At/> (A,PnP)' 

J 3cP (A,PT' p) = [i~1 ;2 -P2 a~) + .5'3] cP (A,PT' p) , 

p +cP (A'PT> p) = KcP (A - i,PT' p) , 

P;cP (A,PT' p) = P;cP (A,Pr, p) , 

P -cP (A,PT' p) = (m~/2K) cP (A + i,PT' p) , 

E;cP (A,PT' p) = iK ~ t/> (A - i,PT' p) , 
api 

F;t/> (A,PT' p) = ~ [(A + i) + i m} ~ 
K 2 ap; 

- £ij(Pj.5'3 + m.5'j)J t/>(A + i,PT'P)' (22) 

Thus in the representation (22) of the infinitesimal gener­
ators of the Poincare group we can already see the two main 
virtues we had required for a representation to be appropri­
ate to describe ultrarelativistic situations: 

(i) In the K 3-representation, unlike in the canonical or 
null plane representations, there appears explicitly a param­
eter K making it possible to implement the limit p + --+ 00 by 
means of the dimensional contractionK---+oo. In this way the 
K 3-representation plays, with respect to the infinite momen­
tum limit, the same role that the canonical representation, 
where the parameter C appears explicitly, 6 plays in the non­
relativistic limit 

(ii) We shall take the view that the K 3-functions do not 
depend on the parameter K, thus being well defined in the 
infinite momentum limit. Accordingly the canonical and 
null plane wavefunctions do depend on K (Eq. 19b). 

B. Equations for matrix elements of group operators 

In this section we shall compute the equations satisfied 
by the matrix elements, between K 3-states, of group elements 
exp(iaA ) of the Poincare group, where A is some generator of 
the Lie algebra and a the corresponding parameter. We shall 
denote these matrix elements by 

t/J~r.pnp·(A,Pnp)=(A,PTP\ejaA IA ',Pr,p') . (23) 

As we shall see, the fact that we are taking states diagonal in 
K3 will enable us to compute the matrix elements (23). The 
boost K3 plays a very singular role in the null plane decom­
position of the Poincare algebra. Any operator A obeying 

[K3.A] = iyA (24) 

is referred to as an operator of goodness y.8 Thus the Poin­
care generators can be classified according to (24): P +,E

j 
are 

"good" generators (y = + 1); KJ.J3,Pj are "bad"generators 
(y = 0) andp_, F j are "terrible" generators (y = 1). 

Equation (24) can be generalized to 

[K3.A n] = inyA n, (2S) 

so that we get the following operatorial identity: 

(K3 + yaA )exp(iaA) = exp(iaA )K3' (26) 

from which, by taking expectation values between K 3-states, 
we immediately obtain 

(A ' A )./.lA ) (A" ') - 'f'a.)..p,.P ,PnP 
= - ya(A ',Pr,p'\Aexp(iaA )\A, PTP) . (27) 
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The a-dependence of the function t/J (A) can be factorized, 
writing Eq. (27) as 

{(A' - A) - iya ! }tff:'l,pl'p(A ',PT'p') = 0, (28) 

so that we can cast the general solution of (28) as 

./,(A) (A • P' p') = a - ;)1). , -).)", IA) (A' P' p'). 'f'a.).,p"p 'T' 'f').,p"p ,T' (29) 

The equation satisfied by cP (A ) depends on the particular re­
presentation of the generator A, given by (22), and the differ­
ent cases will be studied in the following section. 

A general property satisfied by the function t/J (A ) is 

.I,IA)* ('" ') _ .I,(A \ ('" ') (30) 'f'a,)..p"pA ,PT'P -'f'_a,).,pl>p A ,PT'P , 

which comes from the very definition (23) and the Hermiti­
city of A, This property will be widely used. 

C. Representation of finite group elements 

The aim of this section is to compute the action of finite 
group elements exp(iaA ) over K 3-functions cP (A,PT' p) as giv­
en by 

(31) 

This action can be written in two ways: 
(i) Series representation, obtained by expanding the ex­

ponential in a power series as 

where the action of A n over t/> is known from the iteration of 
Eq. (22). 

Let us remark that if we want the series (32a) to make 
sense we must require, over the space of functions, stronger 
conditions than those postulated in (2Ia) and (21 b) for square 
integrable functions. In particular, if we restict ourselves to 
the subspace of square integrable functions such that the 
expectation value of pn+ is finite, 

(cP \pn+ IcP) < 00 (n = 0,1,2, ... ), (33a) 

then the space of K 3-functions cP (A ,P T> p) is restricted to ana­
lytic ones, in the complex A-plane, on the finite strip defined 
by (15) 

- 00 < ReA < 00; - nl2 - £ < IrnA < £ . (33b) 

Similarly, if the space of square integrable functions is 
restricted to functions with finite expectation value of P :;: n 

(cP \ P:;:"I cP) <- 00 (n = 0,1,2, ... ), (34a) 

then the K 3-functions must be analytic on the strip (1 S) 

- 00 <ReA < 00; - £<lrwl <n/2 + £. (34b) 
(iii) Integral representation, obtained inserting the com­

pleteness relation (17b) into (3.1), as 

[ejaAcP l(A,PT'p) 

= L f dl' d 2pTt/J~1 ',P/,p,(A, PT, p)cP (A ',Pr, p') , (32b) 
p' 

where the function t/J(A \ is given by (23). The integral repre­
sentation is more general than the series representation be­
cause we only require the function cP to be square integrable, 
or analytic along the real axis, as in (21b). 
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It goes without saying that both representations must 
coincide in the cases where the series representation makes 
sense. 

In the remainder of this section we shall compute the 
(general) integral representation (32b) for the finite elements 
of the Poincare group and prove the coincidence with the 
series representation. Because finite elments are obtained by 
exponentiation of Lie algebra generators, exp(iaA ) with 
AE! P t ,J."K3 , P"E"F; J, we can divide the calculation ac­
cording to the different algebra generators. We shall proceed 
by grouping the generators which share similar features, 
goodness zero generators, I P +, P -I, (Ei I, and I Fi I· 

1. Goodness zero generators 

Goodness zero generators K3,J3,P" are represented 
over K3-functions in a local way. Verification of the follow­
ing equations is immediate: 

[eiu , P,¢ 1 (A ,PT , p) = eia.P,¢ (A,PT, p) , 

[em,J't/> J(A,Pn p) = eia,11iP/J/iJp, - p,alap.J +pl¢ (A,PT'P) 

= eia-p¢ (A,R -Ipn p) , (35) 

[ei(J,K,¢ ](A,Pn p) = ei(J,,,,¢ (A,Pn p) . 

2. The generators P+ and P_ 

Using the general Eqs. (27) and (29) for A = P + together 
with the action of P + over the K3-basis we get the following 
functional equation for ¢ (P. I, (hereafter we shall omit the 
superscript (A ) of the functions f/! (A I and ¢ (A I when there is no 
danger of confusion): 

(A ' - A )¢ A.P" P (A ',p;." p') + K¢ A,p,. p (A ' - i)Pr' p') = ° . 
(36) 

The solution of the functional equation (36) together 
with the general property (30) gives the function 

f/!u .A'PI,p(A ',Pr,P') = - -2
1 

. F(i(A' -A)) 
m 

x ( - ia _K) - ilA' - A 18(2)(PT - Pr )8
pp

' 

and the integral representation 
(37) 

[e,aP'¢](A,PnP)= - -I-.f'" dA'r(i(A-A')) 
2m -oc 

X ( - ia _KfIA' - '" I¢ (A ',PT' p) . (38a) 

The series representation ~I'a )lnln'pn+ acting over KJ-func­

tions makes sense only for states such that (pn+ > < 00, for 
any n;>O, so that the functions ¢ (A,Pr> p) are restricted to be 
analytic in the lower half-plane ImA < £ in agreement with 
(33b). Under these conditions of analyticity we can write 

~ (ia K)" 
[e'" P'¢](A,PT'P)= L ---¢(A-in,PT'p), (38b) 

,,=0 n! 

The integrand of (38a) has a singularity at A ' = A, due to the 
rfunction, so that the contour of integration in (38a) must be 
understood as going from - 00 to + 00 along the real axis, 
but avoiding the pole at A ' = A by means of a small semicir­
cle, of radius 8 < £, in the upper half-plane. This distortion is 
possible because the function of (38a), ¢ (A I, PT' pI, is sup­
posed to be analytic on the strip lImA' I < £. Furthermore. if 
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the function ¢ (A " Pn p) is also analytic on the lower half­
plane, ImA ' < E, the only singularities of the integrand of 
(38a) are the poles of F (i(A - A 'I), at A ' = A - in 
(n = 0,1,2, ... ) with residues (- 1)"ln!, and we may displace 
the contour of integration downwards, to "minus infinity", 
and parallel to the real axis. The integral over the displaced 
contour will vanish while a series of contributions is obtained 
from the poles oftheFfunction which has been crossed over. 
This series reproduces exactly the series representation 
(38b), as was required. In fact, the normalization factor 
- l/21Ti was chosen in (37) so as to cancel the factor - 21Ti 

from the Cauchy theorem. 
A straightforward application of the methods just de­

scribed enables us to compute exp I ia +P -I ¢ with some 
modifications which will be pointed out. The series 
representation 

iu P '" [ia+m}]n 1 . [e' ¢J(A,PT'P)= L -- ,¢(A+m,PT'p) 
n = 0 2K n. 

(39a) 

requires the function ¢(A " PT' p)to be analytic in the upper 
half-plane lmA > - £, in agreement with (34b). 

The integral representation can be written as 

[eta P ¢ ](,1, PT>p) = _1_. IX d/' r(i(A' -A)) 
2m - x 

x( -~:m~ yA -A')¢ (A', PT'P), 

(39b) 
where the contour of integration avoids the pole A ' = A of 
the r function by a small semicircle in the lower half-plane. 
Again, if ¢ is analytic in the upper half-plane, we may dis­
place the contour of integration upwards, and the series of 
contributions from the poles of r (i(A ' - A )) ad ' = A + in 
which are crossed over reproduces the series representation 
(39a). 

3. The generators ~ 

Using the action of the generators Ei over K3-functions, 
Eq. (22), the series representation for exp!iaiE,1 ¢ can be 
evaluated as 

[e'a,E,¢ )(J, PT'P) = f (ia,)" (ik ~)n¢ tA - ni, Prop), 
n=O n! JPi 

(40a) 

where the function ¢ is supposed to be analytic in the lower 
half-plane ImA < E. 

In order to compute the general integral representation 
(32b) let us first evaluate the matrix elements (23), satisfying 
Eqs. (27)-(29). Using (12) we can see that the function tP. Eq. 
(29), satisfies the following differentiofunctional equation: 

(A' - A )¢A,p"p(A ',Pr,P') + iK aJ 
¢",.p,.p(A' - i, p;",p') , 

'P, 
(41) 

whose solution depends on a parameter b with dimensions of 
(momentum) -I as 

r (i(A ' - ,1))( - iKb )- 'lA' - A le
iblP

; - P,J8(p; - Pi )8pp' • (42) 

In (42) we use the convention} = 2 for i = 1, and} = I for 
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i = 2, and the general condition (30) has already been taken 
into account. Any function (42) with any value of b, is a 
solution of(41) so that the general solution of(4I) must be 
given by a linear combination offunctions (42). The physical 
significance of b is the impact parameter conjugate to the 
transverse momentum Pi' Because we are representing the 
Poincare group over functions t/J (A,PI , p) of well-defined 
transverse momentum, the action of the group cannot de­
pend on the impact parameter, by the Heisenberg uncertain­
ty principle, and we must integrate the function (42) over b. 
On the other hand, the measure of integration db restores the 
dimensionality, (momentum)-2, which the functions 
t/JAPTP(A 'p;" p') must exhibit, as can be seen from (I5b). 

In this way the matrix element function can be written 

as 

= _ _1_ r (i(A ' _ A ll( _ ia ) - iiA' - A I 

4ri ' 
X o(p; - Pj )opp'] (A' - A) , (43) 

where the function] is given by the Fourier transform 

] (A ' - A ) = J~ «0 db (Kb ) - ilA ' - A le
jb 

IP: - P,I, (44) 

and the integral (44) can be evaluated as follows, 12 see Eq, 
(A27): 

] = ~ eN12IA ' - A Ir ( - itA ' - A ) + 1) 
K 

{(
p; - Pi , )iIA' -. A I - 1 (p; _ Pi . )iIA' - A I - I} 

X --- +10 - ----10 
K K 

(45a) 

for - i{A' - A)# - n{n = 1,2, ... ), while 

] 'N 1T . (p; - pj)(p; - Pi)N - 1 = I Sign --- ---
(n - I)! K K 

(45b) 

for - itA ' - A ) = - n. The/unctions x ± io must be under­
stood in the sense of generalized functions. 12 

Thus we can explicitly cast the integral representation 
of exp{ iaiEi I into the following form: 

[eiU,E't/J 1(A,Pn p) = J dA' dp; 1fu"A',p;(A,Pi) t/J (A "P;'Pj'p), 

(40b) 

where 

if; n"A '.p;(A,p;) = -!( - iajKV1,1 ' - A le(tr12I1A - A 'I 

X----­
sin1T[i(A - A')] 

X {(P, - P,' + iO)i(A - A ') - 1 

_ (Pj _ P; _ iO)i(,1 -,1'1- 1 

ifi{A' - A)# - 1,2, ... , and 

1 (p - P~)N-I 
!/Ju,.A + in,p;(A,Pj) = (21T)2 i{a j ) - n ~ 

for - itA ' - A) = - 1, - 2, .... 

(46a) 

(46b) 

Let us remark, from (46), that the function 1fa",1',p;(A,Pi) has 
polesatA' = A - in,n = 0,1,2, .... Thecontourofintegration 
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of A ' in (40b) must be distorted so as to avoid the singularity 
ofthe integrand at A 1 = A. 

Using the following propertyl2 of generalized 
functions: 

(x + io) - n - 1 _ (x _ io) -n - 1 = ( - 21Ti)(( - 1)"/n!)olnl(x) , 
(47) 

the residue of the function (46), at the location of the poles, 
can be extracted as 

1 (a i - Kt Inl ' 
Res1fu,1'p,(A.,Pj) = - -. 0 (Pj - p;). (48) 

.' " 2m n! 

Hence, if the function t/J is analytic in the lower half-plane, 
the contour of integration may be displaced downward. The 
only singularities of the integrand of (40b) are the poles of 
(46a), whose residues, Eq. (48), must be added when the poles 
are crossed over. The series of residues of (40b) reproduces 
the series representation (40a). The proof is straightforward. 

4. THE GENERATORS G 
In this section we will merely quote the results concern­

ing the series representation and the integral representation 
of the elements exp ( if3iFj I of the Poincare group, acting 
over K 3-functions. The computational details as well as the 
equivalence between the representations will be relegated to 
the Appendix. 

First of all we can put the generators F j into the follow-
ing form: 

F - iflfT,( 1 0) -ifl,:7, (' 12) 
i -e - i e 1= , , 

P+ 
where 

and 

2 

O K .mT a 2 21/2cr 
. =p. 3+ 1-- -E(p. +m) ./3 

I I 2 JPi OJ J 

(49) 

(50) 

81 = arctan(m/P2); 82 = arctan(m/PI) . (51) 

Using the decomposition (49), the series representation over 
functions t/J (A, PT' p) analytic in the upper half-plane, 
ImA > - E, can be written as 

(52a) 

(52b) 
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The mathematical steps leading from (49) to (52) can be 
found in the Appendix, Eqs. (A3)-(A13). In (52) the func­
tions T~~ are matrix elements for the spinj irreducible re­
presentation of the rotations group, parametrized as l3 

R (t/J,e,¢!) = e;.p/, e;II'/1 e;q,/,. (53) 

We may express the explicit integral representation of 
expji/3;F; ),(i = 1,2), as 

[e;(3,F,cp ](,.1" PT'P) 

= ~ f dA' dp; t/J(30'p;r,(A, PT'P) ¢! (A ',p;,pj,p') , (54) 
P 

where the function t/J{30 'p; p' (A, Pn p) is given by 

t/J(3,).'p;p,(A,PnP)= 4~i~T~~(8i2 ;,e;,-8 i2 ;) 

X T -, \IJ)(8 !.!... e _ 8 !.!...) ;).In(m~ If( 'I -;).' Inlm/ If( 'I 
op 12 2 '" i2 2

e 

x ( - i/3;) - ;1).' - ). Ir (i(A ' - A ))1 (A ',A. ) 

( 
2 );1), , - ). I - 1 i 

1= -; ; r ( - itA ' - A ) + 1) 

X [(P; - p; + ioyl).' - A 1- 1 

(55) 

- (p; -Pi - io)iIA'-A)-IJe1T!2IA '-AI (56a) 

fori(A' - A )#n(n = 1,2, .. ,); while for i(A ' - A) = nwehave 

1(,.1, - in) = (2/Kt -I i"1T sign(P; - Pi)(p,~ _ p; t- I. 
(n -I)! K 

(56b) 

The calculations leading to the integral representation 
(54) are somewhat lengthy and the interested reader can find 
them in the Appendix, Eqs. (A 14)-(A29). Let us note that the 
function t/Jdefined in Eq. (55) has singularities aU' = A + in 
so that the integration contour inA' in (54) must be distorted 
by a small semicircle in order to avoid the pole at A ' = A. If 
the function cp is supposed to be analytic in the upper half­
plane, the integration contour in A ' may be displaced up­
ward, and the series of poles at A ' = A + in crossed over in 
(54) reproduces the series representation (52), as can again be 
found in the Appendix, Eqs. (A30)-(A32). 

IV. CONCLUSION 

The aim of this paper was to obtain a representation of 
the Poincare group-or equivalently a basis-where the infi­
nite momentum limit could be implemented in a natural, 
well-defined, fashion. It is usually thought that the null 
plane basis, whose kinematical algebra leaves invariant the 
null plane Xo = x 3, is the best framework to describe high­
energy situations and it has been successfully applied to par­
ton models of high energy hadrons.I,2 Nevertheless there are 
some "bad" features of the null plane basis to which we wish 
to call attention: (a) The absence of a parameter "measuring" 
high momenta (this role is played by C in the nonrelativistic 
limit). (b) As a consequence, the only way of implementing 
the infinite momentum limit is through an inner automor­
phism, or infinite momentum frame, so that, as pointed out 
by Bacry and Chang, 3 the contracted group is isomorphic to 
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the Poincare group, and no mathematical simplification is 
obtained. (c) The null-plane states are ill-defined in the infi­
nite momentum limit, and a complete description of infinite 
momentum states would need to include those with infinite 
mass3 (gigamomenta). 

In this paper we have proposed the following CSCo: 
! Pn Kw'T3} , where.'73 is the third component of the null 
plane spin. Let us briefly review the main features of the 
representation of the Poincare group over the new basis, 
called the Krbasis: 

a) The spin operator is the same as in the null plane basis 
so that the kinematical algebra is spin independent and the 
spin degrees offreedom appear only in the dynamical part of 
the group. 

b) K 3-states are well defined in the infinite momentum 
limit. In fact they are given as Mellin transforms of the null 
plane states, 

c) In the representation of the Poincare algebra, and the 
Poincare group, there appears a parameter K, with dimen­
sions of momentum, which enables the infinite momentum 
limit to be implemented as the limit k----..oo in a contraction 
procedure. 

d) The convergence properties of null plane wave func­
tions translate into (more transparent) analyticity properties 
oftheK3-functions in the complex A (eigenvalue of Krplane, 

Once we have the contraction parameter K, we can contract 
the Poincare algebra and group by means of a suitable rede­
finition of the infintesimal generators and the limit k----.. 00 , 

Two main contractions can be performed: 
a) Let r be the goodness of the operator 0, and define 

(57) 

This contraction is equivalent to the infinite momentum 
frame contraction ofBacry-Chang3 and Kogut-Soper,9 and 
the contracted group is isomorphic to the Poincare group. 
With contraction (57) we will have the same features showed 
by the infinite momentum frame limit (as e.g., Galilean mo­
tion in the transverse plane, etc ... ) but the states will now be 
well defined. 

b) The natural contraction dictated by the K 3-represen­
tation [see Eqs. (22)] would be given by the definitions 

_ A 

E; = (1/K)E;, P + = (11K) P + , (58) 

and the remaining generators unaltered. In this contraction 
the stability group of the null plane keeps the same structure, 
with rescaled variables, while the Hamiltonians F1,F2 ,P _ of 
the dynamic group go to zero, in the limit K----..oo, in the case 
of free particles. However, in the interacting case the dyna­
mical algebra will no longer tend to zero, as it must be modi­
fied by interaction terms, and the description of the interac­
tion could be simpler in the contracted, ultrarelativistic 
group, than in the original Poincare group. This situation 
recalls a similar one in the nonrelativistic limit where the 
dynamics of a spin 1/2 particle is simply described by the 
nonrelativistic Pauli equation which is the limit C----..oo of the 
Dirac equation. The problem of the interaction, as well as 
such other related problems as local covariant realizations, 
equations of motion, and the position operator, are under 
consideration. 
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APPENDIX 

In this Appendix we shall compute the series and the 
integral representation of exp {iaFI J,p, corresponding to Eqs. 
(49)-(56) of Sec. III. The representation of exp[ iaF2 J is a 
straightforward application of the methods contained in this 
Appendix. 

Let us first put F I , as in Eq. (49) 

(AI) 

. m} a 2 2 CiT 
0 1 =PtK 3 +1-- - (P2 +m)Y 3' (A2) 

2 api 
A. Series representation 

In the series expansion of exp [ iaF1 I there will appear 
(liP +Odn so that we will need the following two 
Propositions: 

Proposition I: 

(A3) 

Proposition 2: 

-0\ - -0\ - -. ( 1 )" _ (1 )"( 1 )"( 1 )" 
P+ m} P+ P+ 

(A4) 

To prove these propositions, we wil1 need the following: 
Lemma: 

(_1 01)"_1 = _1 (01_1 )", 
m~ P+ P+ m} 

Proof of the Lemma: 
The lemma can be proven by induction over n: 
1. That the lemma is true for n = I. that is 

(AS) 

I 1 1 1 
-2 0\ -P = -P 0\ -2 (A6) 
mr + + mr 

follows from the explicit representation (A2) of 0\ and the 
commutation relation 

[K" _I J = - i_I . 
- P+ P+ 

(A7) 

2. Let us suppose (AS) true for n, then 

( 
1 )n +] 1 I 1 ( 1)" 

-2 0 ] - = -2 0 ]- 0 1 -
2 mr P+ mr P+ mr 

(AS) 

and using (A6) we get 

( 
1 )" + I 1 _ 1 ( 1)" + 1 -0 --- 0]-
2 1 P P 2 mr + + mr 

(A9) 

which proves Lemma (AS). 
Proof of Proposition 1: 
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We shall again proceed by induction: 
1. Equation (A3), for n = 1, is trivial; 
2. Supposing (A3) true for n, then 

(-+ 01)" + 1 = (_I )n (m} )n(~ o,)n _I 0, 
mr P+ mr P+ 

(AW) 

but by virtue of the Lemma (AS) 

-01 = - (mr)- 0 1 -. 0 1 ( 1 )n + I (l)n 2 n 1 ( l)n 
P+ P+ P+ m T 

(All) 

From where the Eq. (AS), for n + 1, follows, proving thus 
Proposition 1. 

The proof of Proposition 2 follows along the same lines 
as Proposition 1, using the result of Lemma (AS). 

Now, using the decomposition (AI) and definition (31) 
we can cast the series representation of exp(iaFtl as 

[e'OF,,p J(A, PT> p) = n~o Ii::" 17'~P' f dA ' d 2p;' t ~;((Ji(P;')) 
(AI2) 

X (A. Pr,al (pl+ 0 1)" lA', p;.,a} ;.")U)(81(P~)),p (A ',P;.,p/) 

where, by definition, t ul(e) = TU1(0,(),0). It is easy to 
prove, using Proposition 1, that 

(ABa) 

while the use of Proposition 2 gives 

(A, ppal (p~ OIY IA /, p;.,a') 

= K - "{API + ~...!!-. _ (Pi + m2)1/2 a}" 
m} 2 apl m} 

X (m} )"8(A + nk - A ')8121
( Pr - p~)8uu" (A13b) 

Thus the insertion of (A13a) into (AI2) proves the series re­
presentation (S2a) while the insertion of(AI3b) proves (S2b). 
The equivalence between (S2a) and (S2b) can be proven di­
rectly by induction over n. 

B. Integral representation 

Using the action (22) of the generator FI over the K 3-

states, the equation (27) for the matrix element t(;IF,) leads to 
the following equation for the function tjJ, as defined in (29), 

(A' -A ),p,{,p,.p(A', p;',p') 

{ 
. mlj a 

= L t ;;,~, ((JI(p;'))K -I (A' + i)P; + 1 ----
~u 2 ap; 
- (P;2 + m 2)1/2a'} 

Xt ~lij)(81(P~)),p,{,p"p(A' + i, p~,a). (AI4) 

Our task will be now to compute a solution to the ditferentio­
functional equation (AI4). This wil1 be done by successive 
simplifications of the equation, by means of a series of 
ansiitze. 
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Ansatz l: 

The substitution of (Al5) into (Al4) gives the following equation for the function;: 

(A'-A);A'P7'p(A',P;',/1)=K- 1 (A.'+i)P; +i_T_~ -(p; +m2)1/2/1 SAp p(A'+i,p;',H), { 
m'2 } 

2 Bpi ' 7' ~ 

Ansatz 2: 

;A,P7'P(A', PT' /1) = I(A ',p;" /1;b ')XA',p."p(A.', p;',b '), 

where/satisfies the eigenvalue equation 

[ 
m,2 B ] 

A'P; +i+ Bp; _(p;2+m2)1/~ /(A',p;',b';/1\=k 2bj(A',Pr,b';/1), 

whose solution can be explicitly computed as 

/(A.',p;',b';/1) = eXP{iA.'ln m~ _2i(,rb'+/1(p;2+m2)1/2) arctan pi }. 
,r (p;2 + m2 )1/2 (p;2 + m2)1!2 

Then, the equation satisfied by the function X is 

(A' -A )XAP p(A', p;',b') = (~Kb' + i ~~)xAP p(A' + i, PT';b'). 
'7' m~ 2 Bpi '7' 

Ansatz 3: 

XA,PJ'P(A ' ,p;',b ') = g(p;';b,b ')Jf"(A,A. ')Y(A.,PT' p) , 

where g is the solution of the following eigenvalue equation 

- Kb ' + i - - g(Pr;b,b') = Kbg(P;';b,b ') {
K2 K2 B} 

m'i 2K Bpi 
or, explicitly, 

K2 pi 
g(P' ·b b ') = e arctan ----:-

T, , (p;2 + m2)112 (p;2 + m2)112 

The substitution of (A21) into (A20) gives, for Jf"(A,A. '), the simple functional equation 

(A I - A )Jf"(A,A. ') = KbJf"(A.,A. I + i) , 

whose solution iSJf"(A,A. ') = r ( _ itA. ' _ A ))( _ iKb )ilA' - A I, 

Using (AlS)-(A2S) we get 

<PA,Pf'P' (A. " PT' p') = (iKb)'w - '!)r ( - itA ' - A. )) 2:.. t ~~(e (Prj) 
a 

{ 
m'z p' } 

X exp iA. 'In -ZT 2ibp; - 2iaarctan I I O(Pz - p; )Y( PT.A, p) , 
K (p;2 + m2 )1 2 

(Al5) 

(Al6) 

(AI7) 

(AlS) 

(A19) 

(A20) 

(A21) 

(A22) 

(A23) 

(A24) 

(A2S) 

(A26) 

which is independent on the parameter b I. Nevertheless the function in Eq. (A26) is explicitly dependent on b. Because the 
matrix element V-ta,A,p,- P (A. " PT' p') may not be dependent on b, we must integrate over b in (A26), as in Sec. Il.C.3. The 
integration can be performed with the aid of the Fourier transform 12 

Y[xA)=iei\,,-Ar(A.+l){(u+io)-A-I_(u_io)-A-I} A=/=-I,-2, ... , (A27a) 

Y[x-n)=in 11" sgnu(~-I). 
(n - I)! 

(A27b) 

The function Y(PT.A, p) must be fixed with the aid of the general property (30), giving thus 

Y = t ;pI1J1(e,(PT))exp{ - iA.ln m; + 2ibpl + 2iuarctan PI } , (A28) 
K (P~ + m2 )I/2 

Using (A27)-(A29) we can give for the matrix element, the following expression, for i(A' - A)# - 1, - 2, ... : 

420 J. Math. Phys., Vol. 22. No.2. February 1981 M. Quiros and J. Ramirez Mittelbrunn 420 



                                                                                                                                    

e(1T/2)(A ~ A ') ( _ iaK )i(A' ~ A I eiA 'In(m;'/.-'I ~ iA In("'~/.-'1 
¢a,A,p7>p(A ',p~,p') = 41T -2- sill1r[i(A I -A)J tx 

'" Uj (B (P')) ~ 2i,,[arctan(Pi/(P2' + m')"') ~ arctan(p,/(p~ + m'I'J'I]t ~ 11i1(B (P )) 
X£.. t p'" I T e "p I T 

u 

(A29a) 

while 

.1. (A in ' ') = _1_ ( - am1) ~ fleiA In(m;'/m}j(p, ~ pi;'<)" - 1 

'I' o,A.Pn P + . PT' P 41Ti 2K2 

~ (;1 (B (P')) ~ 2i17[arctan(p,/(P2' + m'I"'1 ~ aTctan(p,I(p~ + m')'''I]t ~ I(B (P ))D 
X ~ t p'u Ire up I r (P,p,I' (A29b) 

" 
for i(A' - A) = - 1. - 2 ..... 

Now. using (32b). the integral representation (54) follows easily. Let us note that the function tPa.A.p" p (A '.P~. p') has singulari­
tiesatA ' = A - in in the lower half-plane of the complex variableA '. due to the function l/sio1T[i(A - A')]. but is regular in the 
upper half-plane. st:e (A29b). 
C. Equivalence of series and integral representation 

Whenever the function rp is analytic in the upper half-plane. the integral representation (54) leads unambiguously to the 
series representation (52). The simplest way of proving this is to write (54) as an integral over b and to exchange the order of 
integration: i.e. to integrate first inA 'and theninb. The residues of the poles atA ' = A. + in. n = 0.1.2, ... , are added as usual, so 
that (54) can be written as 

[ ioFA..](1 ) 1 "'fd I db ~ (ia)" -"b" -2ib(P,~p,) e ''/' A,Pr.P =- ~ PI £.. --K e 
1T p' n = 0 n! 

X (m;:t L t ;;2. (Bj(PT))e ~ 2iuarctanp,/(Pl + m')oj, ~ Hrctanpi/(pi + m ' )'" 

17 

X iA /In(m;'I.-'1 -Inl'" ,'1. 'ii t ~ 1(j)(B (P )) 
e up' IT' 

The following property 

{(~~ 0
1
)" _ b n}e ~ 2Ibp,/A In(mYK'le ~ 2iaarctan[p,/(p~ + m')"'] = 0 , 

which can be proved straightforwardly. and the integral over 
the remaining b-dependent function 

f db e - 2ib(p, -pi) = 1TD(P1 - pi) (A32) 

leads to the series representation (52b). 

'For a review of IMF techniques, see: LB. Kogut and L. Susskind, Phys. 
Rep. 8 C, 75 (1973). 

21.B. Kogut and D.E. Soper, Phys. Rev. D I, 2901 (1970); I.D. Bjorken,l.B. 
Kogut, and E.E. Soper, Phys. Rev. D 3, 1382 (1971). 

'H. Bacry and N.P. Chang, Ann. Phys. (N,Y.) 47, 407 (1968). 
4E. Inonii and E.P. Wigner, Proc. Natl. Acad. Sci. 39, 510 (1953). 
51. Micke1sson and J. Niederle, Comm. Math. Phys. 27, 167 (1972). 
'J. Leon, M. Quiros, and J. Ramirez Mittelbrunn, Nuovo Cimento 46 B, 
10911978); J. Math. Phys. 20,1068 (1979); Nuovo Cimento S4 B, 153 
(1979), 

7 An earlier attempt along this direction can be found in J. Leon, M. Quiros, 
andJ. Ramirez Mitte/brunn, NuovoCimento41 A, 141 (1977); Phys. Lett. 
68 B, 247 (1977). 

'H. Leutwyler and I. Stern, Ann. Phys. 112,94 (1978) and references con­
tained therein. 
°D.E. Soper, Phys. Rev. D 5,1956 (1972); Ph.D. thesis, Stanford Universi-
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ty, SLAC Report No. 137, 1971 (unpublished). 
IOOther possibilities have been explored in: M. Quiros and J. Ramirez Mit­

telbrunn, Nuovo Cimento Lett. 26, 633 (1979). 
"Bateman Manuscript Project, Table of Integral Transforms, edited by A. 

Erd61yi (McGraw-Hili, New York, 1953). 
'21.M. Gel'fand and G,E. Shilov, Generalized Functions, Vol. I (Academic, 

New York, 1964), 
J3N,1. Vilenkin, Special Functions and the Theory of Group Representations, 

(American Mathematical Society, Providence, RI, 1968). 
'4To be precise, this is only true if the functions </J (p+) satisfy a slightly 

stronger condition than (2Ia), namely thatthey should decrease at 
p+ = ooatleastasp~<andvanishatp+ =Oadeastasp<, forsomeE>O. 

Forexamp/e, a behavior of </J (p +) like 1/Iogp + is enough for (21a) at 00 but 
it is not sufficient to guarantee the existence of the analyticity band (21 b). 

15Similar considerations as in (14) apply also here. 
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A graded Cartan-type connection is devised on a bundle of graded affine frames over superspace. 
The relation of the gauged graded affine group to the geometry of superspace is discussed in the 
context of bundle reduction to simulate spontaneous symmetry breakdown. A complex 
quaternionic calculus is used to simplify the algebraic analysis. 

PACS numbers: Il.30.Pb, 12.25. + e 

I. INTRODUCTION 

Certain physical theories have often received clarifica­
tion and a lucid formulation in terms of geometric concepts. 
Such concepts attempt to focus on the salient features of the 
theory in an intrinsic coordinate independent manner. 1 In 
particular, classical field theory finds an economical descrip­
tion in the modern language of fiber bundles. 

In this article some aspects of the theory of simple su­
pergravity are formulated in terms of the geometry of a re­
duced manifold? A distinction will be made between those 
aspects of the formulation that belong essentially to the es­
tablishment of the structure group of the appropriate bundle 
and those features that result when a particular choice is 
made for a connection in that bundle. 3 Such a choice may for 
example be made by finding the extremum of an action form 
on the base manifold which is invariant under change of 
section in the bundle under consideration. The language of 
the fiber bundle is particularly suited to the geometrical de­
scription of spontaneous symmetry breaking. Indeed in a 
recent paper K. Stelle and P. West have argued that the 
reduction of an SO(3,2) bundle over space-time to an 0(3,1) 
bundle enables them to formulate a theory of gravity as a 
spontaneously broken SO(3,2) gauge theory. This approach 
is motivated by a particular action which generates the equa­
tions for the geometrical fields in the theory. Although the 
establishment of an invariant affine connection on a homo­
geneous space may often be thought of as being triggered by 
some spontaneous symmetry mechanism, this aspect of the 
formulation will not be dwelt upon in this paper. 

In the following, a fairly well established procedure2 for 
reducing one bundle to another will be carried out in an 
attempt to draw together the notions of the gauged graded 
Poincare group (graded affine group) and the transforma­
tions of simple supergravity. 

Two essential viewpoints will be adopted. Firstly it is 
asserted that this (and any) formulation should ultimately be 
expressible in a coordinate independent way. Thus at any 
point the (passive) choice of a coordinate chart in whatever 
manifold is being considered should have no intrinsic signifi­
cance. Secondly, a geometrical theory of gravity will be said 
to be defined once the linear connection form and canonical 
form of a suitable bundle of anholonomic frames is specified. 
If the space under consideration admits a metric of definite 
signature then orthonormal frames (with respect to this met­
ric) will be chosen and the connection becomes a metric one. 

Thus the conventional theory of Einstein is specified in 
terms of a torsion free connection on OM, the bundle of 
orthonormal frames over space-time M with the structure 
group 0(3,1) that preserves the Minkowski metric with sig­
nature (- + + +). This interpretation of a gravitational 
theory is partly motivated by the need to estabiish a rule for 
transporting tensors (as well as frames) in space since in con­
ventional theories they will describe the other (matter) fields 
of physics. 

Theories involving SL(2,C) spinors are usually present­
ed with the spinor components forming vector arrays that 
are coupled into invariant SL(2, C) combinations with suit­
able r matrices. In order to formulate the theory of mani­
folds with spinorial coordinates it has proved convenient to 
break with this tradition and embed the spinor components 
into the ring of complex quaternions. Historically quater­
nions have often been used to simplify calculations involving 
rotations in three or four dimensions. The complex quater­
nions form a homomorphic image of the SL(2, C) algebra and 
enable the SL(2, C) group to act in a succint manner. The 
reader is referred to Hestene's5 book on space-time algebra 
for an analogous viewpoint and earlier papers on quater­
nions. An essentially self-contained description ofspinors in 
a complex quaternionic basis that is designed for application 
to superspace tensor analysis is presented in the Appendix. 
Since SL(2, C) plays a fundamental role in the following dis­
cussion it is often convenient to embed other entities into the 
complex quaternionic algebra. A considerable freedom from 
Fierz rearrangement is afforded by pursuing these tech­
niques and tedious algebra in the ring of r matrices is re­
placed by operations with the simpler quatemionic algebra. 
Complex quaternionic valued differential p forms will be 
used extensively in the analysis. These and other tensors will 
be graded in general by grading both their components and 
their basis elements. The components will often be graded as 
elements of some unspecified (hidden) Grassmann algebra. 
When necessary the terms odd or even will refer to the Fer­
mi-Bose grading. 

In order to establish notations a brief description will be 
presented for a geometry of ordinary space-time M (with 
points coordinated by x m) in terms of a complex quater­
nionic vector valued linear connection form tV on the bundle 
OM (M, SL(2, C)) of orthonormal frames. An element of OM 
is an orthonormal ordered basis of the tangent space Tx (M) 
at x. Writing an element ofSL(2, C) as Q (i) = eA, where 
i = a + iP the right action on the tangent frame a = au .e Q 
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is defined by 

a ___ Q"taQ" = aa.QteaQ == au·eli) = aaX~ jh, 

i.e., 

(1.1) 

Thus the linear frame u=(a) = (J1,JZ,J3,aO) may be consid­
ered as a map from the antihermitian quatemions Hq into 
T" (M) with the Lorentz group action given from above: 

Q u - - -b b 2) uQ:Hq ___ Hq-+TM;ea-+x~ eb----.u(X~ e ) = abx a • (1. 

The bundle of orthonormal frames OM is made into a differ­
entiable manifold by taking the ten numbers (x m, a j, {3j) 
if = 1,2,3) as local coordinates. The canonical form e' will be 
taken as an antihermitian quatemionic 1 form E Tu "'(OM) 
satisfying 

ue'(X*) = 1TX*, 

where X*ETu (OM) and 1T:OM-+M is the projection. Locally 
a vector at u with coordinates (X", skI, k = 1, ... ,6, may be 
written6 

4 3 (a . a . 1) 
X*= I Oa xa + I -. ·s'+ -.·SJ+· . 

" = 0 j = 1 a/3 J aa' 
One readily verifies that in terms of the anti hermitian 
coframe 

(1.3) 

( 1.4) 

and e' corresponds simply to an SL(2, C) rotated coframe. In 
order to establish a connection I-form a set offundamental 
vector fields J* is first defined on the bundle. These must 
correspond h~momorphically to the six SL(2, C) generators 
Ji =(el,e2,e3,iel,ie2,ie3)' They may be chosen to be dual to the 
complex q-vector valued Maurer-Cartan I-form wmc 

=QdQ. Thus writing 

6 ~ 

tiJ",c = I lU;'c I n 
11=1 

J*= ~ [~.J~(a,/3}+ ~).J1+3(a,{3)], i= 1, ... ,6, 
) j~I ap) aa 

one solves for J ~ the equation 

tiJmc(Ji ·) =Ji 

or 

lU~c (J, *) = 07, i,n = 1, ... ,6, 

where 

3 . 

lU;~c = I [w;(a,J3) d{3 j + lU; + 3 (a,f3 ) daJJ . 
j=l 

(1.5) 

The J n • span the vertical space tangent to the fibers and any 
vertical vector A ·ETn (OM) can be expressed as 

6 

A*= I Ai(x,a,/3)Ji * 
i= I 

Any complex q-vector valued I-formET* u (OM) of the type 
w = wm dxm + wmc satisfies the fundamental condition 
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tiJ(A*) =.4== .l:~= 1 Ai Ji , The rest of w is defined so that 
W(X) = X ==vX for any X (not just vertical vector) and this 
partitions Tu (OM) so that X = h X + vX, wherew(h X) = O. 
From these definitions the horizontal component may be 
expressed in terms of a connection as 

6 

h X = X - I Wi(XJ Jj • , (1.6) 
i= I 

where w = .l:~= 1 o/j!. A convenient expression for an anti­
hermitian q valued torsion I-form can now be computed in 
term of a section through OM. The bundle torsion is defined 
in terms of e' as 

T =de'.h. (17) 

i.e., has components T(aq ,ab ) = de'(h aa ,h 0b) in any basis. 
From the definition (7) and the identities dQ (ham) 
= w(am)Q. dQ +(ham ) = Q +w(am } one finds that 

T = de + 2..ca1'(w A e) (1.8) 

(Strictly speaking this is u*T expressed in terms of u·tiJ, 
where u: M-OM defines the section. Sectioned forms will 
be implied on the following and the pull back symbol will not 
be explicitly mentioned.) Unde! a ch!lnge of section generat­
ed by the SL(2, C) element Q (a(x). /3 (x)) 

w-+QwQ + QdQ (1.9) 

T-+QTQt. (1.10) 

In terms of an exterior covariant derivative D", the tor-
sion can be written 

T=D.,e= -Tt, (1.11) 

where the subscript on D denotes the connection under con­
sideration. The curvature of this connection is the complex 
q-vector valued 2-form R defined by 

R=dt0+wAw-+QRQ, (1.12) 

with the usual 2 X 3 X 6 = 36 real components. (The quater­
nions commute with the exterior multiplication.) Using defi­
nitions 8 and 12 and the condition QQ = 1 the Bianchi iden­
tities follow immediately as 

D",R= dR + 2V(tiJ A R) = 0, (l.J3) 

D", T=dT + 2..ca1'(wA T) = 2..ca1'(RAe). (1.14) 

Spinors may be regarded as certain complex quater-
nionic valued tensors in a bundle associated with the orthon­
ormal frame bundle. For a given SL(2, C) frame rotation 

e-+QeQt, (1.15) 

the four types of spinors defined in the Appendix transform 
as 

( 1.16) 

(1.17) 

As an example of the applicability of quaternionic forms in 
space-time the theory of simple supergravity7 is recast into 
this language. Denoting the gravitino by an odd Majorana 
spinor valued I-form X with X t = - iX the action 4-form is 

A (e.w,x) 

= ImS{kR Ae Ae* ~ reA [X ADwX + D,uX A xl}, 
(1.18) 
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where 

D",X =dX +wAX-+QD",X, 

D",X = dX - X Awt-+D",XQ t . 

Making intrinsic variations in e, X, and w, respectively, gives 
the equations: 

RAe = (ilk )D",XA X, 
eADw X = 0, 

T = (ilk) X A X, 

(1.19) 

(1.20) 

(1.21) 

where the last equation is used to fix the connection in terms 
of e and X. Using the identities i A X = X A i = 0 the above 
action is readily verified to be invariant under the following 
variations with an odd spinor O-form parameter €: 

lie = 2&,(i~) , 
oX = kD,u£' 

oX = kD",€. 

(1.22) 

(1.23) 

(1.24) 

These supersymmetry transformations will be returned 
to in the last section from the viewpoint of particular super­
space diffeomorphisms. 

2. GRADED AFFINE GROUP 

Having established the notion of quaternionic valued 
forms and OM (M, SL(2,C) in the familiar context of simple 
supergravity this mode of description will be used to discuss 
the graded affine frame bundle AN (N,G) over a supermani­
fold N. In addition to the SL(2,C) generator i the other ele­
ments (Po. Pa • Qa' Q,J of the graded affine algebra are em­
bedded into the complex quaternionic ring in the following 
way 

P = - iPo - Pa eo , 
So = S(oQ.), 

Sy = S(YQ.). 

(2.1) 

(2.2) 

(2.3) 

In terms of these even elements the algebra is defined by 

!L'~. i2 == [i1 .i2 l , 
!f ~ S (Pb ) = S (P (ib + bi )) , 

y~ SfJ =S~fJ' 

!f ~Sp = SPA t , 

!f s" SfJ = 2S (Pap) . (2.4) 

For Majorana related spinorial elements the translation pa­
rameter b may be taken antihermitian. An affine group ele­
ment will be parametrized as 

G = eS"eS"e2SPb ~ =(Q(i ),b,O,&), (2.5) 

where Q(i) is an abbreviation for the six coordinates 
i = a + ifj. Regarding the group manifold as being coordi­
nated by (Q,b,O,& ) it may be verified from (2.4) that the group 
action is 

G X G-+G:(Q), b),a,a)(Qz, bzl3,/J) 
- - - -t -t 

= (QIQ2' bl + Q)b2Q I + 2a{3Q I , 

- '-t 
a + Ql{3,a +(3Q 1)' (2.6) 

(The virtue of working with quaternionic parameters is par­
ticularly apparent in this composition rule.) It is also 
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straightforward to verify that a left invariant I-form in this 
parameterization is given by 

Omc=G -ldG = QdQ + 2S(P(Q [db - OdO 1 Qt )) 

+SdOQ' + SQdO . (2.7) 

As indicated in the first section such a form plays an impor­
tant role in constructing a connection form with values in the 
graded affine Lie algebra. In particular it may be used to 
derive the corresponding fundamental vector fields on the 
group manifold. 

Defining the generalized exterior product of the algebra 
valued even forms as 

(2.8) 
i,j 

where the general algebra is generated by J j one may verify 
the Maurer-Cartan equation for (2.7): 

dOme = - ~ilmc Ailmc (2.9) 

which also completely specifies the graded Lie algebra. 

3. GRADED AFFINE FRAME BUNDLE 

Considerable work has been done recently in making 
the notion of a superspace precise.8 For the purpose under 
discussion only the existence of a local chart with coordinate 
functions Z M = (xm, zI", zI") will be required where the estab­
lished conventions for the nature of the eight coordinates 
will be adopted. [The x m may in fact be taken as the coordi­
nates of a point in M which forms the base of an exterior 
vector bundle generated by the four elements (ff, ff), i.e., 

4 

N= U L alA~(V), (3.1) 
x k ~O 

whereA : (V) is the space ofrth exterior powers of Vatx and 
Vis the vector space spanned by (z 11-, ff). For superfield appli­
cations this space is converted into a suitable module.] 

Associated with each coordinate, directional deriva­
tives a/azM M= aM = (am, all' a~) are established to­
gether with their duals (dx m

, dzll-, dzli). These constitute a 
coordinate basis in Tz(N) and T~(N), respectively. Writing 
AB = aN·E; and EA = E1.t dZ M quaternionic frames and 
coframes are defined (see Appendix) 

(3.2) 

E = ealEalE = EAeA . (3.3) 

Since all the elements of any bundle over superspace are 
graded, great care is needed to establish consistent ordering 
conventions. As different authors use different conventions 
in this respect it is useful to note at this point some of the 
differences that arise in graded differential geometry. 

It is convenient to adopt a generalized Dirac notation. 
Thus a general (r,s) type supertensor field will be expressed in 
the previous basis as 

K = (AA, ® AA, ® ... ® AAJ K ~::::~: (EB, ® ••• ® E
B

,) 

(3.4) 

This can be embedded naturally into the quaternionic frame 
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expansion by defining the quaternion components 

K- KA •... A, - - -B, -B = B •... B,eA,®···eA,®e ®···®e' (3.5) 

and writing 

K = S (~® '" ® ikE ® ... ® E) , (3.6) 

where S here acts tensorwise in each space. Covariant tensor 
are regarded as evaluating vectors from the left. Thus 

(E\EAZ, ... ,EA,) K(4B" 4 B" ••• ,4B) = K~::::~~ (- I)". 
(3.7) 

where 

E = :~:C{rj Bi) + }tzCtr, Ai) 
For any covariant tensor field K of degree s the graded alter­
nating tensor field A K is defined by 

1 
A K(X 1,X2, ••• ,Xs ) = -;- L E(1r) K(X",'I,X17j21"",X17jsI)' (3.8) 

s. 1T 

where};". is taken over all permutation 1rof(I,2, ... ,s) and E(1r) 
is the parity of the permutation taking into account the grad­
ings ofthe arguments [e.g., if (1,2) are both odd and 
1T{1,2) = (2,1) then £(1r) = 1]. The graded wedge product is 
then 

6J 1\6J' = A (6J ®6J'). (3.9 

Hence if 6J and 6J' are rand s forms, respectively, 

(6J 1\ 6J')(Y " ... ,Y, + s) 
1 

= (r + s)! L E(J: K) 6J(YJt ,···,YJ ) w'(Y Kt , •••• Y K,l, 

(3.10) 

~here the sum is over all possible partitions of (1, ... ,r + s) 
mto (J" ... ,J,) and (K, , ... ,Ks) and €(J:K) is the graded sign of 
the permutation (1, ... ,r + s}-(Jl , ••• ,J"K, , ... ,Ksl. 

The following are adopted for graded functions g,fM, 
coordinates Z M vector fields X, Y: 

(a) dzmCoN) = br;: , 
(b) dfM =dZN(JNfM) 

= (- It{N+MI(JNf M) d?, 

(c) (X)fM = ( - I yx dfM (X) 
= (_ l)xNXN(JNfM), 

(d) X' y fM = (Y)fM , 

(e) X' y X = IY,Xl = (XY - (- I)XYYX), 

(f) X' y od = do X' y , 

(g) X' y (fg) = (Y)(fg) = (Y) fg + ( - 1) Yf flY) g , 

(h) X' y (dfM(X)} = (X' Y (dfM)).X 

+ (- Wf dfM (X' y(X)), 

and any superscript to ( - 1) is ° or 1 according to whether 
the associated symbol is even or odd. 

Returning to the construction of a bundle over N, a 
linear frame at zEN is an ordered basis (a,iT +,,* +) of Tz (N). 
Define ON to be the set of all such frames at all points of N. 
The SL(2C) group acts on the frame at Z according to the 
rule 

- - Q -t- - ---
u=(o,iT+,Tr+)---(Q aQ.1T+Q,QtTr +), (3.11) 
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so the 14 local coordinates (z, i) serve to specify a frame in 
ON (N, SL2C), the linear frame bundle over superspace with 
SL(2C) as structure group. A connection on this bundle is 
specified by giving a complex q-vector valued l-form which 
may be locally pulled back to a I-form wET·(N) transform­
ing under a change of section in ON (N, SL2C) as 

w~QwQ + QdQ. (3.12) 

w is fixed in any local gauge by specifying 48 real superfields. 
The super torsion 2-form T is calculated in a manner analo­
gous to that indicated in the first section: 

T=DwE=Dw e~Dw~~Dwt 

= de + 2.w'(w 1\ e) ~d~ + w I\~~dt - tAwt 
=TB ~TF~TF 

Analogously the super curvature 2-form is 

R=dw +wl\w. 

(3.13) 

(3.14) 

Having established the notion of the linear frame bun­
dle over N whose fibers locate the SL(2,C) orientation of the 
linear frame, attention is now turned to the definition of a 
graded affine frame bundle over N. 

The basic idea is to regard the tangent vector space 
T z (N) at z as an affine space in which one can define an 
operation of translating the origin of the vector space. With 
this interpretation it is denoted by Az(N) and referred to as 
the tangent affine space. In addition to the ordered basis of 
tangent vectors used to define the linear frame a graded vec­
tor is now required to locate an "origin" for the linear frame 
within the affine tangent space. Specifying this completes the 
description of an affine frame at z. Denoting the components 
ofthe "origin" vector by (p a, P a, pir) and em bedding them in 
the quaternionic algebra as (Pb' Pf' Pj) the graded affine 
frame will be denoted by the set 

(~,P) =(3,17' +,Tr+ ;S(a'Pb + iT+ 'Pf + Tr'hll, (3.15) 

where PEA z (N). Such a frame may be identified with a grad­
ed affine transformation that maps a standard linear frame 
at P = ° into it. The right action of the graded group element 
G = (Q,b,8.8 ) on the affine frame will be defined by 

(~,lP)---rQ +3Q,iT +Q,Q +.jT +; 
P+S(a.(b+Pf8)+iT+O+,*+8)] (3.16) 

and it may be verified that 

(3.17) 

Thus a point in the graded affine frame bundle AN (N,G ) can 
be coordinated by (z,i,b,f),8) and a group motion in the fiber 
at z induces the affine transformations 

Po ~Q [Po + b + Pf 8 ] Q t , 

PrQ [PJ + f)]. 
Pf~[Pf+8]Qt, (3.18) 

in addition to the SL(2, C) transformations. Since (Q, 0, 0, 0) 
is a subgroup of G we may regard (b, f), 8) as coordinates on 
the coset space G ISL(2, C) and there is a correspondence 
between this coset space and the motion of the graded affine 
frame at z that has been quotiented by its SL(2, C) rotations. 
Indeed the coset space may be used as base space of "rigid" 
supersymmetry with b interpreted as a Minkowski space-
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time coordinate. In Minkowski space all the Tx (M) are iso­
morphic with each other and with M itself. Regarding the 
latter as an affine space it is clear that any coset frame in 
AM (M, SL(2, q generated by SL(2, q subgroup will serve as 
a space on which to define Poincare transformations induced 
by P. The fiber symmetry is enlarged by using the "global" 
supersymmetry operations IO (with parameter a) as funda­
mental vector fields 

X(~ = S (0{1 .a ± Ob .Oa), ETu fG ISL(2,C)) , 

in order to generate ditfeomorphisms. With the gauging of 
SL(2C) however, b must regain the status of a group param­
eter in a fiber over the (curved) superspace base. 

The relationship between a connection on AN (N,G ) and 
the linear connection on ON(N,SL(2, C)) wiU now be 
examined. 

The graded generalized affine connection is introduced 
with the set of I-forms (w,77,P,p)ET*(N), where 

p =p"e" , p =p"e" , (3.19) 

and may be written in a local section 

fl = w +2S(P77) + Sp + Sp-+G-'flG + G-ldG. 
(3.20) 

Using the relations (2.4) and the Maurer-Cartan I-form (2.7) 
one finds for the element 

G = (Q,b,8,iJ) , 

cJ-QwQ + QdQ, 

1]-Q [1] + D", b - ODw <9 + 2JY(pO)] Qt , 

p-Q [p + D," 0 ] , 

p-[p + D",B I Qt. (3.21) 

where covariant derivatives with respect to the connection w 
associated with the subgroup (Q,O,O,O) have been used: 

D",e=dO +;;;e, 
._. '~t 

D," 0 =dO + Ow , 

D",b =db + tJb + b;;;t . (3.22) 

The curvature 2-form of this connection is 

lR = dl1 + ~!1l\n 
=i( + 2S(PR1)) +SR" +SR

p 
(3.23) 

where (R," , R1)' Rp ' Rp) are complex quatemionic valued. 
Using the generalized algebra exterior product (2.8) one 
finds 

Re, = dw + tJl\w, 

R1) = D", 77 + P I\p , 
Rp=DOJp, 

Rp=Du>p, 
where 

Dw 7f = d7f +;;; 1\ 7f - 771\ fJt , 
Dwp = dp + O;l\p, 

D",p = dp _ P I\;;;t . 
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(3.24) 

(3.25) 

The connection transformations (3.20) induce the following 
transformations on the algebra components of R under 
(Q,b,O,B): 

R",-QRcuQ, 

R'I-Q [R1) + D~b - OD~O + 2JY(Dw pO)] Qt, 

Rp-Q [D", p + D~e], 
Rp-.[D",p +D~B] Qt. (3.26) 

It may be noted that the second order exterior covariant 
derivatives in (3.26) generate the homogeneous Qcurvatures: 

D~(} = RwO, 

D~ O=&R~, 
D 2 b = R b + bR.t . w w w (3.27) 

At this point it should be stressed that the generalized affine 
connection I-forms (W,77, p,p) are completely independent of 
the affine coframe set (e, E, £,PB' PF,Pt) Now the fiber atz is 
isomorphic to the G group manifold. If this space is parti­
tioned into its cosets generated by the SL(2, C) subgroup then 
the coset space G ISL(2, C) has the correct dimension to set 
up a correspondence between it and the tangent space Tz (N). 
More precisely the bundle AN (N,G) may be reducible to the 
bundle ON (N,SL(2, C}) by sectioning the fibers G ISL(2, C}. 
Locally one may regard this as smoothly choosing the group 
parameters (b, e, 0) with z so that the associated affine frame 
is converted to a linear frame with a fixed origin for each z 
and the structure group is reduced to the residual SL(2, C). 
Globally the existence of this Higgs mechanism requires the 
existence of a global section that clearly depends on the na­
ture of the bundle topology. To relate the generalized affine 
connection I-forms and the affine frames a Cartan-type con­
nection will be established relating (1], p, p) to the linear co­
frames (e, E, £) in a covariant manner. Using the transforma­
tions (3.21), (3.18) one verifies that such a correspondence 
may be taken as: 

p = E + Dw PF' 

P= E +D,"PF' 
77 = - ie + Dw Pb - PFDwPF + 2JY(t:PF)' (3.28) 

For a given Ii) on ON (N,SL(2, C)) and canonical form (e, E, €) 
the forms (w, 77, p, pI fixed by this condition establish a grad­
ed Cartan connection onAN (N, G). With the aid ofthe funda­
mental vector fields on this bundle one can study the paranel 
transport of affine frames on lifted curves in terms of the 
SL(2, C) rotations of the linear frames and their translations 
ipB' PF' pp) in the tangent affine space. The curvature of the 
graded Cartan connection can be now calculated in terms of 
the linear coframe fields: 

R'I = -ITs +EI\£+D~Pb -PFPFR~ + 2JY(TFPF) , 
(3.29) 

(3.30) 

Rp=Tp+PFR+. (3.31) 

If the structure group is reduced to SL(2, C) with a section 
that sets P = 0 the linear coframes become identified with 
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the graded translation components of the AN connection 
and the affine curvatures are simply related to the torsions 
onON. 

A relation has consequently been traced between the 
gauging of the graded affine group in superspace and 
the geometry established by reducing AN (N,G) to 
ON (N,S L(2, C)). Within this residual bundle of graded 1 
linear frames the SL(2, C) connection w is entirely free 
at this point. This process of bundle reduction may be 
phrased in the language of spontaneous symmetry break­
down. Indeed by replacing the graded affine group by 
the graded de-Sitter group much of the discussion on 
development and reduction in Ref. 4 may be generalized 
to the situation discussed in this paper. However, a com­
plete motivation along these would appear to demand 
a generalized action principle with solutions giving topo­
logical information. 

To make contact with simple supergravity in a super­
space geometry Wess and Zumino ll have fixed the connec­
tion ill in terms of the torsion (TB , TF • T t ): 

(3.32) 

TF = [Tbceb I\ee + TPcefJ I\ec + T~c£!' I\ee] ea , 

T - [TG eb I\ee + TG eP I\ec + T G ePl\eC
] e F- bc pc /3c a' 

(3.33) 

One observes that (3.32) implies the vanishing ofRT} in the 
lP = 0 gauge. This connection will be employed in the last 
section where a return is made to the local supersymmetry 
transformations discussed in Sec. 1. 

4. CONNECTION PRESERVING SUPERSPACE 
DIFFEOMORPHISMS 

The use of tensors over superspace to discuss supergra­
vity of course relegates passive supercoordinate transforma­
tions at z to the status of labelling conventions. The funda­
mental nature of local supersymmetry transformations on 
the manifold N must be sought in the nature of particular 
transformations generated by certain vector fields. Having 
reduced the gauge group to SL(2, C) it may at first seem 
unlikely that transformations on the linear frames analogous 
to the graded affine transformations (3.21) could be given 
any natural formulation in terms of covariant operations in­
volving the SL(2, C) connection ill . It will be shown, howev­
er, that at least within a certain choice of "gauge" (the Wess­
Zumino gauge) such transformations can be identified with 
an intrinsic derivation. 

The basic observation is to demand that once the tor­
sion conditions have established an SL(2, C) connection on 
ON (N,SL(2, C)), transformations should be sought that leave 
this choice invariant. More precisely a diffeomorphism 
J :N-+N that maps one point of N smoothly to another 
should induce no change in ill. 

J·ill = ill. (4.1) 

(By comparison one recalls that on a space with a metric 
tensor g,Jis an isometry ifJ*g = g. The generators ofJare 
termed Killing vectors). Incidentally any transformation 
will induce a transformation on ON that leaves the canonical 
form invariant. Such a diffeomorphism is characterized by a 
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vector field X = 0M'X M say which may be thought of as the 
velocity field of a steady flow on the manifold as each point 
displaces according to the map f A particular characteriza­
tion of X will be sought (by finding an equation for its compo­
nents in some basis) so that the Lie derivative of ill vanishes. 
Such a vector field is said to generate an affine 
transformation. 12 

In dealing with active motions on a manifold with con­
nection it is preferable to translate the connection one form 
into a graded type-preserving Koszul connection V. Given ill 
and with an arbitrary vector field X: 

X = X + A + it=oa·xa + tl'a',.t atl',;',.t G. (4.2) 

Vis defined by 

vxa = 2d'(a.ill(X)), 

VA a = 2d'(a.ill(A)), 

v!La = 2d'(a.ill(Ji)), 

V x 1r + = -iT +ill(X), 

VA 1r + = 1r +tfJ(A) , 

V it 1r + = 1r +tfJ(it) , 
V x; + = tfJ(X}; + , 

V A; + = ill(A); + , 

V it; + = ill(':"); + . (4.3) 

If one agrees to commute quaternionic elements across 
~ these formula are summarized in the familiar form: 

VIA) = 2d'(a ~ill) + 1r + ~~ + ill+ ~.fi. + (4.4) 

In this language the (1,2) torsion tensor T is defined by 

T(X,V) = Vx V - VyX -IX,V) (4.5) 

and the curvature operator of this connection is 

(4.6) 
where X and V are arbitrary graded vector fields on N. The 
derivation that is needed to determine the generator X of 
affine transformation is A x ==2" x - V x . For any vector 
fields X, V, one sees from (4.5) that 

Ax V = - VyX - T(X,V). (4.7) 

Furthermore it is not difficult to show that the required 
generator X must satisfy 

Vy(Ax) = R(X,V) 

for all Y. Defining V N by 

Vy(aMXM) = aM.(V NXM) yN, 

Eq. (4.8) implies that in a local coordinate system 

(4.8) 

(4.9) 

VL(V, Xl + T~, XK) + R ~KL X K = O. (4.10) 

In the Wess-Zumino gauge one can examine the action 
of A x on aM for X an odd affine generator and project the 
resulting vector onto an anholonomic basis. Thus with 
E.4(T)=TA, 

EA(AxaM) = -VMXA_TA(OB.xB,aM)' (4.11) 

Comparing this result with Ref. 13 leads to the identification 
EA (A x aM) = 8E ~ and the calculations therein recover the 
local supersymmetry transformations together with their 
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minimal auxilliary field content. Thus in the Wess-Zumino 
gauge the coframe I-forms E and E contain the gravitino 1-
forms X and X introduced in Sec. 1 and the bosonic frame e 
contains the space-time tetrad (whose coordinate compo­
nents are the conventional vierbeins e::,). In this gauge, for 
example, by taking components of (4.11) there results: 

6E::' = 6e::,(x) = ea(Ax am) 

= - T(1I"p.XP,1I"0') X::' (x) - T(1I"p.xP,1I"a)X::'(x), 

~E::' = ~X::,(x) = €,(Ax am) 

where 

= - Dm xa - 1"'(1I".o.x .o ,aa) e::, 

- 1"'(1I"p.xl1,aa) e~ , 

D", X"=:; - e::,(aa xa) + L. [e"w(x)a e::,(x)ls XfJ. 
p=y,1' 

(4.12) 

Thus the complete local supersymmetry transforma­
tions of supergravity appear in the Wess-Zumino super­
space gauge to be intimately related to the derivation A x 
which in tum may be used to specify the generator of affine 
transformation on the superspace manifold, 

CONCLUSION 

In this paper the relation between the gauging of the 
graded Affine group and the process of reduction to the 
SL(2, C) gauge group has been traced with the aid of a Cartan 
type connection on the graded Affine frame bundle. The 
methOdology offers several generalizations to extended and 
unified theories of supergravity formulated in a superspace. 
Once a graded algebra has been chosen to extend the Affine 
group an extended bundle of Affine frames would appear to 
offer an attractive arena for the discussion of spontaneous 
bundle reduction. The dimension and grading of the base 
supermanifold can be adjusted so that a matching can be 
achieved between the coset spaces that prefigure in the spon­
taneous symmetry breakdown and the generalized super­
space tangent spaces. The phenomenon of mass generation 
in matter fields would then be tied to the existence of a sec­
tion that includes gravitational effects. Certainly it is to be 
expected that the interpretation of spontaneous symmetry 
breakdown will undergo a modification in the presence of 
gravity. 
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APPENDIX 

The 3 elements ea (a = 1,2,3,) in the ring of quatemions 
obey 

eaeb = - Dab + Cabcec ' (AI) 

A general complex quaternion is denoted 

q=a4+ t abeb , (A2) 
b=1 
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where 04 and 0b EC. The conjugate quatemion lj is 
3 

lj = a4 - L Qbeb ' (A3) 
b=1 

Complex conjugation commutes with quatemionic 
conjugation 

3 

q* = at + L a:eb (A4) 
b= 1 

and the Hermitian conjugate is q t = 1j*. In terms of these 
operations are defined the following: 

2Re(q) = q + q"', 

2iIm(q) = q - q*, 

2S (q) = q + lj , 

2V(q) = q - ij, 

2Jf'(q) = q + qt , 

2&"(q) = q - qt . 

(AS) 

IfV(q) = 0 [S(q) = 0] q will be called aq scalar(q vector). It is 
Hermitian (anti-Hermitian) if q t = + ( - ) q. Four real enti­
ties (ho,h a I may be embedded into an anti-Hermitian quater­
nion by writing 

3 

b = ibo + L baea . (A6) 
a=1 

h . 0 0 + ~3 Q Q l'n If a 4-space as metnc g = - e ~ e ~a =! e ~ e 
terms of realI-forms (e 0, e a) then an anti-Hermitian coframe 

is defined as 
3 

e = ieo + L eaea , (A7) 
a=1 

with norm ee = ee = dr. If Q is a complex unit norm qua­
ternion QQ = QQ = 1 then el = QeQt is also anti-Hermi­
tian and has unit norm 

e1e l = QeQtQteQ = QeeQ = ee, (AS) 

since ee is a q scalar. Hence Q generates proper local Lorentz 
transformations and it may be parametrized in terms of 3 
angles (aa) and 3 boosts (PO'): 

Q = e~+ iP, 

where 

and the' symbol will in general denote a q-vector, 
A complex quaternionic p form A p is a p form with 

complex quaternionic components in any basis of a real co­
tangent space. For graded forms there is the relation 

A /\E =(_l)pq+AEjj /\.1 (AlO) 
p q q p , 

although Ap I\Eq = ( -1)Pq HE Bq I\Ap only if one of the 
forms is q scalar. Under complex conjugation of odd 0 forms 
the rule 

(tPltP2)* = tP ~tP r = - tP t¢ t (All) 
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is adopted. Hence for general odd forms 

(a I\P)* = - a* I\P * 

and for all forms (even or odd) 

(Ap 1\ Bq)t = (-1)pq B! I\A; . 

(A12) 

(A13) 

If A is a complex 2 X 2 matrix with detA = 1 the complex 
SL(2, C) spinors are 2-component vectors transforming as 

¢; = (A¢)T' 

¢ " = (¢A -I)' , 
(A14) 

1/1; = (1/1A +)1' , 

1/1'1' = (A +-11/1)', 
where A + is the complex transpose of A. Writing 

A = (q4 - ~q3 - q2 -. iql) , (A15) 
\q2 - lql q4 + lq3 

where Q = q4 + l:! = 1 qaea then QQ = 1 implies detA = l. 
It may be verified that if q spinors are defined as 

¢+ =¢IU1 +¢JJ 2
, (AI6) 

¢_=¢IW 1 +¢2W2, (A17) 

and transform as ¢ ± --Q¢ ± under SL(2, C), then the com­
ponents (::) and (¢ I,¢ 2) transform as the index structure sug­
gests (A14). The ideals are constructed with the elements 

U I = (1/.J2)(1 + ie3 ) , 

(;2 = (1/ .J2)(e2 + ie, ) , 

Wi = (1I.J2)(1 - ie3 ) , 

W2 = (1/ .J2)(e2 - ied. 
Similarly the dotted q spinors, 

~+ =¢i UI +¢i W2 , 

~_=¢iWI+¢i(;2, 

(A18) 

(AI9) 

(A20) 

transform as ~ ± ~ ± Qt. A q spinor A. without a subscript 
will be taken as A. _ by convention. 

A typical tangent vector in supers pace may be written 
in the (aa' 1Ta, 'ITo,) basis as 

x = s (aX + n- +.A. + ;:r +.tA.) 
4 2 2 

= Iakx k + I 'lTa·A.a+ I II" .A.", 
k=1 a=l ,,=1 

where 

X=Xkek , 

A. =A. aea 
. a-

It = fl e" , 

ek =(I,ea), 

a4 = -iao' 

1T+='Tra ea , 
;:r = 1Taea , 

ek=(l,-ea ), 

e4 = ieo 
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(A2l) 

S(e"eP)=d!x, k,l= 1,2,3,4, 

a = 1,2,3, a,a = 1,2. 

e
a 

= (Wl,W2), ea = (WI, _ (;2), 

e" = (WI,U 2
), e" = (WI, - W2), 

S(ekel)=o~, S(eaeJ3)=~, 

A complete duality between the quaternions 
~=(ek, ea

, e")andeA =(ek' ea , e,,) may beset up in an 
obvious manner so these basis quaternions need never ap­
pear in any practical calculations. For convenience the rela­
tive transformation properties of the various q spinors can be 
immediately determined from their notation. 

A Majorana spinor p form is one where all four types of 
complex spin or p forms can be expressed in terms of two 
independent complex spinor p forms. 

Denoting these by ¢ A and ¢ B for illustration a Major-
ana related set is 

I A 2 
¢.= -¢B U +¢A U , 

¢_=¢A W1 +¢B W2 , 

~. = i(¢ : U 1 + ¢ ~ W2) , 

~_=i(¢~Wl_¢: (;2), 

In general they satisfy the relation 

(pt± = ± i~± . 

(A22) 

(A23) 

(A24) 
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We develop the mathematical apparatus necessary to isolate pure naturality contributions from 
the helicity amplitudes for an arbitrary 2--+2 scattering process (with a Bosonic (channel), We 
prove that certain combinations of the amplitudes and their (multiple) energy-derivatives suffice, 
and that no simpler methods exist. For high spin processes, where our methods might be 
overcomplicated, we develop a simple and accurate approximation using just a single energy­
derivative. 

PACS numbers: 1 1.50.Nk, II.80.Fv 

I. INTRODUCTION 

In the next few years it is hoped that we will achieve a 
much more thorough understanding of the structure of scat­
tering processes than we have at present. Experimental pro­
gress is being made in the measurement of a wide variety of 
spin-dependent observables I; the eventual aim will be com­
plete amplitude analyses over a range of energies for the dif­
ferent processes. The new results should stimulate further 
theoretical developments. For the moment we must deter­
mine how to interpret the measurements in terms of the dif­
ferent types of ( channel exchange participating. 

Recently we published an account of how to isolate ex­
changes of definite naturality [ P ( - )J] from the he1icity 
amplitudes for an arbitrary 2--+2 scattering process. 2 In or­
der to keep the analysis simple and practical we omitted to 
prove our results. Here we will repair that omission. 

The problem is highly nontrivial and none the less im­
portant for having been swept under the carpet for many 
years. In Ref. 2 we spent some time demonstrating that Con­
ventional approximations to the same results are generally 
worthless at moderate energies. Here we will take this for 
granted. First of all we state the general problem in Sec. II A. 
Phrased mathematicaIly, this involves finding J-indepen­
dent functions G (A,p) such that 

G (A,fl)di" (z,) = G (A, - f..L)d{ /JZt), 'tIJ. 

The solution turns out to depend greatly on whether the t 
channel is bosonic or fermionic (A and fl integral or half-odd 
integral). In this paper we treat the bosonic case, the simpler 
of the two. The fermionic case is considered in an accompa-

. , 
nymg paper.' 

We determine G (A.,f..L) (A.,flEZ) in Sec. II B. It is a finite 
polynomial in Zt ( = cos(}t) and D (= d /dz l ) of order 

m = min(IA 1,1 f..L1) 

in D. In Sec. II C we develop our solution into a more useful 
form, and in Sec. II 0 we show that we need at least m de­
rivatives to achieve an exact separation. That is, our solution 
is as good as it could be. 

For large In our exact results may be rather difficult to 
use. In Sec. III we derive the general single-derivative ap­
proximation to naturality isolation and demonstrate that it is 

·'Present address: Department of Physics and Astronomy. University Col­
lege London, Gower Street, London WCIE 6BT. 

likely to be reliable at moderate energies. 
Section IV contains a summary and some conclusions 

II. GENERAL RESULTS 

A. General problem 

We start by considering a completely general 2-+2 
process 

A +B--+C+D. 
The t channel is labelled 

D+B--+C+A. 

Our program is to isolate from/~a;db and/,_ c _ a;dh compo­
nents of definite naturality. To do this we need the (-channel 
partial-wave expansions4 

L «caITJ( + )Idb) + (caITJ( - )Idb »di/,(z,) , 
J 

(1) 

II C _ a;dh 

= S L «cal T J ( + )Idb > - (cal T J ( - )Idb )}d{ - ,,(z,) , 
J 

where 

z, = cose" fl = c - a, A = d - b . (2) 

The (cal T J (p)ldb ) are transition amplitudes of defi­
nite naturality (p) depending on (alone (not Zt)' S is a phase 
factor 5 

Our program is clearly equivalent to discovering func­
tions G (A,fl), independent of J, such that 

G(A,p)d~/l(ZJ = G(A, -f..L)d~ .. /,(z,) (3) 

for given such G (A,f..L) we can define 

F(p)=! [G (A,flV;'u;dh + psG (A, - flV'- c ii;dh] 

= I (caITJ(p)ldb )G(A'fl)d~,.(z,) (4) 
J 

and F (p) has contributions from naturality palone. 6 

B. Central result 

Theorem: There exist J-independent operators G (A,fl) 
such that 'rJJ (A,f..LEZ) 

G (A,fl)di" = G (A, - f..L)di _" . 

If the sign of Afl is positive, then 
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G0,,u) = IT [(z; -1)D + z, -M + m -2r+ 1 ], 
r= 1 

while if the sign of ),-11 is negative. then 

G (A.,u) 

(5a) 

= (- Y IT [(z; -l)D + Zt +M - m +2r-I ]. 
r= 1 

(5b) 

Proof: We use the notation of Sec. II A together with 

z± =z, ± I 

and 
M(m) = max(min)(IAI.I,uI). 

Our starting point is the definition of the functions e~~ given 
in Ref. 7. These are related to the d ~ ± I' we are interested in 
by 

d J (z) = z(1/2)IA + I'I( _ z )(1/2)1,1 ~ 1'1 (eJ. + eJ- ) Al't + - AI' AI" 
(6) 

(_),1 + Mdi-I'(z,) 

= i~/2)IA -I'I( _ z_)(1/2)IA + I'I(e~~ - eil') . 

First we will relate e~~ ; clearly then d i ± il are related. Triv­
ial manipulations on Ref. 7 give. up to a common constant. 

ei~ + sei;, = DM~ m(Dz_D )mpJ(z,l. 
(7) 

ei~ - set, = DM~m(Dz+D )mpJ(z,). 

[s = sign of (A,u).] Since we are concerned only with linear 

relations on e~; the constant makes no difference and we will 
ignore it. Now by induction, 

(Dz ± D )m = Dmz';;, D m . 

Hence we can rewrite Eq. (7): 

z":- (ei;, + seilJ = z":- D MZ~ D m ~ M (D MPJ(Z,» • 
(9) 

m ( J. J) m D M m D m ~ M(D Mp ( » Z _ e AI, - seAt' = Z _ Z + J Z, • 

Now (by induction again) 

z':DMz~Dm-M= IT [(z;-l)D+(M-m+l)z, 
r=1 

+ M - m + 2r - 1 J , 
(10) 

z'''- DMZ,"+ D m 
- M = fi [(z; -I)D + (M - m + l)z, 

r =- I 

- M + m - 2r + 1] . 

Here we make a crucial observation. All the terms in both 
products in Eq. (10) differ from each other only by con­
stants. Therefore they all commute,and hence so do' the pro­
ducts. Thus 

[z"~ DMZ': D m - .'01, z'''- DMZ': D m - M] = 0 . 

Combining (9) and (II), we get 

zm DMzm Dm-Mzm (eJ· +se') - + + At' At' 
= zm D MZIn D'" - Mzm (eJ · _ seJ ) + - - ),-1'- All' 

a fundamental relation for our purposes. 
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(11) 

(12) 

Next we must combine Eqs. (12) and (6) to relate 
d i ± 1" If the sign of A,u is positive, Eq. (6) becomes 

d J (z) = (Z2 _ 1)(1I2)(M - m)zm (eJ· + eJ- )( _ )(1I2)(M ~ m) 
Ail" + At' AI' ' 

(13) 

( _)A+M~mdJ (z)=(z2_1)(1!2)(M~m)zm (eJ· _eJ ) A ~ 1'" - AI' AI' 

Hence 

!dil, = 7JKdi ~t' ' 

where 

X ( _ )(1I2)(M - m) • 

I = z~ D MZ":- D m - .'01 (z; _ 1)(1/2)(m - .'01) , 

and 

7J=(_)A+M~m. 

(14) 

(15) 

If the sign of A,u is negative, then the sign of A ( -,u) is 
positive, so 

1JKd~1' = IdLI' . (16) 

Combining (14) and (16), we can now define 

G (A,,u) = (z; - V llZ)(M- m)n(I + 1JK) + s·~(I -1JK)] . 
(17) 

Then, quite generally, 

(18) 

G 0,,u) is defined by Eqs. (I 5) and (17) to be independent of 
J. To derive Eqs. (5) we use Eq. (10) and observe that 

(z; _1)(1/2)(M - m)[(z; - I)D + (M - m + l)z,] 
X(z; _1)(1/2)(m - M) = (z; -l)D + z, . 

Hence Eqs. (17) and (5) are equivalent. We have proved the 
theorem. 0 

We observe that up to a constant 

d J = (Z2 _ 1)(1I2I1M~m)zm DMzm Dmp (z) (z) 
AJL I + ~ Jt"t, 

(19) 

d J = (_)A + .'01 - m(z2 _1)(1/2)(M - m)z'" DMZ'" Din 
A - t' ' --j 

XPJ(z,) , 

and 
Lemma: 

G(A,f.1)dil' (z,) = (z; _l)(1/2)(M+m)D M + In(z; -1)mD'" 

XP;(z,). (20) 

Proof From Eqs. (17) and (15), if the sign of Af.1 is 
positive, 

G (A,,u)d il' (z, ) 
= (z~ _ 1)11/2)(M- m)z~ DMZ~ D m -M(Z; _ 1)11/2I1m -M) 

X(z; - 1)(1/2I1M~m)z,,:- DMZ"'- DmpJ(z,) 

=(Z2_ I)11/2)IM~m)[zm DMzm vm-Mzm DMZ'" 
t - + +-
XDm~MDM-m]DmpJ(Z,) . 

Thus the assertion of the lemma is equivalent to 

(z'''- DMZ":- D m ~ M) (z': DMZ"'- D m - M)DM- m 

= (z~ - I) mD M + m(z; _ 1) m . 

Richard Stacey 
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From Eq. (10) and the deduced commutation properties the 
left-hand side of Eq. (22) is 

IT ! [(z; - l)D + (M - m + l)z,]2 
r= 1 

- (M - m + 2r - 1 )2] D M - m • 

The r = 1 term in the product is 

(z; -1 )[(z; -1)D2 +2(M - m +2) z,D 
+ (M - m + l)(M - m + 2) ] 

=(z;-l)DM m+2(z;_1)Dm--M (23) 

(by induction). Thus the left-hand side ofEq. (22) equals 

IT I [(z; -I)D + (M - m + I)z, p - (M - m +2r -1)2] 
2 

X(z; _1)DM-m+2(z; -I) 

= (z; - 1) [ ~ I [(z; - I)D + (M - m + 3) z, P 

- (M - m + 2r - 1)2] D M - m + 2 ] (z; - 1) 

= (z; -1)[ m~t ! fez; -I)D + (M - m +3)z, p 

- (M - m +2r + 1)2]DM- m +2 ](Z; -I) (24) 

The expression in square brackets (between the z; - 1 fac­
tors) in Eq. (24) is like the left-hand side ofEq. (22) with 

M_M + 1, m_m - 1 . 

Thus we can extract another factor of z; - 1 at each end and 
take 

M_M+2, m---->m-2. 

Doing this m times we have m factors of z; - 1 at each end, 
and between them the left-hand side of Eq. (22) with 

M_M+m, m_O, 
i.e. 

Thus the left-hand side ofEq. (22) equals 

(z; - I) mD M + "'(z; _ 1) m , 

the right-hand side ofEq. (22). We have established that Eq. 
(20) is true if the sign of }./1 is positive. From Eq. (18) this 
result is independent of the sign of }./1, so the lemma is 
proven. 

c. Development of results 

Here we develop the results derived in the previous sec­
tion into a more useful form. We assume that the sign of }.11 is 
positive throughout this section. 

(i) First (as is usual) we replace the/' by 

r = ~(f~a;db + rJf'- c - ii;Jb) , 

f- = ~(f~ii;Jb - 1]1'- < - ii;Jb) , 

where 

1] = S'( _)'" +M-m = 1]c1]ii( _ t c +s,( _ y-a. 

(25) 

We can recast our earlier results in terms off ± rather 
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than/'. F(p) [Eq. (4)] can be rewritten as 

F(p) = Gpr + G -pf- = G.jP + G-f- p , (26) 

where 

G ± = ~ CUI [(z; - I)D + z, - M + m - 2r + I) 

± TUI [(z;-I)D+z, +M-m+2r-l)) 

(27) 

As emphasized previously, all terms in Eq. (26) depend on 
the helicities c,a,(J,b, though we do not make this explicit. 

In general (if m #0), 

G_#O. 

In fact G_ measures the extent to which the approximation 

r ~naturality (p) 

fails to hold. 
(ii) In order to see how different contributions appear in 

f ± and F(p) [with a view to interpreting data on F(p)] we 
need some more notation. From Eqs. (1) and (19) 

f± = (z; _1)(1I2)(M-m) I !(z":- DMZ"'- ±pz"'- DMz":-) 
p~ ± 

XD m I tJ(p)PAz,) , (28) 
J 

where 

t J (p) = (cal T J (p)ldb )( _ )(t!2)(M - m) . (29) 

Thus, if we define 

A (p) = (z; _1)(1/2)(M- m)!(Z: DMZ"'- + z"'- DMz":-) 

XD mIt J (p)PJ(Z') ' 
J 

(30) 

XD'" It J (p)PAz,), 
J 

we can write 

r=A(N)+B(U), F=A(U)+B(N), (31) 

where 

A (N)==A ( +), B (U)==.B ( +), etc. 

Now we can use our new notation to demonstrate the 
effect of a naturality (p)J = a (polelike) term. Observe that 
in the combination 

the leading-order 0 (z;m - M) terms vanish. Thus our J = a 
term will appear to higher order in A (p) than in B ( p) 
(r,' versus r,' - t) from Eq. (30). A (p) will dominate B (p) in 
the infinite-energy limit. 

The equation for F(p) to compare with Eq. (30) is [see 
Eqs. (1), (27), and (20)] 

F(p) = (z~ _l)(1/2)(M + m)D M + m(z~ _I)m 

X(Dm ~ tJ(P)P;(Z,»). 

Richard Stacey 
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Our J = a term contributes to A (p), B (p), and F (p) in the 
form 

F(p) = ~: ~ ~! g(t)r,'+m[1 + o (Z,-2)]. 

A(p)=ag(t)r,'[I+O(z,-2)], (33) 

B(p) =A/1g(t)r,'-1 [1 + o (Z,-2)] . 

Equations (33), or (32) and (30), are the starting point 
for the application of our techniques; we refer the reader to 
Ref. 8 for further comments. 

(iii) Here we give some examples of Eq. (27) for the 
cases m = 0, 1, and 2. 

(a) m = 0 In this case 

G. = 1, G_ = 0, 

so thef ± have definite naturality and B (p) vanishes 
identically. 

(b)m = 1 Here 

G. = (z; -I)D + z" G_ = - M. 

The results for m '= 0 and 1 together cover a wide variety of 
processes, for instance, all those with at least one vertex: 

N-N, e.g., NN_NN, 

or 

y_O -, e.g., yP-tr,J , 

or 

0--1 ±, (e.g., trN-p,J). 

Consider the process 

trN-pN. 

Here there are four m = 0 t-channel amplitudes l~a;Jb: 

Ib; + _ AI-like Q numbers only (UP), 

f~; + + + F-I; + + p-like Q numbers (NP) , 

II); + + =1T-like Q numbers only (UP), 

1'1; + + -1'-1; + + =1T-like Q numbers (NP). 

The two mixed naturality (m = 1) amplitudes are 

I± =!(f;;+ - ±I'-l;+ __ ), 

and for p = ± 
F(p)= [(z;-I)D+zr]IP-j-P 

isolate the pure naturality (p-like and A I-like) contributions. 
(c) m = 2 For amplitudes with m = 2 

F(p) = G+JP + G-f- P, 

where 

G. = (z; -OD2(Z; -1) + M2, 

G_= -2M[(z~-1)D+zr]' 

D. Necessity for m derivatives 

Here we will prove that we must use at least m deriva­
tives to obtain pure naturality contributions. Thus the F (p) 
of Sec. II C is the simplest possible function of amplitudes 
that does this. 
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For an m = 1 pair of amplitudes the proof is simple. A 
J = a wrong naturaIity contribution appears in A ( - p) and 
B ( - p) [see Sec. II 0, Eqs. (30)] like 

A ( - p) = ar,'[1 + o (Zt- 2) J, 
B( -p) = Mr,'-I [I + o (Z,-2)] . 

Working to leading order, we want to cancel these terms in 
an a-independent linear combination. The only way to give 
B ( - p) an extra factor of a is to take 

d
d [z,B(-p)J, 
z, 

i.e., we need at least one derivative. 
For m>2 the above argument is no use. Instead we con­

sider eigenstates of 1= (z; - l)D + Z,' Y (A ): 

IY (A ) = A Y (A ), AEC. 

These exist: 
Y -z::;: (1/2)(1 + A )Z(~2)(A - I) . 

Hence if we have a wrong naturality term 

f~a;db = IT (A +M - m +2r- I)Y, 
1'=1 

then [using Eq. (4)] in order that this may be eliminated in 
F(p) we need a term 

f'-c-a;db= IT (A-M+m-2r+l)Y 
y= I 

up to a phase. The polynomials multiplying Y in the two 
cases have no common factors. Thus to eliminate the contri­
bution we need to generate a factor 

IT (A - M + m - 2r + 1) 
r = J 

from Y in l~a;Jb' We need to generate a polynomial of order 
m in A from Y. The only way we can do this (in a linear 
fashion) is by differentiating m times (only one power of A 
can be gained from one differential). Thus we need m deriva­
tives of the amplitudes to isolate pure naturality 
contributions. 

III. SINGLE-DERIVATIVE APPROXIMATION 

In Sec. II we saw that (given adequate data) we do not 
need to make approximations to isolate pure naturality con­
tributions for a bosonic t channel. However, we need m de­
rivatives with respect to energy to do this and the data would 
have to be incredibly good to an ow us to extract second- and 
higher-order derivatives. Ifwe had a good approximation to 
exact separation, involving only a single derivative, this 
would be more useful. 

Consider G ± [Eq. (27)]. Since 

D~O(Z,-l) , 

we can write 

G. = (z,Dz,)", + 0 (z;" - 2) , 

G_ = - AIl(z,Dz,)m - I + 0 (z;" - 3) . 

Approximating G ± by their leading orders and cancelling 
the common factor (zr Dzt)m - 1 , we get 
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F(p) = Gpr + G -pf-, 

where 

G. = z,Dz" G_ = - Aft . 

(34) 

(35) 

F(p) approximately isolates naturality (p). From Eq. (33) it 
is easy to see that aJ = a naturality - p term appears in (34) 
to leading order 

The leading-order terms cancel out. By contrast a J = ap 

naturality p term appears in F (p) to higher order, 

Comparing this with the approximation of neglecting 
B ( - p) inf P, we see that we are on much safer ground. The 
"wrong" naturality terms are suppressed by an extra factor 
of 0 (Zt- 2). For comparison with Eqs. (33) we give 

F(p) = a(a +1) g(t)r," + I [I + 0 (Zt- 2)] . (36) 

Of course for m = 1 this approximation is redundant: 
we can achieve exact separation with the same information. 
For m>2 it should, however, be useful. 

IV. SUMMARY 

We have succeeded in exactly isolating the definite na­
turality contributions from helicity amplitudes for a general 
2-2 process (with a bosonic t channel). Here we summarize 
our methods. 

We write (for sign of Aft positive) 

r = ~(f~ii;db + TJi t
_ c _ ii;db) = A (N) + B (U), 

F = ~(f~ii;db - TJi t
_ c _ ii;db) = A (U) + B (N) , 

where 

'TJ = 'TJC'TJA( - )SA+ S,( _ y-ii. 

We define terms of definite naturality 

F(p)=Gpr+G_pF, 

where 

1 ( m - II [(z~ - l)D + Zt - M + m - 2r + 1 ] 
2 r~ I 

(37) 

(38) 

± )X [(z~-l)D+zt +M-m+2r- q) (39) 
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A J = a term appears in Eqs. (37) and (38) in the form 

A (p) = ag(t)r,"[l + o (Zt- 2)] , 

B(p) = Aftg(t)r,"-I [1 + O(Zt-2)] , 

F(p) = ~: ~ 7~! g(t)r," + m [1 + 0 (Z,-2)] . 

(40) 

These results should not be taken to imply that we are 
just concerned with a Regge model. They are simply useful 
to interpret a measured F (p) in terms of the contributions to 
amplitudesf ± ; they can be considered as a starting point for 
a more sophisticated analysis. 

A simpler (and fairly accurate) approximation to natur­
ality isolation involving only a single derivative has also been 
developed (see Sec. III). 

We conclude that amplitude measurements over a 
range of energies can now give us, using the above results, a 
much better idea of the different naturality contributions 
than was possible previously for every 2_2 scattering pro­
cess (with a bosonic t channel). The results are model 
independent. 
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We develop the mathematical apparatus necessary to isolate pure naturality contributions from 
the helicity amplitudes for an arbitrary 2-+2 scattering process (with a Fermionic t channel). In 
their exact form they are unlikely to be useful; in fact we prove that an exact isolation is impossible 
using only a finite combination of the amplitudes and their energy derivatives. However, we 
derive an approximation series consisting of such finite combinations which converges quickly to 
an exact separation of naturalities. The first term in the series-the single derivative 
approximation-is likely to give a good approximation. We comment on the application of our 
techniques to 1TN backward scattering. 

PACS numbers: 11.50.Nk, 11.80.Fv, 13.75.Gx 

I. INTRODUCTION 

In this paper we investigate how to isolate definite na­
turality exchanges for processes with a Fermionic t channel. 
[Here naturality p = P ( - )J - Ill] We remind the reader 
that the general problem (see Ref. 1 and Secs. II A and II C 
below) reduces to seeking J independent functions G (A.,/1) 
such that 

G(A.,/1)di,,(Z,) = G(A., - /1)di -/1(z,). 

Here matters are more complicated than they were in 
the Bosonic case. There we were able to find G (A. ,/1) essen­
tially because 

(1) 

(where Ni'l is a constant and OJ..ll is J independent) and 

di -/1(z,) = (- )J+J..di/1( -z,). (2) 

Since PAz,) has the simple reflection property 

PJ( - z,) = ( - )JPAz,) , (3) 

our problem reduces to finding functions G ± such that 

G.OJ..I,(z"D) = G_0J../1( - z" - D). (4) 
Equation (4) is already J-independent, and can be solved. 
This simple behavior seems to be related to the simplicity of 
the spinless case (000 = 1). 

Now if the t channel is Fermionic, Eq. (2) still holds but 
( 1) is replaced by2 

di/1(z,) = Ni/1 XOJ../1(z"D)X [P~+ 112 - P~-1/2]' (5) 

Clearly we do not have a relation like (3) for 
(P ~ + 1/2 - P ~ _ 1/2)' The simplest state (with A. = /1 = ~) is 
fundamentally more complicated. To effect a separation we 
clearly need to find J-independent operators g ± (z, ,D) such 
that 

g. PJ + (l/2) = g- PJ - (1/2) VJ. (6) 

Once we have g + it is likely that we will be able to isolate 
naturalities by methods analogous to those developed for the 
Bosonic case. 

Section II is devoted to our general results. First (Sec. 

alPresent address: Department of Physics and Astronomy, University Col­
lege London, Bower Street, London WCIE 6BT. 

II A) we prove that if we restrictg ± to the class of poly nom i­
als inD (cf. Ref. 1) then we have no relation like (6). It follows 
simply that no combination of amplitudes and afinite num­
ber of energy derivatives can exactly isolate naturalities 
when the t channel is Fermionic. All is not lost, however. We 
discover in Sec. II B a formal method of exact isolation, 
which involves an infinite number of derivatives. It is unlike­
ly to be useful as it stands, but it can be approximated sensi­
bly in terms of a finite combination of derivatives, the ap­
proximation series converging quickly to the exact result 
(Sec. II C). In Sec. III we develop more fully the m = ! ap­
proximation series (Sec. III A), and consider briefly (Sec. 
III B) a process for which it is likely to be useful, viz: 

1T+P-+P + 1T. 

In Sec. IV we treat the general single derivative approxima­
tion. Finally, we summarize our results and draw some con­
clusions (Sec. V). For the reader who wishes to use our meth­
ods, Sec. IIIB and IV are probably the most important. 

II. GENERAL RESULTS 

A. No separation with finite derivatives 

Theorem: There do not exist functionsfand g, being 
polynomials in D = d / dz, with coefficients functions of z,' 
such that [J #O#g] 

fPJ - 112 = g'PJ + 1/2 VJ. (7) 

Proof Suppose such functions did exist. We can takef 
andg to be polynomials of the same order 2m without loss of 
generality: 

f(z,D) = fo + /;D + ... + f2m D 2m , 
(8) 

g(z,D) =go + giD + ... + gZmD2m, 

where/; and gi are functions of z,. By mUltiplying appropri­
ate factors we can choosef and g such that/; and gi have no 
poles at z, = 0 and do not all vanish there. We will obtain a 
contradiction by showing that/; and gi do all vanish at z, 
= 0, and so establish the theorem. 

We work with J - !EZ only. We have 

n (2 + 2 )' I 'z2r P
2n 

= en L ( _ y n r. n. n. _' _ , 
o (2n)! (n - r)! (n + r)! (2r)! 

(9) 
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We develop the mathematical apparatus necessary to isolate pure naturality contributions from 
the helicity amplitudes for an arbitrary 2--2 scattering process (with a Fermionic t channel). In 
their exact form they are unlikely to be useful; in fact we prove that an exact isolation is impossible 
using only a finite combination of the amplitudes and their energy derivatives. However, we 
derive an approximation series consisting of such finite combinations which converges quickly to 
an exact separation of naturalities. The first term in the series-the single derivative 
approximation-is likely to give a good approximation. We comment on the application of our 
techniques to rrN backward scattering. 
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J. INTRODUCTION 

In this paper we investigate how to isolate definite na­
turality exchanges for processes with a Fermionic t channel. 
[Here naturality p = P ( - )J - 1/2] We remind the reader 
that the general problem (see Ref. I and Secs. II A and II C 
below) reduces to seeking J independent functions G (A,,u) 
such that 

G(A,,u)di,,(z,) = G(A, -,u)dLI'(z,), 

Here matters are more complicated than they were in 
the Bosonic case. There we were able to find G (A,,u) essen­
tially because 

d~,,(z,) = NL X 0).1' (z"D)XP;(z,) , (1) 

(where N~I' is a constant and 0).1' is J independent) and 

d~ _I' (z,) = (- )J+).d~l'( - z,). (2) 

Since PJ(z,) has the simple reflection property 

PA - z,) = (- iP;(z,) , (3) 

our problem reduces to finding functions G ± such that 

G+O).ll (z"D) = G_O).I' ( - z" - D). (4) 
Equation (4) is already J-independent, and can be solved. 
This simple behavior seems to be related to the simplicity of 
the spinless case (000 = I). 

Now if the t channel is Fermionic, Eq. (2) still holds but 
( 1) is replaced by2 

dil'(z,) = Nil' X 0).1' (z"D )X [P J+ 1/2 - P J- 1/2] • (5) 

Clearly we do not have a relation like (3) for 
(P J + 1/2 - P J _ 1/2)' The simplest state (with A = ,u = !) is 
fundamentally more complicated. To effect a separation we 
clearly need to find J-independent operators g ± (z, ,D) such 
that 

g+ P; + (112) = g- PJ _ (1/2) '<JJ. (6) 

Once we have g + it is likely that we will be able to isolate 
naturalities by methods analogous to those developed for the 
Bosonic case. 

Section II is devoted to our general results. First (Sec. 
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lege London, Bower Street, London WCIE 6BT. 

II A) we prove that if we restrictg ± to the class of poly nom i­
als inD(cf. Ref. 1) then we have no relation like (6). It follows 
simply that no combination of amplitudes and afinite num­
ber of energy derivatives can exactly isolate naturalities 
when the t channel is Fermionic. All is not lost, however. We 
discover in Sec. II B a formal method of exact isolation, 
which involves an infinite number of derivatives. It is unlike­
ly to be useful as it stands, but it can be approximated sensi­
bly in terms of a finite combination of derivatives, the ap­
proximation series converging quickly to the exact result 
(Sec. II C). In Sec. III we develop more fully the m = ! ap­
proximation series (Sec. III A), and consider briefly (Sec. 
III B) a process for which it is likely to be useful, viz: 

rr+p __ p+rr. 

In Sec. IV we treat the general single derivative approxima­
tion. Finally, we summarize our results and draw some con­
clusions (Sec. V). For the reader who wishes to use our meth­
ods, Sec. IIIB and IV are probably the most important. 

II. GENERAL RESULTS 

A. No separation with finite derivatives 

Theorem: There do not exist functionsfandg, being 
polynomials in D = d / dz, with coefficients functions of z" 
such that [f #O#g] 

fPJ - 112 = g.p; + 1/2 '<JJ. (7) 

Proof Suppose such functions did exist. We can takef 
and g to be polynomials of the same order 2m without loss of 
generality: 

f(z,D) =fo + /;D + ... + f2mD2m , 
(8) 

g(z,D) =go + giD + ... + g2m D2m , 

where/; and gj are functions of z,. By multiplying appropri­
ate factors we can choosefandg such that/; andgi have no 
poles at z, = 0 and do not all vanish there. We will obtain a 
contradiction by showing that/; and gj do all vanish at Zl 

= 0, and so establish the theorem. 
We work with J - !EZ only. We have 

n (2 + 2)" 'z2r P
1n 

= en I. ( -)' n r. n. n. _1_ , 

o (2n)! (n - r)! (n + r)! (2r)! 
(9) 
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From (20) we get 

h 2ar_ 2 =h [(r-1)(k+r-1)ar_ l ] 

= (r -1)(k + r + l)har_ l 

= [(r!l(r - 2)!](k + r + 1)(k + r)ar , (22) 

and hence (inductively) 

h rao = r![(k +2r -1)!I(k + r -1)! 1 a" (23) 

in an obvious notation. Now, if r < N then the expression 

(k + 2N -1)! (k + r - 1)! 

(k+2r-l)! (k-1)! 
(24) 

represents a polynomial in k. Multiplying both sides of Eq. 
(23) by this factor gives 

J.. (k + 2N - I)! (k + r - I)! h rao = ..o.(k-..:..+_2_N_---".1)_! a . 
r! (k-1)! (k+2r-1)! (k-1)! r 

(25) 

Hence 

(k + 2N - 1)! N (k + r - 1)! h 'ao 
(k-1)! ~ r!(k+2r-l)! 

= (k+2N-l)! fa,. 
(k - 1)! 0 

(26) 

Equation (26) is the expression we were seeking. 
(ii) We develop (26) to prove the theorem. Cancelling the 
common factor in (26) we obtain 

~ _ ~ (k + r -I)! h r 
~ar - ~ ao' 
o 0 r!(k+2r-1)! 

(27) 

The fact that inverse polynomials in z,D are well defined in 
their operation is discussed in Sec. II C. Since l:a r converges 
sensibly to PJ we can take the limit 

N---+oo 

in (27). Thus 

PJ(z,) = Hao(l) , 

where 

H - OQ (k + r -1)! hr. 
- ~ r!(k+ 2r -I)! 

(28) 

(29) 

H maps PJ onto its leading term for all J. This mapping is 1-1 
so the inverse is well defined. We prove later (lemma follow­
ing) that 

HK = 1 , (30) 

where 

00 k' 
K = I . (- h)j. 

o ]1(k + j)! (31) 

Hence 
ao(l) = KPJ VJ . (32) 

From (18) we see easily that up to a common constant 
factor 

ao(J + D = 2Jz{ + (112) , 

ao(J - D = (J + DZ;-(1I2) , 
and therefore 
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Dao(J + D = 2J (J + !)Z; + (1/2) 

= (2zD + l)ao(J - D, 
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i.e., 

!Dao(J + !) = kao(J - D . 
Combining (33) and (32) we have 

(33) 

!DKPJ+ (112) = kKPJ+ (1/2) • (34) 

This is the assertion of the theorem, with (31) giving (17) 
with the values of k and h defined after Eq. (19). 

There is one extra point to note: if JEZ + ! then a r [Eq. 
(18)J can be infinite. Ifwe exclude these points from the 
definitions of K we still have aU the results in Sec. II C since 
there K is taken to act on a sum of P N (N integral) before we 
generalize J. 

We conclude this section by proving the result quoted in 
Eq. (30). 

Lemma: Defining 

H- 00 (k+r-l)! h r 

- ~ rICk +2r -I)! 
and 

OQ k' 
K = "( - Y . h ' , 

~ rICk + r)! 

with 

hk = (k +2)h 

we have KH = 1. 
Proof 

KH - I ( r k ! h r (k + r/ - 1 )! hr'. 
r.r· rICk + r)! r/!(k + 2r' - I)! 

Using the commutation properties 

KH= I(-Y k! (k+2r+r'-l)! hr+r' 
r,r' rICk + r)! r/!(k + 2r + 2r' - 1)! 

= f ( f (- y k !(k + m + r - 1 )! )h m • 

m = 0 r = 0 r!(m - r )!(k + r )!(k + 2m - I)! 
(35) 

The coefficient of h 0 is 

k !(k - 1)!lk !(k - 1)! = 1 . 

The result of the lemma is now equivalent to proving that, 
form;;.l, 

f(-y k!(k+m+r-1)! =0. (36) 
o r!(m - r )!(k + r )!(k + 2m - 1) 

The expression on the left-hand side of (36) equals 

k! f (_ y( m) (k + m + r -I)!. (37) 
(k+2m-1)!m! r=O r (k+r)! 

Now if kE'l+, then 

Dm-l [xk+m-I(l_x)m] 

=Dm-1Lto (- r( 7 )xr
+

k
+

m
-

1 J 

= f (- r (m) (k + m + r - I)! Xk + r • (38) 
r=O r (k+r)! 

Putting x = 1 in (38), the left-hand side must be zero [at least 
one factor (1 - x)J, so 

f (- y( m) (k + m + r - 1)! = 0 (39) 
r=O r (k+r)! 
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for kE'!:. Now (39) is a polynomial in k with infinitely many 
roots, so it must vanish identically, whatever k is. Thus (37) 
vanishes and (36) holds. 

We have our result. 

C. Formal exact separation (2) 

In this section we explore the consequences of the theo­
rem proved in Sec. II B (Eqs. (16) and (17)J. First we will 
justify some of our earlier analysis. 

The presence in K [Eq. (17)J of inverse polynomials in 
z, D means that we cannot evaluate directly the result of 
operating it on an arbitrary function. Its operation is, none­
theless, perfectly well defined. For a wide class of amplitudes 
/ (ZI ) we can write 

(40) 

We have an upper bound a o because of the Froissart bound; 
our a o is chosen to be the lowest nontrivial bound. Now the 
operation of K on z~ is well defined for IZII > 1: 

Kz~'= ! (a-2r+p! a! ...!...r,r-2r (41) 
r = 0 rICa - r + D! (a - 2r)1 4r 

The series on the right-hand side of (41) has good (uniform) 
convergence properties since as r~ 00 the ratio of successive 
terms tends to 

Thus we can commute the sum in (41) with the integral in 
(40), giving, with a little manipulation, 

00 ( 1 )2r , _ 
K/(z,) = z'/" r~o;'- J- oc z~J,.(a) da 

where 

J~(a) = (a + a o -4 r + U!(a + a o - 2r )! 
rl(a + ao - 3r + Dl(a + ao - 4r )1 

1 -
X - f(a + ao -2 r) . 

4r 

We can draw two important conclusions from Eq. (42): 
1. K/(z,) is well defined: it exists. 

(42) 

2. The right-hand side of Eq. (42) is a good asymptotic 
expansion, effectively in z,- 2. The coefficients 
[s0_ 00 r,rJ,.(a) da J have some z, dependence, but as z,~oo 

IZII£>O[[oo r,rJ,.(a)da]>lz,I-£\f £>0. 

At low energies there can be more variation, but any energy­
dependence in these factors should be totally swamped by 
the z,- 2 terms. The first few terms of Eq. (42) should give a 
good approximation to K/(z, ) in the usual "high energy" 
region (e.g. PL ;;;.3). This approximation is in fact obtained by 
taking the first few terms of K itself, as given by Eq. (17). 
"high energy" region (e.g. PL ;;;.3). This approximation is in 
fact obtained by taking the first few terms of K itself, as given 
by Eq. (17). 

Conclusion (1) allows us to achieve a formal separation 
of naturalities; (2) allows us to approximate it more usefully, 
to arbitrary accuracy. The rest of this section is taken up 
with doing just that. 
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We have the expansion off;.,oi;dh and!, ., ,,;df> in partial 
wave series: 

f~ii;db = I [(caITJ( + )Idb) + (caITJ( - )Idb >] 
J 

xdi"(z,) , 
(43) 

f--c-ii;db = t I I (caITJ( + )Idb > 
J 

~ (caITJ( - )Idb) jdLI'(z,) , 

wheres = 7Jc7Jx( - )SA+
S
c-

1I2 [cf. Ref. 1, Eq. (1)1. Now up 
to a common constant [sign (All) = + y: 
d il' = (z; - I)I/2IM - m)(z, + l)m(ZI _ l)m - IJ12)D m + 1112) 

xD M - (1I2)(PJ + (112) - P J _ (112)) , (44) 
( - )'1 + M - md~ -I' = (z; _ I)II12I1M -- ml(z, _ l)m 

XD M -(IIZ)(Z, + l)m- II12)(PJ +
Ili21 

+PJ +(l12)) 

(cf. Ref. 1 for notation). ManipUlating formally 

D m + (1I2)PJ ± 1112) 

=H\z, + 1)IJ/2)-mDII121-M(Z, _l)-m 

X(Z2 _ I)11/2I1m-MI( _ )A+M-md J 
I A-I' 

± (Z, _ 1)(I!2)-mDI 1I21-M 

X(Z, + 1)-m(z;_1)11I2I1m-M)d~I']' (45) 

The inverse powers of D are, again, not ill defined; but in the 
expressions we wish to use we will eliminate them (cf. Sec. 
III). 

From Eqs. (16) and (17) we deduce that 

IflK'(Dm+ 11I2Ip ) 2'"'. J + (1/2) 

=(z,D+m+ I)K'(D m+I IIZ
)P'_11I2))' (46) 

where 

oc (z,D + m + I)! 2 K'=I (AD)'. 
o rl(z,D + m + r+ 1)1 

(47) 

Hence, defining 

G(A,Il) = (z,D + ~D + m + l)K'(z, ~ 1)(1/2)-mD(l/2)-M 

X(z, + 1) -m(Z; _1)1/2(m-M), 

(48) 

G (A, -Il) = (z,D -!D + m + I)K'(z, + 1)(1/2) - mD(l/Z)--I­

X(z, _1)-m(z;_I)I/2(m-M)(_),,+M-m, 

we can write [combining (45) and (46)]: 

G (A'Il)d~" (z,) = G CA, -Il)di _I' (z,) . (49) 

The reader should compare this with Sec. II A of Ref. 1; we 
now proceed in a similar manner. 

Using Eqs. (49) and (43) we can define a pure naturality 
p amplitude 

pep) = ! [G (A,Il)f~(f;db + ptG (A, -Il).f'- c - (f;db] 

= I (caITJ(p)ldb )G (A,Il)d il'(z,) . (50) 
J 

We now go on to define/ ± ,A (p), andB(p) exactly as 
in Sec. II B of Ref. 1. In brief, 

/ ± = H/~a;db ± 11f1-c-a;db] = A (~ + B~, (51) 
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where now 

77 = 77c77.:i( - )s, + S( - (1/2)( - Y - asign(AIl) . 

In terms off ± 

F(p) = G~+ + G _~-, (52) 

where 

G ± = G (A,Il) ± (- r --).. -MG (A, -Il). (53) 

A J = a polelike term contributes to (51) and (52) as 

A (p) = ag(t )~ (1 + 0 (z ,- 2)] , 

R(p) =Allg(t)~-1 [1 + O(Z,-2)] , (54) 

F(p) = a(a + 1)[(a - M)l/(a - D!]g(t)~-m 

X [1 + O(Z,-2)]. 

This ends our general analysis. In Sec. III we develop in 
detail the m = ! approximation series, an example of what 
can be done in general (though not easily in a general 
manner). 

III. APPROXIMATIONS FOR m = l 
A. The m = l series 

In line with point (2) following Eg. (42) we here develop 
a useful approximation series for the case 

m=~. 

Let us define modified amplitudes: 

f-' - - = (z + 1) - 1/2(Z2 - 1) 1/2«1/2) - M'f' _ -
ca;db I t ca;db , 

(55) 

I-, - - = (z - 1) - 1/2(Z2 - 1) 1/2«1/2) - M'f' _ -
- c - a;db t r - c - a;rib , 

where sign (A,u) = + as usual. We modify the G (A,,u) and 
F(p) of Eqs. (48) and (50) by taking 

G '(A,,u) = D M - (112)G (A,,u) , 

F'(p) = D M - (1/2)F(p) . 

Equation (SO) becomes 

F'(p) = H(z,D + 1D + M + 1)K "J~a;db 
+ P77(z,D - ~D + M + I)K "1'-c -a;db] , 

where 

7J = 77c77A( - t, +s,- (1/2)( _ y-a 

and 

K" =! (z,D + M + I)! QD 2)' 
r ~ 0 r!(z,D + M + r + 1)! . 

(56) 

(57) 

Denoting by F ',. (p) the first N terms in F' (p) we can 
define 

F"( )=(z,D+M+N+1)! F'( ) 
N P (z,D +M + I)! N P 
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N-J (z,D+M+N+l)! 
=(z,D+M+l) .I 

r~O r!(z,D+M+r+l)! 

XQD2n[J~a +prif'-c-a] 

+ !D(z,D+M + 1) Nfl . (z,D +M +N)! 
r=O r!(z,D + M + r + 1)! 

X QD 2)'HJ~a - prJ!l- c _ a ) . (58) 
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For all N F ~ (p) is a well-defined expression consisting 
of polynomials in D acting on the/'. The discussion follow­
ing Eq. (42) establishes that F:~(p) converges to a pure na­
turality p amplitude as N--+ Cf) • ThenaturaIity ( - p) terms at 
each stage are suppressed relative to the naturality (p) terms 
by a factor of order 

l/z;N+I. 

Now we will consider some examples ofEq. (58), for the 
cases N = land 2. 

l.N=l. 
In this (the simplest) case we have 

F;'(p) 
= (z,D + M + 2)[(z,D + M + l)!<l~a + prif'-c _ a) 

+ ~D·!if~a - p7JlI- c _ a ] . (59) 

Apart from the irrelevant overall factor this is just Eq. (56) 
withK" ~ 1. We can rewrite F;'(p) in terms of the/' [hence 
thef ± ofEq. (51)J by taking the same order approximation 
we are using already in Eq. (55). Thus 

1-, -M-I( lift 
cii;Jb~t Z, - 2 ca;db' 

1-, -M-I( +Jif' 
-c-ii;db~' Z, 2 -c-a;db· 

Continuing to retain only the leading two orders we get 

F;'(p) =Z,-M-I (z,D + 1) [(z,Dz,)fP -A,uf- P). 

Apart from irrelevant factors this is just the single derivative 
approximation of Sec. IV for this special case. 

2.N=2. 
This case is less trivial. From Eq. (58) 

F;(p) 
= (z,D +M + l)(z,D+M + 3) [(z,D +M +2) + !D2] 

xHJ~a + PrJ!'-C-ii J + !D(z,D + M + 1) 

X [(z,D + M +2) + iD2 ]Hl~ii - p7Jl'-c-a] . 
(60) 

This last expression can of course be written in terms off ± , 

just as F ;'(p). The approximation is obtained by taking the 
leading four orders in z,. 

In general we need 2N energy-derivatives to evaluate 
F'N(p). 

B. 1TN backward scattering 

Here our main idea is just to observe that 1TNbackward 
scattering is a process where our methods should be useful. 
The process is, in the s channel, 

1T + N--+N + 1T , 

with t channel 

N + 1T--+1T + N . 
There are only two independent helicity amplitudes. If 

we write the t channel amplitudesf~';b' and the s channel 
amplitudes /;,b' then 

I S.' 
+;+ 

fS~;_ = -fs~;+ =:Fs.t , 

(61) 

in an obvious notation. We have one crossing angle X, and 
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( N' ) = [ c~Sx 
F' smX 

where 

- sin X 
cos X 

cosX = [(s + m 2 
- ,u2)(t + m 2 - ,u2) - 4m2(m2 - ,u2) J 

(62) 

X f [s - (m - ,u?) [s - (m + ,u?) [t - (m - ,u)2) 

X [t - (m -,un [m + ,u)2] J -1/2 

(m = m,v,,u = m rr ) and 

sinx = 2m [stu + (s + t )(m2 - ,u2)2 + 2(P4 _ m4) 

X(m 2 
- ,u2)]1/2[ [s - (m - ,u?] [s - (m + ,u)2] 

X [t - (m - ,u)2] [t - (m - ,u)2] [m + ,u)2] 1-1/2 . 

Our amplitudesj ± [Eq. (51)] are given by 

r = F' + iN t = e - iX [ps + iN S J , 

j- = F' - iNt = e'x[ps - iNsJ . 

(63) 

The single derivative approximate separation scheme de­
fined in the last section is 

- d 
F(p) =ZI -(zJP) - V- p

• 

dz, 
(64) 

The contributions of a J = a polelike term to the different 
amplitudes are 

A (p) = az:' [1 + 0 (Z,-2)], 

B(p)=lz:'-I[l + o (Zt- 2)], 

F(p)=a(a+l)z:'+I[1 + o (Zt- 2)] . 

(65) 

This section [Eqs. (61)-(65)J can be taken by itself and 
used to get a good estimate of the pure naturality contribu­
tions. The B (p) factors are not so important here as they are 
in any (m # 0) Bosonic t-channel process, due to the extra 
factor of M =A,u). We still cannot rely on B (p) being small 
for moderate energies. In our NN analysis B (p) was general­
ly comparable to A ( - p); a factor of 1 will not make it negli-, 

gible. Our single-derivative approximation should be very 
reliable. 

IV. THE SINGLE-DERIVATIVE APPROXIMATION 

In this section we derive the single-derivative approxi­
mation to exact naturality separation for a general Fer­
mionic t channel. We have already done this in Sec. III A for 
the case m = l' 

In fact the single-derivative approximation (=SDA) is 
exactly the same here as in the Bosonic case (Ref. 1, Sec. III). 
There are two reasons: 

1. The leading order (J = a) expansions for A (p) and 
B (p) are the same in the Bosonic and Fermionic cases [Eq. 
(54) and Ref. 1, Eq. (31)]. 

2. The single derivative approximation simply cancels 
the leading order wrong-naturality terms. 

These comments do not mean we are just considering a 
pole model, as might easily be thought. Any amplitude can 
be considered as being as convolution of polelike terms, or 
having the form of Eq. (40). If the leading naturality ( - p) 
term [A ( - p)J has the form 

A ( - p) = f:"", z:'J(a) da , (66) 

then the naturality ( - p) contribution to F(p) is 

F(p)[ - p] = f:":2 z~](a) da 

1 [fa" % ] = Z2 _ '" z~j(a -2) da , 
t 

(67) 

i.e., relatively smaller by a factor of 0 (Zt- 2
) thanB ( - p)isin 

j p. This point is outside the main line of our argument, but it 
is important in order to avoid any misunderstanding. 

Anyway, the SDA is the same for any 2-+2 process, so 
that we have already considered it fully in Ref. 1. Nonethe­
less we will now show how to derive the technique from the 
general methods of Sec. II. This is a useful check on the 
validity of our manipulations. 

The simplest approximation to F(p) [Eq. (SO)] is obtained by taking K' -1 in Eq. (48): 

G (A,,u) = (ZtD + !D + m + I)K '(Zt - 1)(1/2) - mD (1/2) - M (Zt + 1) - m(Z; _1)(1I2)(m - M) 

= (ZtD +!D + m + 1)(Z~1/2)-m + (m - DZt-(1I2)-m)D(1I2)-M(Z;n - mZ;n-I)z;n-M[l + 0(Zt- 2)] 

=Z~1/2)-mD(l/2)-MZt-M-I(ZtDZt -mM)[1 +0(Zt- 2)1. 

From the symmetry under Zt- - Zt 

(68) 

G (A, - ,u);:::::;( - )" + M- nlZ?12) - mD(l/2) - MZ,-M -1(ZtDz, + mM). (69) 

We can define F(p) by inserting these approximations into G (A, ±,u) in Eq. (50), and then we can use this F(p) to define 

F(p) =z~f+IDM-(1/2)z;n -(1/2)F(p). 

Hence 

F(p) = z,Dz,!(f~a;db + prlF __ c _ a;db) - mM !(f~a;db - prlF- c _ a;db) 

=Zt.3:... [zJPJ -A,uj-P. 
dZt 

This is just Eq. (34) of Ref. 1 again. As there, we can 
write as the contribution of a J = a naturality p term: 

A(p)=az~g(t)[1 +0(Zt-2)] , 
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B (p) = A,uZ~ -lg(t)[1 + 0 (Z,-2)], 
F(p) = a(a + 1)z:' + I g(t) [1 + 0 (Z/-2)] . 

Richard Stacey 

(70) 

(71) 
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V.SUMMARY 

In this paper we have done a great deal of mathematical 
work, leaving us with some simple techniques for extracting 
important information on pure naturality exchanges from 
measured amplitudes, the techniques being set in a well-un­
derstood mathematical framework. 

We have a well-defined approximation series consisting 
of sums of amplitudes and a finite number of their energy 
derivatives, giving increasingly good approximations to pure 
naturality contributions. At every stage the error is reduced 
by a factor of order Z,- 2. The first term (SDA: Sec. IV) is 
likely to give a good approximation, the "wrong" naturality 
terms being suppressed by a factor of order Z,- 3 relative to 
the "right" naturality terms. Better approximations are easi­
ly obtained (Sec. III) but are less simple. 

The limit of the series exists (Sec. II) but in general we 
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will not know how to express the amplitUdes in a form where 
we can use our exact methods. No simpler method involving 
just a finite number of derivatives can achieve exact natura­
lity isolation. 
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